6-4 用z变换解差分方程

合集下载

Z变换和差分方程

Z变换和差分方程
t z 1
经常用于分析计算机系统的稳态误差!!
5、超前定理
n F ( z ) f ( nT ) z 则: 设函数f(t)的 Z变换为 n 0
Z [ f (t kT )] z F ( z ) z
k
k

n 0
n 1
f (nT ) z n

f (0) f (T ) f [(k 1)T ] 0 则:
k
求: y ( k )
• 解: • 将方程中除 y(k)以外的各项都移到等号右边, • 得: y(k ) 3 y(k 1) 2 y(k 2) f (k )
• 对于 k 2, 将已知初始值 y(0) 0, y(1) 2代入上式,得:
y(2) 3 y(1) 2 y(0) f (2) 2
第三节

差分方程
差分方程是包含关于变量 k 的序列y(k) 及其各阶差分的方程式。 是具有递推关系的代数方程,若已知初始 条件和激励,利用迭代法可求差分方程的数值 解。
差分方程的定义:
对于单输入单输出线性定常系统,在某一采样时 刻的输出值 y(k) 不仅与这一时刻的输入值 r(k)有 关,而且与过去时刻的输入值r(k-1)、 r(k-2)…有 关,还与过去的输出值y(k-1)、 y(k-2)…有关。可 以把这种关系描述如下:
i 1
n
i 1 n
函数线性组合的Z变换,等于各函数Z变换的线性组合。
2、滞后定理
设在t<0时连续函数f(t)的值为零,其Z变换为F(Z)则:
Z[ f (t kT )] z k F ( z)
原函数在时域中延迟几个采样周期,相当于在象函数上乘以z-k, 算子z-k的含义可表示时域中时滞环节,把脉冲延迟k个周期。

z变换求解差分方程步骤

z变换求解差分方程步骤

z变换求解差分方程步骤嘿,咱今儿就来讲讲这用 z 变换求解差分方程的步骤哈。

这可就像是解开一道神秘的谜题呢!你想想,差分方程就像是一个调皮的小精灵,藏着好多秘密等我们去发现。

而 z 变换呢,就是那把神奇的钥匙啦。

首先呢,得把差分方程给它表示清楚咯,可不能模模糊糊的。

就像你要找东西,总得先知道要找啥样的不是?然后对这个差分方程进行 z 变换,这就好比给它施了个魔法,一下子就变得不一样啦。

在这个过程中啊,你得细心点儿,可别弄错啦。

这就跟走迷宫似的,一步错步步错呀。

接着呢,就会得到一个关于 z 的表达式,这可就是我们前进的线索呢。

然后呢,咱得把这个表达式给它化简化简,把那些复杂的东西都去掉,就像给苹果削皮一样,让它露出最精华的部分。

这时候可就考验咱的本事啦,得有耐心,还得有那么点儿小技巧。

再接下来呀,就得求解啦!这就像是终于找到了宝藏的位置,要把它挖出来一样。

把 z 的值求出来,这可不容易呢,但咱不能怕呀,要勇往直前!等求出了 z 的值,可别以为就大功告成咯。

还得把它变回原来的世界,也就是反变换回去。

这就像是把变了形的东西再变回来,可神奇啦。

哎呀,你说这过程是不是挺有意思的?就好像是一场冒险,每一步都充满了挑战和惊喜。

你要是能熟练掌握这 z 变换求解差分方程的步骤,那可就厉害咯,就像是拥有了超能力一样!你想想,以后遇到那些复杂的差分方程,别人都抓耳挠腮不知道咋办的时候,你就能轻松搞定,那多牛呀!这就好比别人还在走路,你都开上小汽车啦,一下子就把他们甩在后面啦。

所以呀,可得好好学这 z 变换求解差分方程的步骤哦,别偷懒,多练练,肯定能掌握得牢牢的。

到时候,不管啥样的难题都难不倒你啦!这多棒呀,是不是?。

差分方程的求解

差分方程的求解

计算机控制技术课程讲义
17
4.6 方框图及其分析
脉冲传递函数也可用方块图表示,增加一个部件 —— 采样开关
4.6.1 采样开关位置与脉冲传递函数的关系
1、连续输入,连续输出 2、连续输入,离散输出 3、离散输入,离散输出 4、离散输入,连续输出
例:方框图分析
例1、例2、
计算机控制技术课程讲义 18
计算机控制技术课程讲义 2
做Z反变换,由于 Y ( z) 1 1 1 2 z z 3z 2 z 1 z 2 z z 则Y ( z ) z 1 z 2 查Z变换表可得 y (k T) Z 1[Y ( z )] (1) k (2) k , k 0,1,2,...
两个环节中间无采样开关时
a z (1 e aT ) G ( z ) Z [G1 ( s )G2 ( s )] Z s ( s a ) ( z 1)( z e aT )
G1 ( z )G2 ( z ) G1G2 ( z )
计算机控制技术课程讲义 13
T
Y (s)
D( z ) G1 ( z ) R( z ) Y ( z ) G2 ( z ) D( z ) G1 ( z )G2 ( z ) R( z )
Y ( z) G( z) G1 ( z )G2 ( z ) R( z )
计算机控制技术课程讲义
脉冲传递函数等于两个环 节的脉冲传递函数之积。
但是,对离散系统而言,串联环节的脉冲传递函数不 一定如此,这由各环节之间有无同步采样开关来确定
计算机控制技术课程讲义
10
二、离散系统串联环节 1、串联各环节之间有采样器的情况
G( z)
G1 ( z ) G2 ( z )

Z变换及差分方程的求解

Z变换及差分方程的求解

Z变换及差分⽅程的求解第⼆讲离散时间动态经济系统运动分析及稳定性分析2.1离散时间函数与Z变换⽬的要求:通过本节的学习使学⽣掌握离散时间函数及Z变换的概念,会使⽤Z变换的性质解决问题,掌握差分⽅程及离散时间系统的运动分析⽅法。

教学内容:我们经常会遇到利⽤离散时间函数表⽰的差分⽅程或差分⽅程组,这在经济管理中经常遇到。

现介绍离散时间函数,差分⽅程后⾯介绍。

⼀、离散时间函数例1 ⼈⼝离散时间函数设全国⼈⼝普查每年进⾏⼀次。

每年的7⽉1⽇凌晨零点的⼈⼝数代表该年的⼈⼝数。

我们以t=0 代表1990年7⽉1⽇凌晨的这个时刻,那么t=1,2,3,……分别表⽰1991年、1992年、1993年等各年度7⽉1⽇凌晨零点。

各年度普查的实际⼈⼝数如下表所⽰中国实际⼈⼝数据(亿⼈)x(0)=11.4333, x(1)=11.5823, x(2)=11.7171,x(3)=11.8517, x(4)=11.9850, x(5)=12.1121,x(6)=12.2389, x(7)=12.3626,……由于在离散时间离取值,故称之为离散时间函数例2 国民⽣产总值GNP(gross national product)离散时间函数。

则,GNP(t)表⽰第t年的GNP数值。

GNP(O)=33560.5, GNP(1)=46670.0, GNP(2)=57494.9,……例3 企业⽉产量离散时间函数。

表为电视机⼯⼚⽣产⽉报表(万台)则,Y(0)=1.5, Y(1)=2, Y(2)=1.8,……可以看出,经济管理实践中基本上采⽤离散时间函数来表达各种变量的变化,并该函数没有解析表达式,只有图象、列表表达式。

其⾃变量为离散时间。

⼆、Z 变换及其逆变换导⾔:Z 变换是怎么发明出来的?⽜顿、莱布尼兹等发明了微积分,之后发明了常系数微分⽅程及⽅程组。

在求解⽅程时总结经验,简化计算,如⽤符号s 表⽰微分运算s=d/dt,即s 〃f(t)=df(t)/dt 。

对差分方程两边进行Z变换

对差分方程两边进行Z变换

二.典型序列的收敛域 1.有限长序列:
x( z )

0 n1 n n2 x(n) 其它 0
n
n
x(n) z

n n1
n x ( n ) z (1)
n2

n1 0 n2 0
0 n n n1
( 1 )式 x(n) z
1 a n2 1 1. an 1 a n 0 n2 1
n2
a 1 a 1
a n1 a n2 1 a 1 n 2. a 1 a n n1 n2 n1 1 a 1
n2
1 n 3. a a 1 1 a n 0

n
a z
n 0

结论:(1)通常收敛域以极点为边界,且收敛域内无极点 1 z z z (2)根据x(n)是左边、右边、还是双边序列,直接 a z z a z b 1 1 写出收敛域形式 z b
a 1 z
n
a z b z
冲激,抽样 n 0

对上式取拉氏变换
xs (t ) x s (t )e st dt
0
[ x(nT ) (t nT )]e st dt
0 n 0


x( z ) x(n) z n x(0) x(1) z 1 x(2) z 2 x(n) z n
z 1
z 0.5
0.5 z 1
求三种可能收敛域的逆变换 解:1. 三种可能收敛域 2. 收敛域|z|>1时 (1)先求围线内所包含的极点个数x(z)zn-1
x( z ) z
n 1
z2 z n1 n 1 z ( z 1)(z 0.5) ( z 1)(z 0.5)

第六节 Z 变 换

第六节  Z 变 换
2 2
Z xn 1 z X ( z) x(1)
1
Z xn 2 z X ( z) z x(1) x(2)
2 1
三、频移性质(Z域尺度变换):
If x ( n ) X(z )
j0 n
ROC : R
then 1. e
x n X e

j0z k源自 z 1 j 0 j 0

1 e z e z cosk 0 k j 0 j 0 e z 1 e z 1 2 z z cos 0 2 z 2 z cos 0 1
2

z z cos 0 k cosk 0 k 2 z z 2 cos 0 1
2
a 1 b 1 z a b z a b a z b
1 k 1 k 1 x ( k ) * h( k ) a b k a b


七、序列除(k+m)(Z域积分)
If f ( n) F ( z )
z 2. F2 z 2 . z z 3 1
f 2 k ?
2 2 2
解:
1 z z z 1. F1 z 1 2 2 z 1 z 1
cos 0;


2
k f1 k k cos 2
k
z 2. F2 z 2 z z 3 1
3 2
z 1
解:
F ( z) 2 6 8 13 2 z z z z 1 z 0.5
k
f (k ) 2 k 1 6 k (8 130.5 ) k

差分方程及其Z变换法求解

差分方程及其Z变换法求解

例1:右图所示的一阶系统描述它的微分方程为
y(t ) Ke(t ) K (r (t ) y(t ))
y(t ) Ky(t ) Kr (t )
用一阶前向差分方程近似:
(1)
r( t ) e( t ) -
K
1/s
y( t )
y (k 1)T y (kT ) dy y (t ) lim dt T 0 T
由图:x1 (k 1)T x2 (kT )
zX 1 ( z ) zx1 (0) X 2 ( z )
x2(kT)
z
1
x1(kT)
z 1
x1(0) 1
x1 ( z)
x2(z) y[(k+1)T]
例2:画出例2所示离散系统的模拟图
y[(k 1)T ] -( KT -1) y(kT ) + KTr (kT ) r(kT)

y (k 1)T y (kT ) T
(T 很小)
(2)
式中:T为采样周期,(2)代入(1)得:
y (k 1)T (KT 1) y(kT ) KTr(kT )
y(k 1) ( K 1) y(k ) Kr (k )
(3)
二、离散系统差分方程的模拟图
连续系统采用积分器s-1作为模拟连续系统微分方程的主要器件; 与此相对应,在离散系统中,采用单位延迟器z-1。 单位延迟器:把输入信号延迟一个采样周期T秒或延迟1拍。
再利用初始条件,逐次迭代得到各采样时刻的值。
特点:适用于计算机处理求解。 例3:用迭代法解二阶差分方程 y(k+2) +3y(k+1)+2y(k)=1(k)
利用初始条件 y(0)=0, y(1)=1,则有: y(k+2) =-3y(k+1) -2y(k)+1(k) y(2) =-3y(1) -2y(0)+1(0)= -3*1-2*0+1= -2

差分方程的z变换解法ppt课件

差分方程的z变换解法ppt课件
5
例如:有一因果系统方程为:y(n) 1 y(n 1) 1 x(n)
2
2
⑴ 若y(-1)=2,求系统的零输入响应;
⑵ 若x(n)=(1/4)nu(n),求系统的零状态响应;
解:⑴ 求零输入响应,系统方程为齐次方程。
y(n) 1 y(n 1) 0 2
系统方程求z变换
Y (z) 1 z1[Y (z) y(1)z] 0 2
y(n) 0.7 y(n 1) 0.1y(n 2) x(n) x(n 1) x(n) u(n) , y(1) 2, y(2) 7
解:对方程两边同求z变换
Y (z) 0.7z1[Y (z) y(1)z] 0.1z2[Y (z) y(2)z2 y(1)z] X (z)(1 z1)
§5-4 LTI系统Z变换分析法
利用Z变换求解线性常系数差分方程方法如下: ⒈对差分方程两边求单边z变换。注意:方程左边应用非因果的移
位性,方程右边应用因果序列的移位性。
⒉解代数方程,求输出序列的z变换Y(z)。
⒊求反z变换,得到输出的时间序列y(n)。
N
M
设差分方程为: ak y(n k)

X(z)
z z1
4
1 z2 Y(z) 2
(z 1)(z 1) 24
1z 1z
Y (z)

3 z
1

6 z
1
2
4
1
Y(z) 2 X (z) 1 1 z1 2
Y (z) z

(z

1z 2 1)(z

1)
24
11

z
3 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X
设x(k)为因果序列,则
第 4 页
(1 a1Z aN Z )Y ( z ) Y1 ( z ) (b0 b1Z bm Z ) X ( z )
1 N 1 m
D( z)Y ( z) N ( z) X ( z) Y1 ( z)
2、z域全响应
N ( z) Y1 ( z ) Y ( z) X ( z) Yzs ( z) Yzi ( z) D( z ) D( z ) 3、z逆变换
第 1 页
第四节 用z变换解差分方程
X
序言
第 2 页
描述离散时间系统的数学模型为差分方程。求解差分 方程是我们分析离散时间系统的一个重要途径。 求解线性时不变离散系统的差分方程有两种方法: •时域方法——第七章中介绍,繁琐 •z变换方法 •差分方程经z变换→代数方程; •可以将时域卷积→频域(z域)乘积; •部分分式分解后将求解过程变为查表; •求解过程自动包含了初始状态(相当于0-的 条件)。
y(k ) yzs (k ) yzi (k )
X
第 5 页
小结
(1)对差分方程进行单边z变换(移位性质); (2)由z变换方程求出响应Y(z) ;
(3) 求Y(z) 的反变换,得到y(k) 。
X
பைடு நூலகம்
Y ( z ) a1[ Z 1Y ( z ) y (1)] a N [ Z N Y ( z ) Z ( N 1)Y (1) y ( N )]
第 3 页
b0 X ( z ) b1[ Z 1 X z x(1)] bm [ Z m X ( z ) Z ( m1) x(1) x(m)]
X
一.应用z变换求解差分方程
1、将差分方程变成z域代数方程
y (k ) a1 y (k 1) a N y (k N ) b0 x(k ) b1 x(k 1) bm x(k m) y (1), y (2), y ( N ) : 初值
相关文档
最新文档