中考数学第一轮复习检测题9

合集下载

新课标中考数学第一轮复习训练题

新课标中考数学第一轮复习训练题

新课标中考数学第一轮复习训练题1.2的倒数是 .2.若向南走2m 记作2m -,则向北走3m 记作 m .的相反数是 . 4. 3-的绝对值是( ).A .3-B .3C .13-D .135.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为( )A.7×10-6B. 0.7×10-6C. 7×10-7D. 70×10-86.某天的最高气温为6°C ,最低气温为-2°C ,同这天的最高气温比最低气温 高_ __°C .7.计算:=-13_______.8.比较大小:2- 3.(填“>,<或=”符号) 9. 计算23-的结果是( )A. -9B. 9C.-6D.6 10.下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=11. 31-x 2y 的系数是 ,次数是 . 12.计算:2(2)a a -÷= . 13.下列计算正确的是( )A .5510x x x +=B .5510·x x x =C .5510()x x =D .20210x x x ÷= 14. .若x -y =3,则2x -2y = .15.a ,b 两数的平方和用代数式表示为( )A.22a b +B.2()a b +C.2a b +D.2a b + 16.分解因式:3x 2-27= .17.若 , ),4)(3(2==-+=++b a x x b ax x 则. 18.下列式子中是完全平方式的是( )A .22b ab a ++B .222++a aC .222b b a +-D .122++a a19.当x =____时,分式11x x +-有意义;当x =____时,分式2x x x -的值为0.20.当x ___________在实数范围内有意义. 21.计算:2=__________.22.若无理数a 满足不等式14<<a ,请写出两个符合条件的___________. 23. 计算:54-= _____________.24是同类二次根式的是( )ABCD1 25.写一个以2-=x 为解的方程 .26.如果方程2130m x -+=是一元一次方程,则m = . 27. 在方程y x 413-=5中,用含x 的代数式表示y 则y = 。

第09章 平面直角坐标系与函数初步-2021年中考数学一轮复习(通用版)(含答案)

第09章 平面直角坐标系与函数初步-2021年中考数学一轮复习(通用版)(含答案)

2021年中考数学一轮复习(通用版)第09章平面直角坐标系与函数初步考点梳理考点一平面直角坐标系及点的坐标1.平面直角坐标系(1)在平面内画两条互相垂直并且原点重合的数轴,就建立了平面直角坐标系.其中,水平的数轴叫做x轴或横轴,取为正方向;垂直的数轴叫做y轴或纵轴,取为正方向;两轴的交点为原点.(2)坐标平面内点与有序实数对建立的关系,即坐标平面内的任何一点可以用一对有序实数来表示;反过来,每一对有序实数都表示坐标平面内的一点.2.点的坐标(1)各象限内点的坐标的符号特征. 如图所示.①点P(x,y)在第一象限①x>0,y>0;①点P(x,y)在第二象限①;①点P(x,y)在第三象限①;①点P(x,y)在第四象限①;①坐标轴不属于任何象限.(2)坐标轴上点的坐标特征①点P(x,y)在x轴上①y=0;①点P(x,y)在y轴上①=0;①原点的坐标为.(3)各象限角平分线上点的坐标特征①点P(x,y)在第一、三象限角平分线上①x=y;①点P(x,y)在第二、四象限角平分线上①.(4)对称点的坐标特征①点P(x,y)关于x轴对称的点的坐标为(x,-y);①点P(x,y)关于y轴对称的点的坐标为;①点P(x,y)关于原点对称的点的坐标为.(5)平行于坐标轴的点的坐标特征①平行于x轴,纵坐标都,直线上两点A(x1,y),B(x2,y)的距离为|x1-x2|;①平行于y轴,横坐标都,直线上两点A(x,y1),B(x,y2)的距离为|y1-y2|.(6)点平移的坐标特征(7)①点P(a,b)到x轴的距离为|b|;①点P(a,b)到y轴的距离为;①点P(a,b)到原点的距离为①.考点二函数的概念及其表示方法1.函数及相关概念(1)变量与常数:在一个变化过程中,可以变化的量,是变量;保持不变的量,是常量.(2)函数:一般地,在一个变化过程中,如果有两个变量x,y,且对于x在它允许取值范围内的每一个值,y 都有的值与它对应,那么就说x是自变量,y是x的函数.(3)函数值:对于一个函数,取自变量x在允许范围内的一个确定值,代入函数表达式求得的函数y的值,就叫做函数值.2.函数的表示方法(1)列表法:通过列出自变量的值与对应函数值的表格来表示函数的方法叫做列表法.(2)解析法:用数学式子表示函数关系的方法叫做解析法.其中的等式叫做函数表达式(或函数解析式或函数关系式).(3)图象法:用图象来表示两个变量间的函数关系的方法,叫做图象法.①函数的图象:对于一个函数,如果把自变量x与函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形就是这个函数的图象.①画函数图象的步骤:列表、描点、连线.3.函数自变量取值范围重难点讲解考点一点的坐标与图形的变化规律方法指导:点的坐标在变换中的规律:(1)平移:左右平移时横坐标左减右加,纵坐标不变;上下平移时纵坐标上加下减,横坐标不变;(2)关于坐标轴对称,与其同名的坐标不变,另一个坐标变为相反数;(3)关于原点对称,其坐标互为相反数;(4)点(x,y)关于原点顺时针旋转90°后的点坐标为(y,-x),点(x,y)关于原点逆时针旋转90°后的点坐标为(-y,x).经典例题1 (2020•安徽宿州模拟)已知点M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M 的坐标为()A.(2,3) B.(2,-3) C.(3,2) D.不能确定【解析】M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3).【答案】B考点二函数图象的分析与判断方法指导:根据函数的图象分析实际意义:要读懂图象的意义,就要会析图、用图.在解答过程中,要弄清楚图象的横、纵坐标表示的意义,函数图象上的点的意义,图象的变化趋势、变化快慢等,特别地,若是问题在整体过程中分为几个阶段,则其对应的图象也应分段分析,注意特殊点,如起点、终点、交点、转折点等的实际意义.经典例题2 (2020•湖南衡阳模拟)如图1,在矩形ABCD中,对角线AC与BD相交于点O,动点P从点B 出发,在线段BC上匀速运动,到达点C时停止.设点P运动的路程为x,线段OP的长为y,如果y与x 的函数图象如图2所示,则矩形ABCD的面积是()图1 图2A.20B.24C.48D.60【解析】如图2所示,当OP⊥BC时,BP=CP=4,OP=3,所以AB=2OP=6,BC=2BP=8,所以矩形ABCD的面积=6×8=48.【解析】C过关演练1. (2020•湖南长沙模拟)点P在第二象限内,若P到x轴的距离是3,到y轴的距离是4,那么点P的坐标为()A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)2. (2020·安徽阜阳模拟)如果m是任意实数,则点P(m-4,m-1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限3. (2020•湖南邵阳中考)已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是()A.(a,b) B.(﹣a,b) C.(﹣a,﹣b) D.(a,﹣b)4.(2020•山东滨州中考)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5) B.(﹣5,4) C.(4,﹣5) D.(5,﹣4)5.(2020•四川甘孜州中考)函数y=13x中,自变量x的取值范围是()A.x>﹣3 B.x<3 C.x≠﹣3 D.x≠36.(2020•江苏无锡中考)函数y=2+31x-中自变量x的取值范围是()A.x≥2 B.x≥13C.x≤13D.x≠137.(2020•四川遂宁中考)函数y中,自变量x的取值范围是()A.x>﹣2 B.x≥﹣2 C.x>﹣2且x≠1 D.x≥﹣2且x≠18.(2020·河北模拟)如图所示,两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;①甲的速度比乙快1.5米/秒;①乙的起跑点在甲的前方12米处;①8秒钟后,甲超过了乙其中正确的说法是()A.①① B.①①① C.①① D.①①①9.(2020·安徽模拟)小明、小刚兄弟俩的家离学校的距离是5km.一天,兄弟俩同时从家里出发到学校上学,小刚以匀速跑步到学校;小明骑自行车出发,骑行一段路程后,因自行车故障,修车耽误了一些时间,然后以比出发时更快的速度赶往学校,结果比小刚早一点到了学校.下列能正确反映两人离家的距离y(米)与时间x(小时)之间的函数关系的图象是()A BC D10.(2020·江苏徐州一模)已知A,B两地相距1000米,甲从A地步行到B地,乙从B地步行到A地,若甲行走的速度为100米/分钟,乙行走的速度为150米/分钟,且两人同时出发,相向而行,则两人之间的距离y(米)与时间t(分钟)之间的函数图象是()A BC D11.(2020•安徽淮南模拟)如图,在菱形ABCD中,AB=1,∠B=60°,点E在边BC上(与B,C不重合)EF ∥AC,交AB于点F,记BE=x,△DEF的面积为S,则S关于x的函数图象是()A B C D 12.(2020•四川州模拟)小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;①他步行的速度是100m/min;①他在校车站台等了6min;①校车运行的速度是200m/min;其中正确的个数是()A.1 B.2 C.3 D.413. (2020•湖北黄冈中考)2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间函数关系的大致图象是()A B C D14. (2020•青海中考)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为图中的()A B C D 15.(2020•贵州遵义中考)新龟兔赛跑的故事:龟兔从同一地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先,就躺在路边呼呼大睡起来.当它一觉醒来,发现乌龟已经超过它,于是奋力直追,最后同时到达终点.用S1,S2分别表示乌龟和兔子赛跑的路程,t为赛跑时间,则下列图象中与故事情节相吻合的是()A B C D 16.(2020·贵州贵阳模拟)在平面直角坐标系中,y轴的左侧有一点P(x,y),且满足|x|=2,y2=9,则点P的坐标是.17.(2020·安徽铜陵模拟)若点P(a,b)在第四象限,则点M(b-a,a-b)在第象限.18.(2020·安徽合肥二模)函数y的自变量取值范围是.19.(2020•上海一模)在平面直角坐标系xOy中,点A(4,3)为O上一点,B为O内一点,请写出一个符合条件要求的点B的坐标.20.(2020·河南模拟)A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回,返回途中与乙车相遇.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.当它们行驶7h时,两车相遇,则乙车速度的速度为.21.(2020•浙江金华中考)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).22.(2020•黑龙江齐齐哈尔中考)在函数y中,自变量x的取值范围是.23.(2020•上海中考)已知f(x)=21x-,那么f(3)的值是.参考答案考点梳理考点一 1. (1)向右向上(2)一一对应 2. (1)①x<0,y>0 ①x<0,y<0 ①x>0,y<0 (2)①x ①(0,0) (3)①x=-y (4)①(-x,y) ①(-x,-y) (5)①相等①相等(6)(x,y+b) (x,y-b) (7)①|a|考点二 1. (2)唯一确定 3.不等于0 非负数不为0过关演练1. A解析:∵点P在第二象限内,∴点P的横坐标小于0,纵坐标大于0,又∵P到x轴的距离是3,到y轴的距离是4可知,∴点P的横坐标是-4,纵坐标是3,即点P的坐标为(-4,3).2. D 解析:①(m-1)-(m-4)=m-1-m+4=3,①点P的纵坐标大于横坐标,①点P一定不在第四象限.3. B 解析:①a+b>0,ab>0,①a>0,b>0.(a,b)在第一象限,因为小手盖住的点在第二象限,故选项A不符合题意;(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故选项B符合题意;(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故选项C不符合题意;(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故选项D不符合题意.4. D 解析:①在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,①点M 的纵坐标为﹣4,横坐标为5,即点M的坐标为(5,﹣4).5. C 解析:由题意得x+3≠0,解得x≠﹣3.6. B 解析:由题意得,3x﹣1≥0,解得x≥13.7. D 解析:根据题意,得21xx≥-⎨≠+⎧⎩,,解得x≥﹣2且x≠1.8. B9. A 解析:由题意可知,小刚匀速从家去学校,故小刚对应的函数图象是一条线段,故选项D错误;小明骑自行车先行一段路程,中途出现故障需要维修,然后以更快的速度赶往学校,比小刚早到一点到达学校,故选项B、C错误,选项A正确.10. C 解析:两人相遇时所用时间为1000÷(100+150)=4(分钟),乙从B 地步行到A 地所用时间为1000÷150=203(分钟),则203分钟后,甲、乙两人之间距离的变化变缓,甲从A 地步行到B 地所用时间为1000÷100=10(分钟),由此可知选项C 能反映两人之间的距离y (米)与时间t (分钟)之间的关系.11. C 解析:∵菱形ABCD 中,∠B =60°,∴△ABC 是等边三角形,∵EF ∥AC ,∴△BFE 是等边三角形,∴BE =BF =x ,∵BE =x ,∴S △BFE =12x ﹒=x 2,∵AB =1,∴EC =AF =1-x ,∴S △AFD =S △CED =12(1-x )﹒=-x ,∵S 菱形ABCD =12×1×=,∴S △DFE =-x 2-2(-x )=-4(x -1)2(其中0<x <1).符合此图象表达式为选项C .12. C 解析:根据题意得:小明用了10分钟步行了1km 到校站台,即小明步行了1km 到校车站台,①正确,1000÷10=100m/min ,即他步行的速度是100m/min ,①正确,小明在校车站台从第10min 等到第16min ,即他在校车站台等了6min ,①正确,小明用了14min 的时间坐校车,走了7km 的路程,7000÷14=500m/min ,即校车运行的速度是500m/min ,①不正确,即正确的是①①①.13. D 解析:根据题意:时间t 与库存量y 之间函数关系的图象为先平,再逐渐减小,最后为0.14. B 解析:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.15. C 解析:此函数图象中,S 2先达到最大值,即兔子先到终点,故选项A 不符合题意;此函数图象中,S 2第2段随时间增加其路程一直保持不变,与“当它一觉醒来,发现乌龟已经超过它,于是奋力直追”不符,故选项B 不符合题意;此函数图象中,S 1,S 2同时到达终点,故选项C 符合题意;此函数图象中,S 1先达到最大值,即乌龟先到终点,故选项D 不符合题意.16. (-2,3)或(-2,-3)17. 二 解析:①点P (a ,b )在第四象限,①a >0,b <0,①b -a <0,a -b >0,①点M (b -a ,a -b )在第二象限.18. x≤2且x≠0 解析:根据题意得,2-x≥0,且x≠0,解得x≤2且x≠0.19. (2,2) 解析:连结OA,OA5,∵B为O内一点,∴符合要求的点B的坐标(2,2)答案不唯一.20. 75千米/小时解析:甲返程的速度为600÷(14-6)=75(千米/时),设乙车的速度为x(千米/时),由题意得600=7x+75,解得x=75.21. ﹣1(答案不唯一) 解析:①点P(m,2)在第二象限内,①m<0,则m的值可以是﹣1.(答案不唯一)22. x≥﹣3且x≠2 解析:由题可得,3020xx+≥⎧⎨-≠⎩,,解得32xx≥-⎧⎨≠⎩,,①自变量x的取值范围是x≥﹣3且x≠2.23. 1 解析:①f(x)=21x-,①f(3)=231-=1.。

2020年九年级中考中考数学一轮复习:四川专版——矩形练习(含答案)

2020年九年级中考中考数学一轮复习:四川专版——矩形练习(含答案)

2020春中考数学一轮复习练习四川专版——矩形(学生版)1.对于任意的矩形,下列说法一定正确的是( )A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形2.矩形具有而平行四边形不一定具有的性质是( )A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.如图,▱ABCD的对角线AC,BD交于点O.若顺次连接ABCD各边中点,可得到的一个新的四边形.添加下列条件不能肯定新的四边形成为矩形的是( )A.AC⊥BDB.AB=BCC.∠ABD=∠ADBD.∠ABO=∠BAO4.如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上.若OA=OC,要求只用无刻度的直尺作∠MO N的平分线,小明的作法如下:连接AC,BD相交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角;②矩形的对角线互相平分;③等腰三角形的“三线合一”,小明的作法依据是( )A.①②B.①③C.②③D.①②③5.如图,在矩形ABCD中,AB=3,BC=5,点E在AD上,且BE平分∠AEC,则△ABE的面积为( )A.2.4B.2C.1.8D.1.56.如图,已知点E,F,G,H分别是菱形ABCD各边的中点,则四边形EFGH是( )A.正方形B.矩形C.菱形D.平行四边形7.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边F处,已知AB=8,BC=10,则tan∠EFC的值为( )A.34B.43C.35D.458.矩形的一边长是4 cm,一条对角线的长是4 3 cm,则矩形的面积是_____________m2.9.如图,在矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点.若MN=4,则AC的长为_____________.10.如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且AE平分∠BAC,则AB的长为_____________.11.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.求证:(1)△ABE≌△CDF;(2)四边形AECF是矩形.12.如图,四边形ABCD中,对角线AC,BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.13.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①CF=2AF;②AB=DF;③DF=22BC;④S四边形CDEF=52S△ABF.其中正确的结论有( )A.1个B.2个C.3个D.4个14.如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB 于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____________.15.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.16.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任意一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,根据图形可知他得出的这个推论指( )A.S长方形ABMN=S长方形MNDCB.S长方形EBMF=S长方形AEFNC.S长方形AEFN=S长方形MNDCD.S长方形EBMF=S长方形NFGD2020春中考数学一轮复习练习四川专版——矩形(教师版)1.对于任意的矩形,下列说法一定正确的是(C)A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形2.矩形具有而平行四边形不一定具有的性质是(C)A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.如图,▱ABCD的对角线AC,BD交于点O.若顺次连接ABCD各边中点,可得到的一个新的四边形.添加下列条件不能肯定新的四边形成为矩形的是(D)A.AC⊥BDB.AB=BCC.∠ABD=∠ADBD.∠ABO=∠BAO4.如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上.若OA=OC,要求只用无刻度的直尺作∠MON的平分线,小明的作法如下:连接AC,BD相交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角;②矩形的对角线互相平分;③等腰三角形的“三线合一”,小明的作法依据是(C)A.①②B.①③C.②③D.①②③5.如图,在矩形ABCD中,AB=3,BC=5,点E在AD上,且BE平分∠AEC,则△ABE的面积为(D)A.2.4B.2C.1.8D.1.56.如图,已知点E,F,G,H分别是菱形ABCD各边的中点,则四边形EFGH是(B)A.正方形B.矩形C.菱形D.平行四边形7.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边F处,已知AB=8,BC=10,则tan∠EFC的值为(A)A.34B.43C.35D.458.矩形的一边长是4 cm,一条对角线的长是4 3 cm,则矩形的面积是162cm2.9.如图,在矩形ABCD中,AC,BD交于点O,M,N分别为BC,OC的中点.若MN=4,则AC的长为16.10.如图,在矩形ABCD中,AD=8,对角线AC与BD相交于点O,AE⊥BD,垂足为E,且AE平分∠BAC,则AB的长为833.11.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.求证:(1)△ABE≌△CDF;(2)四边形AECF是矩形.证明:(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC.∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧∠AEB=∠CFD,∠B =∠D,AB =CD ,∴△ABE≌△CDF(AAS).(2)∵AD∥BC,∴∠EAF=∠AEB=90°. ∴∠EAF=∠AEC=∠AFC=90°. ∴四边形AECF 是矩形.12.如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,AO =OC ,BO =OD ,且∠AOB=2∠OAD. (1)求证:四边形ABCD 是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO 的度数.解:(1)证明:∵AO=OC ,BO =OD , ∴四边形ABCD 是平行四边形. ∵∠AOB=∠OAD+∠ADO=2∠OAD, ∴∠OAD=∠A DO. ∴AO=DO. ∴AC=BD.∴四边形ABCD 是矩形.(2)∵四边形ABCD 是矩形,∴AB∥CD,OA =OB. ∴∠ABO=∠CDO,∠ABO=∠BAO. ∵∠AOB∶∠ODC=4∶3, ∴∠AOB∶∠ABO=4∶3.∴∠BAO∶∠AOB∶∠ABO=3∶4∶3.在△ABO 中,∠BAO+∠AOB+∠ABO=180°, ∴∠ABO=180°×33+4+3=54°.∵∠BAD=90°,∴∠ADO=90°-54°=36°.13.如图,在矩形ABCD 中,E 是AD 边的中点,BE⊥AC,垂足为点F ,连接DF ,分析下列四个结论:①CF=2AF ;②AB =DF ;③DF=22BC ;④S 四边形CDEF =52S △ABF .其中正确的结论有(D)A.1个B.2个C.3个D.4个14.如图,在Rt△ABC 中,∠BAC=90°,且BA =3,AC =4,点D 是斜边BC 上的一个动点,过点D 分别作DM⊥AB 于点M ,DN⊥AC 于点N ,连接MN ,则线段MN 的最小值为125.15.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG =AE ,连接CG.(1)求证:△ABE≌△CDF;(2)当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,OB =OD ,OA =OC.∴∠ABE=∠CDF.∵点E ,F 分别为OB ,OD 的中点,∴BE=12OB ,DF =12OD. ∴BE=DF.在△ABE 和△CDF 中,⎩⎪⎨⎪⎧AB =CD ,∠ABE=∠CDF,BE =DF ,∴△ABE≌△CDF(SAS).(2)当AC =2AB 时,四边形EGCF 是矩形.理由:∵AC=2OA ,AC =2AB ,∴AB=OA.∵E 是OB 的中点,∴AG⊥OB.∴∠OEG=90°.同理:CF⊥OD.∴EG∥CF.∵EG=AE ,OA =OC ,∴OE 是△ACG 的中位线.∴OE∥CG.∴四边形EGCF 是平行四边形.∵∠OEG=90°,∴四边形EGCF 是矩形.16.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任意一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证,根据图形可知他得出的这个推论指(D)A.S长方形ABMN=S长方形MNDCB.S长方形EBMF=S长方形AEFNC.S长方形AEFN=S长方形MNDCD.S长方形EBMF=S长方形NFGD。

2021春九年级数学中考一轮复习《解直角三角形应用(坡度)》自主复习达标测评(附答案)

2021春九年级数学中考一轮复习《解直角三角形应用(坡度)》自主复习达标测评(附答案)

2021春九年级数学中考一轮复习《解直角三角形应用(坡度)》自主复习达标测评(附答案)1.已知某斜坡的坡角为α,坡度为i=5:12,则cosα为()A.B.C.D.2.如图,我市在建地铁的某段路基横断面为梯形ABCD,AB∥CD,BC长6米,坡AD的坡比i=1:2,坡BC的坡比i=1:1,则AD长为()A.12米B.3米C.3米D.6米3.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知sinα=,则小车上升的高度是()A.5米B.6米C.6.5米D.7米4.国家电网近来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD的平台BC上(如图),测得∠AED=52.5°,BC=5米,CD=35米,DE=19米,则铁塔AB 的高度约为(参考数据:sin52.5°≈0.79,cos52.5°≈0.61,tan52.5°≈1.30)()A.7.6米B.27.5米C.30.5米D.58.5米5.已知,一个小球由桌面沿着斜坡向上前进了10cm,此时小球距离桌面的高度为5cm,则这个斜坡的坡度i为()A.2B.1:2C.1:D.1:6.如图,一水库大坝的横断面为梯形,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°,则坝底AD的长度为()米.(精确到整数)(≈1.7)A.84B.96C.91D.907.如图,AB是垂直于水平面的一栋大楼.离大楼30米(BC=30米)远的地方有一段斜坡CD(坡度为1:0.75),且坡长CD=15米,某时刻,在太阳光的照射下,大楼的影子落在了水平面BC,斜坡CD,以及坡顶上的水平面DE处(A,B,C,D,E均在同一个平面内).若DE=6米,且此时太阳光与水平面所夹锐角为24°(∠AED=24°),则大楼AB的高约为()(参考数据:sin24°≈0.41.cos24°≈0.91,tan24°≈0.45)A.10.25B.20.25C.22.25D.32.258.一个小正方体沿着斜面AC前进了10米,横截面如图所示,已知AB=2BC,∠ABC=90°,此时小正方体上的点N距离地面AB的高度升高了()A.5米B.2米C.4米D.米9.在坡度为i=1:3的山坡上种树,要求株距(相邻两棵树间的水平距离)是6米,那么斜坡上相邻两棵树间的坡面距离是米.10.某地发生地震后,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的A,B两处,用仪器探测生命迹象C,已知探测线与地面的夹角分别是30°和60°(如图),则∠C的度数是.11.如图,AB是一垂直于水平面的建筑物,BC是建筑物底端的一个平台,斜坡CD的坡度(或坡比)为i=1:0.75,坡长为10米,DE为地平面(A,B,C,D,E均在同一平面内),则平台距地面的高度为.12.如图,将一个装有水的杯子斜放在水平的桌面上,其截面可看作一个宽BC=6厘米的矩形.当水面触到杯口边缘时,水面宽度BE=12厘米,此时杯子的倾斜角α等于度.13.如图,斜坡AB的坡度i=1:2,坡脚B处有一棵树BC,某一时刻测得树BC在斜坡AB 上的影子BD的长度为10米,这时测得太阳光线与水平线的夹角为60°,则树BC的高度为米.14.某货站用传送带传送货物,为了提高传送过程的安全性,工人师傅将原坡角为45°的传送带AB,调整为坡度i=1:的新传送带AC(如图所示).已知原传送带AB的长是4米.那么新传送带AC的长是米.15.日本9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC =60°,AD=4米.则这棵大树折断前高是米.(注:结果精确到个位)(参考数据:≈1.4,≈1.7,≈2.4)16.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.17.某数学小组开展了一次测量小山高度的活动,如图,该数学小组从地面A处出发,沿坡角为53°的山坡AB直线上行一段距离到达B处,再沿着坡角为22°的山坡BC直线上行600米到达C处,通过测量数据计算出小山高CD=612m,求该数学小组行进的水平距离AD(结果精确到1m).(参考数据:sin22°≈0.37,cos22°≈0.92,cos53°≈0.6,tan53°≈1.3)18.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC =1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)19.黄河是中华民族的母亲河,是中华文明最主要的发源地.近两年,原阳、封丘、长垣和平原示范区联合打造170公里的黄河“新走廊”,利用当地黄河丰富的水资源和旅游资源,努力做活黄河水文章,让群众吃上生态饭、旅游饭.周末,小南来到黄河边垂钓,如图所示,河堤AB的坡度为1:2.4,AB长为3.9米,钓竿AC与水平线的夹角是60°,其长为4.5米,若与钓鱼线CD的夹角也是60°,求浮漂D与河堤下端B之间的距离.(精确到0.01m,参考数据:≈1.732)20.如图,已知斜坡AB长为120米,坡角∠ABC=33°,现因“改小坡度”工程的需要,将斜坡AB改造成坡度i=1:5的斜坡BD(A、D、C三点在地面的同一条垂线上,坡度i=坡面竖直高度比水平宽度),改小坡度后,高度下降了多少,即AD的值为多少.(结果用含非特殊角的三角函数与根式表示即可)21.某仓储中心有一个坡度为i=1:2的斜坡AB,顶部A处的高AC为4米,B、C在同一水平地面上,其横截面如图.(1)求该斜坡的坡面AB的长度;(2)现有一个侧面图为矩形DEFG的长方体货柜,其中长DE=2.5米,高EF=2米,该货柜沿斜坡向下时,点D离BC所在水平面的高度不断变化,求当BF=3.5米时,点D离BC所在水平面的高度DH.22.如图是某货站传送货物的平面示意图为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角使其由45°改为30°,已知原传送带AB长为4米.(1)求新传送带AC的长度;(结果保留根号)(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点5米的货物DEFG 是否需要挪走,并说明理由(结果精确到0.1米参考数据:≈1.41,≈1.73,≈2.45)23.如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)24.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为18米,落在广告牌上的影子CD的长为12米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).参考答案1.解:如图,由题意知AC:BC=5:12,设AC=5x,则BC=12x,∴AB===13x,∴cosα=cos∠B===,故选:C.2.解:过A作AE⊥CD于E,过B作BF⊥CD于F,如图所示:则四边形AEFB是矩形,∴AE=BF,∵坡BC的坡比为i=1:1,BC长6米,∴BF=CF,∴AE=BF=CF=BC=3(米),∵坡AD的坡比i=1:2,∴AE:DE=1:2,∴DE=2AE=6(米),∴AD===3(米),故选:C.3.解:如图AC=13,作CB⊥AB,∵sinα==,∴BC=5,∴小车上升的高度是5m.故选:A.4.解:延长AB交ED于G,过C作CF⊥DE于F,∴GF=BC=5,∵山坡CD的坡度为1:0.75,∴设DF=3k,CF=4k,∴CD=5k=35,∴k=7,∴DF=21,BG=CF=28,∴EG=GF+DF+DE=5+21+19=45,∵∠AED=52°,∴AG=EG•tan52°≈45×1.30=58.5,∴AB=30.5米,答:铁塔AB的高度约为30.5米.故选:C.5.解:如图,过B作BC⊥桌面于C,由题意得:AB=10cm,BC=5cm,∴AC===5,∴这个斜坡的坡度i===1:,故选:D.6.解:过B作BE⊥AD于E,过C作CF⊥AD于F,如图所示:则四边形BCFE是矩形,由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1:2.5,∴=,∴AE=2.5BE=50(米),在Rt△CFD中,∵∠D=30°,∴DF=CF=20(米),∴AD=AE+EF+FD=50+6+20=(56+20)≈90(米)故选:D.7.解:延长ED交AB于G,DH⊥BF于H,∵DE∥BF,∴四边形DHBG是矩形,∴DG=BH,DH=BG,∵==,CD=15,∴DH=12,CH=9,∴GE=30+6+9=45,∵tan24°==≈0.45,∴AG≈20.25,∴AB=AG+BG=20.25+12=32.25(米).即:大楼AB的高约为32.25米;故选:D.8.解:Rt△ABC中,AB=2BC,设BC=x,则AC=2x,根据勾股定理可得,x2+(2x)2=102,解得x=2(负值舍去),即小正方体上的点N距离地面AB的高度升高了2米,故选:B.9.解:如图,过B作BC⊥AD于C,∵山坡AB的坡度为i=1:3,株距(相邻两棵树间的水平距离)是6米,∴水平距离AC=6米,铅垂高度BC=2米,∴斜坡上相邻两树间的坡面距离AB==2(米),故答案为:2.10.解:∵探测线与地面的夹角为30°和60°,∴∠CAB=30°,∠ABD=60°,∵∠ABD=∠CAB+∠C,∴∠C=60°﹣30°=30°,故答案为:30°.11.解:如图,延长AB交ED的延长线于F,过C作CG⊥EF于G,则BF=CG,在Rt△CDG中,i==1:0.75=,CD=10米,设CG=4x米,则DG=3x米,由勾股定理得:(4x)2+(3x)2=102,解得:x=2,∴CG=8(米),GD=6(米),∴BF=CG=8米,即平台距地面的高度为8米,故答案为:8米.12.解:由题意得:BE∥桌面,∴∠α=∠ABE,∵四边形ABCD是矩形,∴∠C=90°,AB∥CD,∴∠BEC=∠ABE,∵BC=6,BE=12,∴BC=BE,∴∠BEC=30°,∴∠α=∠ABE=∠BEC=30°,故答案为:30.13.解:过点D作DF⊥BG,垂足为F,∵斜坡AB的坡度i=1:2,∴设DF=x,BF=2x,则DB=10m,∴x2+(2x)2=102,解得:x=2,故DE=4,BE=DF=2,∵测得太阳光线与水平线的夹角为60°,∴tan60°===,解得:EC=4,故BC=EC+BE=2+4(m),故答案为:2+4.14.解:过点A作AD⊥CB延长线于点D,∵∠ABD=45°,∴AD=BD,∵AB=4,∴AD=BD=AB sin45°=4×=4,∵坡度i=1:,∴==,则DC=4,故AC==8(m).故答案为:8.15.解:过A作AH⊥CD,∵∠BAC=38°,∠EAG=67°,∴∠CAD=75°,在△ACD中,∠CAD=75°,∠ADC=60°,∴∠C=45°,在Rt△ADH中,AD=4米,∠ADC=60°,∴AH=AD sin60°=2米,HD=2米,在Rt△ACH中,∠C=45°,∴AH=CH=2米,AC=2米,则这棵大树折断前高是AC+CH+HD=2+2+2≈10(米).故答案为:1016.解:如图,延长AD交BC的延长线于点F,过点D作DE⊥BC的延长线于点E.∵∠DCE=30°,CD=8米,∴CE=CD•cos∠DCE=8×=4(米),∴DE=4米,设AB=x,EF=y,∵DE⊥BF,AB⊥BF,∴△DEF∽△ABF,∴=,即=…①,∵1米杆的影长为2米,根据同一时间物高与影长成正比可得,=…②,①②联立,解得x=14+2(米).故答案为:14+2.17.解:过B作BE⊥CD于E,过B作BH⊥AD于H,如图所示:则四边形BEDH是矩形,∴DE=BH,BE=DH,在Rt△ACE中,∵BC=600,∠CBE=22°,∴CE=BC•sin22°=600×0.37=222(m),BE=BC•cos22°=600×0.92=552(m),∴DH=BE=552m,∵CD=612m,∴BH=DE=CD﹣CE=612﹣222=390(m),在Rt△ABH中,∵∠BAH=53°,∴tan53°=,∴AH≈=300(m),∴AD=AH+DH=300+552=852(m),答:该数学小组行进的水平距离AD约为852m.18.解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.19.解:作AE⊥BD,延长CA交直线BD于点F.由题意可知:∠DFC=∠C=60°,∴△DCF为等边三角形,∴CF=DF,∵河堤AB的坡度为1:2.4,∴,设AE=5x,BE=12x,在Rt△ABE中,由勾股定理得:,∴,∴米,米,在Rt△AEF中∵,,∴米(米),∴(米),∴BD=DF﹣EF﹣BE=(米).答:浮漂D与河堤下端B之间的距离约为1.77米.20.解:在Rt△ABC中,∠ABC=33°,sin∠ABC=,cos∠ABC=,∴AC=AB•sin∠ABC=120sin33°,BC=AB•cos∠ABC=120cos33°,∵斜坡BD的坡度i=1:5,∴DC:BC=1:5,∴DC=BC=24cos∠ABC=24cos33°,∴AD=AC﹣DC=120sin33°﹣24cos33°,∴改小坡度后,高度下降了(120sin33°﹣24cos33°)米,即AD的值为(120sin33°﹣24cos33°)米.21.解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.∴AB===(米);(2)∵∠DGM=∠BHM,∠DMG=∠BMH,∴∠GDM=∠HBM,∴,∵DG=EF=2m,∴GM=1m,∴DM=,BM=BF+FM=3.5+(2.5﹣1)=5m,设MH=xm,则BH=2xm,∴x2+(2x)2=52,∴x=m,∴DH==m.22.解:(1)如图,在Rt△ABM中,AM=AB sin45°=2.在Rt△ACM中,∵∠ACM=30°,∴AC=2AM=4.即新传送带AC的长度约为4米;(2)结论:货物DEFG不用挪走.解:在Rt△ABM中,BM=AB cos45°=2.在Rt△ACM中,CM=AM=2.∴CB=CM﹣BM=2﹣2≈2.08.∵DC=DB﹣CB≈5﹣2.08=2.92>2,∴货物DEFG不应挪走.23.解:作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,则CM:MD=1:2.4=5:12,设CM=5x,则MD=12x,由勾股定理得CD==13x=13∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20﹣5=15,答:楼AB的高度为15米.24.解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,BD=18米,∴DF=BD=9(米),BF=9(米),∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=9(米)∵四边形BFCE为矩形,CF=BE=CD﹣DF=12﹣9=3(米),在Rt△ACE中,∠ACE=45°,∴AE=CE=9米,∴AB=AE+BE=(9+3)米.即:铁塔AB的高为(9+3)米.。

2020广东省中考数学第一轮复习课件 1.题型九 实际应用题

2020广东省中考数学第一轮复习课件 1.题型九  实际应用题
(1)结合两人的对话内容,求小明原计划购买文具袋多少个? (2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不 超过400元,其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予 8折优惠,那么小明最多可购买钢笔多少支?
题型九 实际应用题
解:(1)设小明原计划购买文具袋x个,根据题意,得
题型九 实际应用题
类型三 增长率问题 (2013.21,2012.16)
1. 2017年某地在“精准扶贫”工作中投入资金1200万元用于异地安置,并规划投入异地 安置资金的年平均增长率在三年内保持不变,已知2019年在2017年的基础上增加了投 入异地安置资金1500万元. (1)2018年该地投入异地安置资金为多少元? (2)在2018年异地安置的具体实施中,该地要求投入用于优先搬迁租房奖励的资金不低 于2018年该地投入异地安置资金的25%.规定前1000户(含第1000户)每户每天奖励8元, 1000户以后每户每天奖励5元,按租房400天计算.求2018年该地至少有多少户享受到 优先搬迁租房奖励.
(2)假设安排乙队来绿化y天,则甲队需要安排的天数是 3600-50 y ,
根据题意,得 0.5y+ 3600-50 y 1.2 40 ,
100
100
解得y≥3应用题
2. (2018桂林)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进 场施工,计划用40天时间完成整个工程.当一号施工队工作5天后,承包单位接到通 知,有一大型活动要在该校田径场举行,要求比原计划提前14天完成整个工程,于 是承包单位派遣二号施工队与一号施工队共同完成剩余工程,结果按通知要求如期 完成整个工程. (1)若由二号施工队单独施工,完成整个工程需要多少天? (2)若此项工程由一号、二号施工队同时进场施工,完成整个工程需要多少天?

中考数学《一元二次方程组》一轮复习练习题(含答案)

中考数学《一元二次方程组》一轮复习练习题(含答案)

中考数学《一元二次方程组》一轮复习练习题(含答案)一、单选题1.方程2317x y +=的正整数解的对数是( ) A .1对B .2对C .3对D .4对2.若关于x ,y 的方程组3413x y m x y +=+⎧⎨-=⎩的解满足x +y =4,则m 的值为( )A .-2B .2C .-1D .13.已知方程组2122x y mx y +=-⎧⎨+=⎩的x ,y 满足x ﹣y ≥0,则m 的取值范围是( )A .m ≤﹣1B .m ≥﹣1C .m ≤1D .m ≥14.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b -的值是( )A .2-B .2C .3D .3-5.若关于x ,y 的二元一次方程组2245x y kx y k +=⎧⎨-=⎩的解满足1x y -=,则k 的值是( )A .1B .2C .3D .46.下列各式中,是关于x ,y 的二元一次方程的是( ) A .x ﹣2y =3B .x +xy ﹣3=0C .2x +yD .2x﹣y =17.已知x ,y 满足方程组5632x y x y +=⎧⎨-=⎩,则x y +的值为( )A .-2B .-3C .2D .38.二元一次方程组73228x y x y -=⎧⎨+=⎩的解是( )A .13x y =-⎧⎨=-⎩B .24x y =⎧⎨=⎩C .42x y =⎧⎨=⎩D .16x y =⎧⎨=⎩9.1.盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A 与玩偶B 组合成一批盲盒,一个盲盒搭配1个玩偶A 和2个玩偶B ,已知每米布料可做1个玩偶A 或3个玩偶B ,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x 米布料做玩偶A ,用y 米布料做玩偶B ,使得恰好配套,则下列方程组正确的是()A.1363x yx y+=⎧⎨=⎩B.13623x yx y+=⎧⎨=⨯⎩C.1363x yx y+=⎧⎨=⎩D.13623x yx y+=⎧⎨=⎩10.明代大数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程为()A.83000x yx y+=⎧⎨=⎩B.8300035x yx y+=⎧⎨=⎩C.8300053x yx y+=⎧⎨=⎩D.3583000x yx y+=⎧⎨=⎩11.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩12.《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x人,物品的价格为y钱,根据题意,可列方程组为( )A.8374y xy x=-⎧⎨=+⎩B.8374x yx y=+⎧⎨=-⎩C.8374y xy x=+⎧⎨=-⎩D.8374x yx y=-⎧⎨=+⎩二、填空题13.已知关于x,y的方程组3553x yx y+=⎧⎨-=⎩,则x﹣y=_____.14.以方程组2638x y x y +=⎧⎨+=⎩的解为坐标的点()x y ,在平面直角坐标系中的位置在第______象限.15.已知关于x 、y 的二元一次方程组,2,y ax b y x =+⎧⎨=--⎩的解是4,x y m =-⎧⎨=⎩,则一次函数y ax b =+和2y x =--的图象的交点坐标为______.16.m 为负整数,已知二元一次方程组210320mx y x y +=⎧⎨+=⎩有整数解,则m 的值为 _____.17.一个两位数,十位上的数字与个位上的数字之和为7,若把十位上的数字和个位上的数字交换位置,所得的数比原数大9,则原来的两位数是_____.18.若关于x ,y 的二元一次方程组423321x y ay x -=+⎧⎨-=⎩的解满足25x y +>,则a 的取值范围是_____.19.在长为10m ,宽为8m 的矩形空地上,沿平行于矩形各边的方向分割出三个长相等,宽相等的小矩形花圃,其示意图如图所示.则花圃的面积为________.20.新学期开始,某出版社计划出版销售A 、B 、C 三种书籍,每种书箱均是整数本出售.第一个星期,该出版社三种书籍的售价均为整数,且C 种书籍的售价是其余两种书籍售价之和的3倍,同时C 种书籍的售价小于39元且不低于27元,三种书籍第一个星期内售出数量之比为3:2:1.第二个星期由于纸张价格迅速上涨,人工成本也在增加,该出版社决定把部分书籍涨价销售,其中A 种书籍售价不变,B 种书籍的售价比第一周售价增加1倍,C 种书籍售价比第一周售价上升了13,且第二个星期内,A 种和C 种书籍销量之比是4:5,B种书籍比第一个星期的销量减少20%.出版社结算发现,第一个星期三种书籍的总销售额比第二个星期A 、C 两种书籍的总销售额多517元,第一个星期三种书籍的总销售量与第二个星期三种书籍的总销售量之差不低于87本且小于115本,则这两个星期C 种书籍的总销售额是__________.三、解答题21.解下列方程组:(1)22 839x yx y+=⎧⎨+=⎩;(2)2521 4323x yx y-=-⎧⎨+=⎩.22.某一天,蔬菜经营户王大叔花270元从蔬菜批发市场批发了黄瓜和茄子共70千克,到菜市场按零售价卖,黄瓜和茄子当天的批发价和零售价如下表所示:(1)王大叔当天批发了黄瓜和茄子各多少千克?(2)他卖完这些黄瓜和茄子共赚了多少元?23.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?24.某礼品店准备购进A,B两种纪念品,每个A种纪念品比每个B种纪念品的进价少20元,购买9个A种纪念品所需的费用和购买7个B种纪念品所需的费用一样,请解答下列问题:(1)A,B两种纪念品每个进价各是多少元?(2)若该礼品店购进B种纪念品的个数比购进A种纪念品的个数的2倍还多5个,且A种纪念品不少于18个,购进A,B两种纪念品的总费用不超过5450元,则该礼品店有哪几种进货方案?25.为预防新冠肺炎病毒,市面上KN95等防护型口罩出现热销.已知3个A型口罩和4个B型口罩共需47元;2个A型口罩和3个B型口罩共需34元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A型,B型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A型口罩售价上涨40%,B型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.26.在某官方旗舰店购买3个冰墩墩和6个雪容融毛绒玩具雷1020元;购买1个冰墩墩和5个雪容融毛绒玩具需700元.(1)求冰墩墩、雪容融毛绒玩具单价各是多少元?(2)某单位准备用不超过2100元的资金在该官方旗舰店购进冰墩墩、雪容融两种毛绒玩具共20个,间最多可以购进雪容融毛绒玩具多少个?27.下表是某超市两次按原价销售牛奶和咖啡的记录单:(1)求牛奶与咖啡每箱原价分别为多少元?(2)某公司后勤部去采购,发现该超市有一部分商品因保质期临近,正在进行打六折的促销活动,于是后勤部决定采购原价或打折的咖啡和牛奶若干箱,其中采购的打折牛奶箱数是采购总箱数的14,最后一共花费1860元. 请问此次按原价采购的咖啡有多少箱?28.面对当前疫情形势,国家迅速反应,果断决策,全民积极行动,筹款为贫因地区捐赠了一批消毒液.现要将消毒液运往该区.已知用3辆A 型车和1辆B 型车装满货物一次可运货9吨;用1辆A 型车和2辆B 型车装满货物一次可运货8吨.现有消毒液19吨.计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满消毒液. 根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满消毒液一次可分别运送多少吨? (2)请你帮我们设计租车方案;(3)若1辆A 型车需租金90元/次,1辆B 型车需租金110元/次.请选出最省钱的租车方案,并求出最少租车费。

2021年春九年级数学中考一轮复习《概率》自主复习达标测评(附答案)

2021年春九年级数学中考一轮复习《概率》自主复习达标测评(附答案)1.在数﹣1,1,2中任取两个数作为点的坐标,该点刚好在二次函数y=2x2图象上的概率是()A.B.C.D.2.甲袋中装有2张相同的卡片,颜色分别为红色和黄色;乙袋中装有3张相同的卡片,颜色分别为红色、黄色、绿色.从这两个口袋中各随机抽取1张卡片,取出的两张卡片中至少有一张是红色的概率是()A.B.C.D.3.在一个布袋中装着只有颜色不同,其它都相同的红、白两种小球各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球,则两次所摸出的球都是同一颜色球的概率是()A.B.C.D.4.若从1,2,3,4四个数中选取一个数,记为a,再从这四个数中选取一个数,记为c,则关于x的一元二次方程ax2+4x+c=0没有实数根的概率为()A.B.C.D.5.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和35%,则口袋中白色球的个数可能是()A.6个B.14个C.20个D.40个6.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼.通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中鱼的条数估计为()A.600条B.1200条C.2200条D.3000条7.从1,2,3,4中任取两个不同的数,其和是3的倍数的概率是()A.B.C.D.8.在一个不透明口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,充分摇匀后随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为偶数的概率是()A.B.C.D.9.某次考试中,每道单项选择题有4个选项,某同学有两道题不会做,于是他以“抓阄”的方式选定其中一个答案,则该同学的这两道题全部做对的概率是.10.如图,正方形ABCD是一飞镖游戏板,其中点E,F,G,H分别是各边中点,并将该游戏板划分成如图中所示的9个区域,现随机向正方形内投掷一枚飞镖(投中各区域的边界线或没有投中游戏板,则重投1次),则投中阴影区域的概率是.11.在一个不透明的箱子里装有红色、蓝色、黄色的球共50个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后发现摸到红色、黄色球的频率分别稳定在20%和30%,则箱子里蓝色球的个数很可能是.12.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若转盘a转出红色,转盘b转出蓝色即可配成紫色,则配成紫色的概率为.13.在长度分别为3、4、7、9的四条线段中,任意选取三条,端点顺次连接,能组成三角形的概率为.14.在﹣3、﹣2、﹣1、0、1、2、3这七个数中,随机取出一个数记为a,那么使得关于x 的二次函数y=x2+(3﹣a)x+2的图象与x轴有交点,且使得关于x的方程有整数解的概率为.15.从满足不等式组的所有整数解中任意取一个数记作a,则关于y的一元二次方程ay2﹣y﹣=0有实数根的概率是.16.某中学九年一班团支部共有4名同学,其中男生1名,女生3名,班主任要在这4名同学中随机抽取2名同学作为升旗手,恰好抽到一名男生和一名女生的概率为.17.如图,每个灯泡能否通电发光的概率都是,当合上开关时,至少有一个灯泡发光的概率是.18.已知关于x的一元二次方程x2+bx+c=0,从2和3中任选一个数作为b的值,从1,2,中任选一个数作为c的值,则该一元二次方程有两个不相等的实数根的概率为.19.一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从口袋中任意摸出1个球,恰好摸到红球的概率是;(2)先从口袋中随机摸出一个球,不放回,再从中口袋中随机摸出一个球.请用列举法(画树状图或列表)求摸出一个红球和一个白球的概率.20.一个不透明的袋子中装有四个小球,球面上分别标有数字﹣1,0,1,2四个数字.这些小球除了数字不同外,其它都完全相同,袋内小球充分搅匀.(1)随机地从袋中摸出一个小球,则摸出标有数字2的小球的概率为(直接写出答案);(2)若先从袋中随机模出一个小球(不放回),然后再从余下的三个小球中随机摸出一个小球,请用树状图或表格形式列出所有可能出现的结果,并求出两次摸出的小球球面上数字之和为1的概率.21.某校对该校学生最喜欢的球类运动的情况进行了抽样调查,从足球,乒乓球、篮球、排球等四个方面进行了一次调查(每位同学必选择一项且只能选择一项),井将调查结果绘制了如图不完整的统计图.请根据图中的信息解答以下问题:(1)本次调查选取了名学生,乒乓球所在扇形的圆心角的度数为°;(2)请将条形统计图补充完整;(3)该校共有1600名同学,估计最喜欢篮球运动的同学有名;(4)甲、乙、丙、丁四位同学分别最喜欢足球、乒乓球、乒乓球,篮球,现在要从这4名同学中随机抽取两名同学,请你利用画树状图或列表的方法,求出这两名同学最喜欢的球类运动项目不一样的概率.22.在一个不透明的盒子中只装2枚白色棋子和2枚黑色棋子,它们除颜色外其余均相同.从这个盒子中随机地摸出1枚棋子,记下颜色后放回,搅匀后再随机地摸出1枚棋子记下颜色.(1)请用画树状图(或列表)的方法,求两次摸出的棋子是不同颜色的概率.(2)若小明、小亮做游戏,游戏规则是:两次摸出的棋子颜色不同则小明获胜,否则小亮获胜.你认为这个游戏公平吗?请说明理由.23.在一个不透明的布袋里装有四个完全相同的小球,上面分别标有数字1、2、2、3.(1)若小明随机抽出一个小球,求抽到标有数字2的小球的概率;(2)小明先从口袋里随机不放回地取出一个小球,记下数字为x.小红再从剩下的三个小球中随机取出一个小球,记下数字为y,点Q坐标记作(x,y).规定:若点Q(x,y)在反比例函数y=图象上则小明胜;若点Q在反比例函数y=图象上,则小红胜.请你通过计算,判断这个游戏是否公平?24.在刚刚结束的“东门68小时不打烊”活动中,某商场为了扩大销售额,举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小明只有一次摸球机会,那么小明获得奖品的概率为;(2)如果小明有两次摸球机会(摸出后不放回),求小明获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)25.为了增强学生体质,开展体育娱乐教学,某校举行了“趣味运动会”,运动会的比赛项目有:“两人三足”、“春种秋收”、“有轨电车”、“摸石过河”(分别用字母A,B,C,D 依次表示这四个运动项目),将A,B,C,D这四个字母分别写在4张完全相同的不透明卡片的正面上,把这4张卡片背面朝上洗匀后放在桌面上.小明和小亮参加趣味比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上内容进行趣味运动比赛,(1)小明参加“有轨电车”的概率是;(2)请用列表法或画树状图法,求出小明和小亮参加同一项目的概率.参考答案1.解:画树状图如图:共有6个等可能的结果为(﹣1,1),(﹣1,2),(1,﹣1),(1,2),(2,﹣1),(2,1),该点刚好在二次函数y=2x2图象上的结果有2个,∴该点刚好在二次函数y=2x2图象上的概率为=,故选:B.2.解:画树状图如图:共有6个等可能的结果,取出的两张卡片中至少有一张是红色的结果有4个,∴取出的两张卡片中至少有一张是红色的概率为=,故选:A.3.解:画树状图如图:共有4个等可能的结果,两次所摸出的球都是同一颜色球的结果有2个,∴两次所摸出的球都是同一颜色球的概率为=,故选:A.4.解:画树状图如图:由树形图可知:共有16种等可能的结果,其中使42﹣4ac<0的有8种结果,∴关于x的一元二次方程ax2+4x+c=0没有实数根的概率为=,故选:C.5.解:∵摸到红色球、黑色球的频率稳定在15%和35%,∴摸到白球的频率为1﹣15%﹣35%=50%,故口袋中白色球的个数可能是40×50%=20(个).故选:C.6.解:30÷2.5%=1200条故选:B.7.解:画树状图得:∵共有12种等可能的结果,任取两个不同的数其和为3的倍数的结果有4种,∴任取两个不同的数,其和是3的倍数的概率是=,故选:C.8.解:画树状图为:共有12个等可能的结果数,其中两次摸出的小球的标号之和为偶数的结果数为4个,∴两次摸出的小球的标号之和为偶数的概率为=,故选:A.9.解:设选择题的答案为A,B,C,D,根据题意画树状图得:∴一共有16种等可能的结果,两道题全对的仅有一种情况,∴两道题全对的概率是:.故答案为:.10.解:设正方形的边长为a,则正方形的面积为a2,△CDH的面积为a•a=a2,由图知三个阴影部分的面积和等于△CDH的面积,所以投中阴影区域的概率是=,故答案为:.11.解:根据题意得摸到红色、黄色球的概率为20%和30%,所以摸到蓝球的概率为50%,因为50×50%=25(个),所以可估计箱子中蓝色球的个数为25个.故答案为25.12.解:画树状图如图:共有12个等可能的结果,其中配成紫色的结果有1个,∴配成紫色的概率为,故答案为:.13.解:画树状图如图:共有24个等可能的结果,能组成三角形的结果有12个,∴能组成三角形的概率为=,故答案为:.14.解:∵关于x的二次函数y=x2+(3﹣a)x+2的图象与x轴有交点,∴△=(3﹣a)2﹣4×1×2=a2﹣6a+1≥0,解得:a≤3﹣2或a≥3+2,∴a可取﹣3,﹣2,﹣1,0,把方程化为整式方程得x+a﹣3(x﹣2)=﹣1,解得x=a+3.5,∵x﹣2≠0,则a+3.5≠2,解得a≠﹣3,当a=﹣3、﹣1、1、3时,x=a+3.5为整数,∴满足条件的a的值为﹣1、1、3,∴使得关于x的二次函数y=x2+(3﹣a)x+2的图象与x轴有交点,且使得关于x的方程有整数解的a的值有﹣1,∴P(使得关于x的二次函数y=x2+(3﹣a)x+2的图象与x轴有交点,且使得关于x的方程有整数解)=.故答案为:.15.解:解不等式组得﹣3<x≤3,则不等式组的整数解为﹣2、﹣1、0、1、2、3,∵关于y的一元二次方程ay2﹣y﹣=0有实数根,∴△=(﹣1)2﹣4×a×(﹣)=1+3a≥0,且a≠0,∴a≥﹣且a≠0,在﹣2、﹣1、0、1、2、3中符合a≥﹣且a≠0的整数有3个,所以关于y的一元二次方程ay2﹣y﹣=0有实数根的概率是=,故答案为:.16.解:画树状图如图:共有12个等可能的结果,其中恰好抽到一名男生和一名女生的结果有6个,∴恰好抽到一名男生和一名女生的概率为=,故答案为:.17.解:列表如下:灯泡1发光灯泡1不发光灯泡2发光(发光,发光)(不发光,发光)灯泡2不发光(发光,不发光)(不发光,不发光)所有等可能的情况有4种,其中至少有一个灯泡发光的情况有3种,∴至少有一个灯泡发光的概率是,故答案为:.18.解:画树状图如图:共有6个等可能的结果,使b2﹣4c>0的结果有4个,∴该一元二次方程有两个不相等的实数根的概率为=,故答案为:.19.解:(1)∵4个小球中有2个红球,∴任意摸出1个球,恰好摸到红球的概率是=,故答案为:;(2)列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中摸出一个红球和一个白球的有4种可能,∴摸出一个红球和一个白球的概率为=.20.解:(1)随机地从袋中摸出一个小球,则摸出标有数字2的小球的概率为,故答案为:;(2)画树状图如图:共有12个等可能的结果,两次摸出的小球球面上数字之和为1的结果有4个,∴两次摸出的小球球面上数字之和为1的概率为=.21.解:(1)本次调查选取的学生人数为:20÷40%=50(名),乒乓球所在扇形的圆心角的度数为:360°×40%=144°,故答案为:50,144;(2)统计图中喜欢足球的学生人数为:50﹣20﹣15﹣5=10(名),将条形统计图补充完整如图:(3)该校共有1600名同学,估计最喜欢篮球运动的同学有:1600×=480(名),故答案为:480;(4)画树状图如图:共有12个等可能的结果,抽取的这两名同学最喜欢的球类运动项目不一样的结果有10个,∴抽取的这两名同学最喜欢的球类运动项目不一样的概率为=.22.解:(1)画树状图如图:共有16个等可能的结果,两次摸出的棋子是不同颜色的结果有8个,∴P(两次摸出的棋子是不同颜色)==;(2)由(1)得:P(小明获胜)=,∵两次摸出的棋子颜色相同的结果有8个,∴P(小亮获胜)==,∴P(小明获胜)=P(小亮获胜),∴这个游戏公平.23.解:(1)若小明随机抽出一个小球,则抽到标有数字2的小球的概率为=;(2)画树状图如图:共有12个等可能的结果,点Q(x,y)在反比例函数y=图象上的结果有4个,点Q(x,y)在反比例函数y=图象上的结果有4个,∴小明胜的概率为=,小红胜的概率为=,∴小明胜的概率=小红胜的概率,∴这个游戏公平.24.解:(1)∵袋子中有2个黑球和2个红球,∴小明获得奖品的概率为=;故答案为:;(2)根据题意画图如下:共有12种等情况数,其中小明获得2份奖品的有2种,则小明获得2份奖品的概率是=.25.解:(1)小明参加“有轨电车”的概率是,故答案为:;(2)画树状图如图:共有16个等可能的结果,其中小明和小亮参加同一项目的结果有4个,∴小明和小亮参加同一项目的概率为=。

2021年九年级数学中考一轮复习知识点中考真题演练9:二元一次方程组(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练:二元一次方程组(附答案)1.在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元钱购买A、B、C三种奖品,A种每个10元,B种每个20元,C种每个30元,在C种奖品不超过两个且钱全部用完的情况下,有多少种购买方案()A.12种B.15种C.16种D.14种2.学校计划用200元钱购买A、B两种奖品(两种都要买),A种每个15元,B种每个25元,在钱全部用完的情况下,有多少种购买方案()A.2种B.3种C.4种D.5种3.某商店将巧克力包装成方形、圆形礼盒出售,且每盒方形礼盒的价钱相同,每盒圆形礼盒的价钱相同.阿郁原先想购买3盒方形礼盒和7盒圆形礼盒,但他身上的钱会不足240元,如果改成购买7盒方形礼盒和3盒圆形礼盒,他身上的钱会剩下240元.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下多少元?()A.360B.480C.600D.7204.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余 4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x尺,木长y尺,则可列二元一次方程组为()A.B.C.D.5.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x分钟,下坡用了y分钟,根据题意可列方程组为()A.B.C.D.6.同型号的甲、乙两辆车加满气体燃料后均可行驶210km,它们各自单独行驶并返回的最远距离是105km.现在它们都从A地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A地,而乙车继续行驶,到B地后再行驶返回A地.则B地最远可距离A地()A.120km B.140km C.160km D.180km 7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11B.7,53C.7,61D.6,50 8.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A.21cm B.22cm C.23cm D.24cm9.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是.10.若二元一次方程组的解为,则a﹣b=.11.已知是关于x,y的二元一次方程组的一组解,则a+b=.12.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.13.篮球比赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,艾美所在的球队在8场比赛中得14分.若设艾美所在的球队胜x场,负y场,则可列出方程组为.14.下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为.15.在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.(1)求每次购买的酒精和消毒液分别是多少瓶?(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?16.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加a%.求a的值.17.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.参考答案1.解:设购买A种奖品m个,购买B种奖品n个,当C种奖品个数为1个时,根据题意得10m+20n+30=200,整理得m+2n=17,∵m、n都是正整数,0<2n<17,∴n=1,2,3,4,5,6,7,8;当C种奖品个数为2个时,根据题意得10m+20n+60=200,整理得m+2n=14,∵m、n都是正整数,0<2n<14,∴n=1,2,3,4,5,6;∴有8+6=14种购买方案.故选:D.2.解:设购买了A种奖品x个,B种奖品y个,根据题意得:15x+25y=200,化简整理得:3x+5y=40,得y=8﹣x,∵x,y为正整数,∴,,∴有2种购买方案:方案1:购买了A种奖品5个,B种奖品5个;方案2:购买了A种奖品10个,B种奖品2个.故选:A.3.解:设每盒方形礼盒x元,每盒圆形礼盒y元,则阿郁身上的钱有(3x+7y﹣240)元或(7x+3y+240)元.由题意,可得3x+7y﹣240=7x+3y+240,化简整理,得y﹣x=120.若阿郁最后购买10盒方形礼盒,则他身上的钱会剩下:(7x+3y+240)﹣10x=3(y﹣x)+240=3×120+240=600(元).故选:C.4.解:设绳长x尺,木长为y尺,依题意得,故选:B.5.解:可根据所用时间和所走的路程和得到相应的方程组为:故选:B.6.解:设甲行驶到C地时返回,到达A地燃料用完,乙行驶到B地再返回A地时燃料用完,如图:设AB=xkm,AC=ykm,根据题意得:,解得:.∴乙在C地时加注行驶70km的燃料,则AB的最大长度是140km.或者:设AC=ykm即可,从甲车的角度考虑问题,甲车给乙车注入燃料,要想最远,需满足一下两个条件:①注满乙车;②刚好够甲车从C回到A.从A到C,甲、乙两车都行驶了AC,即乙车行驶ykm,也即甲车注入燃料量可行驶ykm,注入后甲车剩余油量可行驶ykm(刚好返回A地),所以对于甲车,y+y+y=210,所以y=70.从乙车角度,从C出发是满燃料,所以AB为:105+70÷2=140(km).故选:B.7.解:设有x人,物价为y,可得:,解得:,故选:B.8.解:设多摞一个碗,增高kcm,一个碗的高度是bcm由题意得,,解得:,则11只饭碗摞起来的高度为:×10+=23(cm).更接近23cm.故选:C.9.解:∵甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮,而A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,∴1千克B粗粮成本价+1千克C粗粮成本价=58.5÷(1+30%)﹣6×3=27(元),∵乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮,∴乙种粗粮每袋售价为(6+2×27)×(1+20%)=72(元).甲种粗粮每袋成本价为58.5÷(1+30%)=45(元),乙种粗粮每袋成本价为6+2×27=60(元).设该电商销售甲种袋装粗粮x袋,乙种袋装粗粮y袋,由题意,得45×30%x+60×20%y=24%(45x+60y),45×0.06x=60×0.04y,=.故答案为:.10.解:将代入方程组,得:,①+②,得:4a﹣4b=7,则a﹣b=,故答案为:.11.解:∵是关于x,y的二元一次方程组的一组解,∴,解得,∴a+b=5,故答案为5.12.解:根据题意得:.故答案为:.13.解:设艾美所在的球队胜x场,负y场,∵共踢了8场,∴x+y=8;∵每队胜一场得2分,负一场得1分.∴2x+y=14,故列的方程组为,故答案为.14.解:设“△”的质量为x,“□”的质量为y,由题意得:,解得:,∴第三个天平右盘中砝码的质量=2x+y=2×4+2=10;故答案为:10.15.(1)解:设购买酒精x瓶,消毒液y瓶,根据题意列方程组,得.解得,.答:每次购买的酒精和消毒液分别是20瓶,30瓶;(2)解:设能购买消毒液m瓶,则能购买酒精2m瓶,根据题意,得10×(1﹣30%)•2m+5(1﹣20%)•m≤200,解得:m≤=11.∵m为正整数,∴m=11.所以,最多能购买消毒液11瓶.16.解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,,解得:,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+a%),解得:a1=0(不合题意,舍去),a2=10,答:a的值为10.17.解:(1)设每头牛值x两银子,每只羊值y两银子,根据题意得:,解得:.答:每头牛值3两银子,每只羊值2两银子.(2)设购买a头牛,b只羊,依题意有3a+2b=19,b=,∵a,b都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊11 / 11。

2021春九年级数学中考一轮复习《解直角三角形应用(仰角俯角)》达标测评(附答案)

2021春九年级数学中考一轮复习《解直角三角形应用(仰角俯角)》达标测评(附答案)1.一天,小明和朋友一起到小区测量小明所住楼房的高度,他们首先在A测得楼房顶部E 的仰角为37°,然后沿着斜坡AB走了7.8米到B处,再测得楼房顶部E的仰角为45°,身高忽略不计.已知斜坡AB的坡度i=1:2.4,楼房EF所离BC高度CD为1.8米.则楼房自身高度EF大约为()米(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.40.8B.33.6C.31.8D.30.62.在西昌卫星发射中心,长征三号丙运载火箭成功将第5颗新一代北斗星送入预定轨道.如图,火箭从地面P处发射,当火箭达到A点时,从位于地面Q处雷达站测得的距离是9千米,仰角∠AQP为a,则发射台P与雷达站Q之间的距是()A.9sin a千米B.9cos a千米C.千米D.千米3.小菁同学在数学实践活动课中测量路灯的高度.如图,在地面D处用高为1米的测角仪测得路灯A的仰角为30°,再向路灯方向前进2米到达E处,又测得路灯A的仰角为45°(点A,B,C,D,E,G在同一平面内),则路灯A离地面的高度为()A.3米B.(+1)米C.(+2)米D.2米4.如图,一艘潜水艇在海面下300米的点A处发现其正前方的海底C处有黑匣子,同时测得黑匣子C的俯角为30°,潜水艇继续在同一深度直线航行960米到点B处,测得黑匣子C的俯角为60°,则黑匣子所在的C处距离海面的深度是()A.(480+300)米B.(960+300)米C.780米D.1260米5.小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点D处安装了测量器DC,测得古树的顶端A的仰角为45°;再在BD的延长线上确定一点G,使DG=5米,并在G处的地面上水平放置了一个小平面镜,小明沿着BG方向移动,当移动到点F时,他刚好在小平面镜内看到这棵古树的顶端A的像,此时,测得FG=2米,小明眼睛与地面的距离EF=1.6米,测倾器的高度CD=0.5米.已知点F、G、D、B在同一水平直线上,且EF、CD、AB均垂直于FB,则这棵古树的高度AB为()米(小平面镜的大小忽略不计)A.16.5B.17C.17.5D.186.如图,小明为了测量照母山上“览星塔”AB的高度,先从与塔底中心B在同一水平面上的点D出发,沿着坡度为1:0.75的斜坡DE行走10米至坡顶E处,再从E处沿水平方向继续前行若干米后至点F处,在F点测得塔顶A的仰角为63°,塔底C的俯角为45°,B与C的水平距离为4米(图中A、B、C、D、E、F在同一平面内,E、F和D、C、B分别在同一水平线上),根据小明的测量数据,计算出“览星塔”AB的高度约为(计算结果精确到0.1米,参考数据:sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)()A.17.8米B.23.7米C.31.5米D.37.4米7.如图,学校某数学兴趣小组想测量操场对面旗杆AB的高度,他们在C点测得旗杆顶部A的仰角为35°,再沿着坡度为3:4的楼梯向下走了3.5米到达D处,再继续向旗杆方向走了15米到达E处,在E处测得旗杆顶部A的仰角为65°,已知旗杆AB所在平台BF的高度为3.5米,则旗杆的高度AB为()(结果精确到0.1,参考数据:tan35°≈0.7,tan65°≈2.1).A.19.8米B.19.7米C.18.3米D.16.2米8.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为()米(结果精确到1米)(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)A.27B.28C.29D.309.如图,在某居民楼AB楼顶有一广告牌BC,在距楼底A点左侧水平距离30m的D点处有一个山坡,山坡DE的坡度(或坡比)i=1:2.4,山坡坡底D点到坡顶E点的距离DE =26m,在坡底D点处测得居民楼楼顶B点的仰角为45°,在坡顶E点处测得居民楼楼顶广告牌上端C点的仰角为27°,居民楼AB,广告牌BC与山坡DE的剖面在同一平面内,则广告牌BC的高度约为()(结果精确到0.1,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.4.5m B.4.8m C.7.1m D.7.5m10.如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,通过测量可知河的宽度CD为50m.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,则AC=m(计算结果用含根号的式子表示).11.已知甲、乙两楼相距30米,如果从甲楼底看乙楼顶,测得仰角为45°,从乙楼顶看甲楼顶,测得俯角为30°,那么甲楼高是米.12.如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角,在OB的位置时俯角.若OC⊥EF,点A比点B高7cm.则从点A摆动到点B经过的路径长为cm.13.如图,建筑物的高CD为10m.在其楼顶C,测得旗杆底部B的俯角α为45°,旗杆顶部A的仰角β为20°,则旗杆AB的高度为m.(结果精确到0.1m)[sin20°=0.342,cos20°=0.940,tan20°=0.364.]14.如图,海面上有一艘船由西向东航行,在A处测得正东方向上一座灯塔的最高点C的仰角为31°,在B处测得该灯塔的最高点C的仰角为45°,则∠ACB的度数为.15.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,则教学楼BC的高度为.(点A,B,C,D都在同一平面上,结果保留根号)16.如图,小明为测量大树MN的高度,在点A处测得大树顶端M的仰角是30°,沿NA 的方向后退50米到达点B,测得大树顶端M的仰角是15°,A,B,N在同一水平线上,若小明的身高忽略不计,则大树高约为米.17.如图,某校教学楼AC与实验楼BD的水平间距CD=30m,在教学楼AC的底部C点测实验楼顶部B点的仰角为α,且sinα=,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,则教学楼AC的高度是m(结果保留根号).18.如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是10米,梯坎坡长BC是10米,梯坎坡度i BC=1:,则大楼AB的高为米.19.如图,楼房AB建在山坡BC上,其坡度为i=1:2,小明从山坡底部C处测得点A的仰角为56.35°,已知山坡的高度BD为10米,求楼房AB的高.(注:坡度i是指坡面的铅直高度BD与水平宽度CD的比)(结果精确到1米,参考数据:sin56.35°≈0.83,cos56.35°≈0.55,tan56.35°≈1.50)20.数学实践课上,同学们分组测量教学楼前国旗杆的高度.小明同学所在的组先设计了测量方案,然后开始测量了.他们全组分成两个测量队,分别负责室内测量和室外测量(如图).室内测量组来到教室内窗台旁,在点E处测得旗杆顶部A的仰角α为45°,旗杆底部B的俯角β为60°.室外测量组测得BF的长度为5米,求旗杆AB的高度.21.某学习小组,为了测量旗杆AB的高度,他们在大楼MN第10层D点测得旗杆底端B 的俯角是32°,又上到第35层,在C点测得旗杆顶端A的俯角是60°,每层楼高度是2.8米,请你根据以上数据计算旗杆AB的高度.(精确到0.1米,已知:sin32°≈0.37,cos32°≈0.93,tan32°≈0.62,≈1.73)22.某中学门口新装了一批太阳能路灯,在路面A点观察点D的仰角为60°,观察点C的仰角为45°,灯管安装处D点与太阳能电池板安装处E点在同一水平线上,已知灯管支架CD长度为1.4米,且∠DCE=53°,求路灯杆BE的高度.(结果精确到0.1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.732)23.吴兴区某中学开展研学实践活动,来到了“两山”理论发源地﹣﹣安吉余村,看到了“两山”纪念碑.如图,想测量纪念碑AB的高度,小明在纪念碑前D处用测角仪测得顶端A 的仰角为60°,底端B的俯角为45°;小明又在同一水平线上的E处用测角仪测得顶端A的仰角为30°,已知DE=8m,求该纪念碑AB的高度.(≈1.7,结果精确到0.1m)24.为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速.如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的终点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度i=1:2时,求电子眼区间测速路段AB的长(结果保留根号).25.汝阳某公司举办热气球表演来庆祝开业,如图,小敏、小亮从A,B两地观测空中C处一个气球,分别测得仰角为37°和45°,A、B两地相距100m.当气球沿与BA平行地飘移100秒后到达D处时,在A处测得气球的仰角为60°.(1)求气球的高度;(2)求气球飘移的平均速度.(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75,≈1.7.)26.如图,某建筑AB与山坡CD的剖面在同一平面内,在距此建筑AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度i=1:0.75,山坡坡底C点到坡顶D点的距离CD=50m,在坡顶D点处测得建筑楼顶A点的仰角为30°,求此建筑AB的高度.(结果用无理数表示)参考答案1.解:过A作AH⊥BC交CB的延长线于点H,延长BC交EF的延长线于点G,作AJ⊥EF于点J,如图所示:则四边形AHGJ与四边形DCGF都是矩形,∴FG=CD=1.8米,AH=JG,在Rt△AHB中,AB=7.8米,=,∴AH=3(米),BH=7.2(米),∵∠EBG=45°,∠G=90°,∴BG=EG,设BG=EG=x米.则HG=AJ=(x+7.2)米,EJ=(x﹣3)米,在Rt△AEJ中,tan∠EAJ=≈0.75,∴≈0.75,解得:x≈33.6,即EG≈33.6米∴EF=EG﹣FG≈33.6﹣1.8=31.8(米),故选:C.2.解:在Rt△APQ中,cos∠AQP=,∴PQ=AQ×cos∠AQP=9cosα(千米),即发射台P与雷达站Q之间的距是9cosα千米,故选:B.3.解:如图,过点B作BH⊥AG于点H,则∠BHA=90°.由题意可知:∠ABC=30°,∠ACH=45°,BC=DE=2(米).BD=EC=GH=1(米),∵∠CAH=∠ACH=45°.∴AH=CH,设AH=x,则CH=x.∴BH=BC+CH=2+x.在Rt△ABH中,∠ABH=30°,∴tan30°=,即=,解得x=+1,即AH=+1,∴AG=AH+HG=+1+1=(+2)m.答:路灯A离地面的高度为(+2)m.故选:C.4.解:由C点向AB作垂线,交AB的延长线于E点,并交海面于F点.已知AB=960米,∠BAC=30°,∠EBC=60°,∵∠BCA=∠EBC﹣∠BAC=30°,∴∠BAC=∠BCA.∴BC=BA=960(米).在Rt△BEC中,sin∠EBC=,∴CE=BC•sin60°=960×=480(米).∴CF=CE+EF=(480+300)米,故选:A.5.解:如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=0.5米.在Rt△ACH中,∠ACH=45°,∴AH=CH=BD,∴AB=AH+BH=BD+0.5.∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG(AA),∴=即=,解得:BD=17.5,∴AB=17.5+0.5=18(m).∴这棵古树的高AB为18m.故选:D.6.解:过F作FG⊥AB于G,过C作CH⊥FG于H,如图所示:则PE=CH=BG,GH=BC=4,∵斜坡DE的坡度为1:0.75,∴==,设PD=3x,则PE=4x,在Rt△PDE中,由勾股定理得:DE==5x,∴5x=10,∴x=2,∴CH=BG=PE=8,∵∠CFH=45°,∴△CFH是等腰直角三角形,∴FH=CH=8,∴FG=FH+GH=12,在Rt△AFG中,tan∠AFG=,∴AG=FG×tan63°≈12×1.96=23.52,∴AB=AG+BG=23.52+8=31.5(米),即“览星塔”AB的高度约为31.5米,故选:C.7.解:作CG⊥AF于G,DH⊥CG于H,如图所示:则HG=DF,FG=DH,∵楼梯CD的坡度为3:4,CD=3.5,∴FG=DH=2.1,CH=2.8,在Rt△ACG中,∠ACG=35°,tan∠ACG==tan35°≈0.7,∴AG≈0.7CG,∴AF=AG+FG=0.7CG+2.1,∵DF=HG=CG﹣CH=CG﹣2.8,∴EF=DF﹣DE=CG﹣2.8﹣15=CG﹣17.8,在Rt△AEF中,∠AEF=65°,tan∠AEF==tan65°≈2.1,∴AF=2.1EF,∴0.7CG+2.1=2.1(CG﹣17.8),解得:CG=28.2,∴AF=0.7×28.2+2.1=21.84,∴AB=AF﹣BF=21.84﹣3.5≈18.3(米),即旗杆的高度AB约为18.3米;故选:C.8.解:如图,延长AB交ED的延长线于F,作CG⊥EF于G,由题意得:FG=BC=20米,DE=40米,BF=CG,在Rt△CDG中,i=1:2.4,CD=26米,∴BF=CG=10米,GD=24米,在Rt△AFE中,∠AFE=90°,FE=FG+GD+DE=84米,∠E=24°,∴AF=FE•tan24°≈84×0.45=37.8(米),∴AB=AF﹣BF=37.8﹣10≈28(米);即建筑物AB的高度为28米;故选:B.9.解:作EF⊥AB于F,作DG⊥EF于G,如图所示:则GF=AD=30m,AF=DG,∠CEF=27°,∵山坡DE的坡度i==,∴EG=2.4DG,∵DE=26m,DE2+EG2=DE2,∴AF=DG=10m,EG=24m,∴EF=EG+GF=54m,在Rt△CEF中,tan∠CEF==tan27°≈0.51,∴CF≈0.51×54=27.54(m),∴AC=AF+CF=10+27.54=37.54(m),又∵∠ADB=45°,∠A=90°,∴△ABD是等腰直角三角形,∴AB=AD=30m,∴BC=AC﹣AB=37.54﹣30≈7.5(m);故选:D.10.解:作AB⊥CD交CD的延长线于点B,在Rt△ABC中,∵∠ACB=∠CAE=30°,∠ADB=∠EAD=45°,∴AC=2AB,DB=AB.设AB=x,则BD=x,AC=2x,CB=50+x,∵tan∠ACB=tan30°,∴AB=CB•tan∠ACB=CB•tan30°.∴x=(50+x)•.解得:x=25(1+),∴AC=50(1+)(米).答:缆绳AC的长为50(1+)米.故答案为:50(1+)11.解:如图,甲楼为CD、乙楼为AB,BD=30米,∠ADB=45°,∠CAF=30°,过C作CE⊥AB于E,则四边形BDCE为矩形,CE∥AF,∴CE=BD=30米,CD=BE,∠ACE=∠CAF=30°,∴AE=CE=10(米),在Rt△ABD中,∠ADB=45°,∴△ABD为等腰直角三角形,∴BD=AB=30米,∴CD=BE=AB﹣AE=(30﹣10)米,即甲楼的高为(30﹣10)米,故答案为:(30﹣10).12.解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°、∠FOB=60°,且OC⊥EF,∴∠AOP=60°、∠BOQ=30°,设OA=OB=x,则在Rt△AOP中,OP=OA cos∠AOP=x,在Rt△BOQ中,OQ=OB cos∠BOQ=x,由PQ=OQ﹣OP可得x﹣x=7,解得:x=(7+7)cm,∴OA=OB=(7+7)(cm),∴∠AOB=90°,则从点A摆动到点B经过的路径长为=πcm,答:从点A摆动到点B经过的路径长为πcm,故答案为:π.13.解:由题意得:四边形CDBE是矩形,∴CE=BD,BE=CD=10m,在Rt△BCE中,∠BEC=90°,α=45°,∴△BCE是等腰直角三角形,∴CE=BE=10m,在Rt△ACE中,∠AEC=90°,tanβ=,∴AE=10•tan20°,∴AB=AE+BE=10×0.364+10≈13.6(m),故答案为:13.6.14.解:由题意得:∠BAC=31°,∠CBD=45°,∵∠CBD=∠BAC+∠ACB,∴∠ACB=∠CBD﹣∠BAC=45°﹣31°=14°,故答案为:14°.15.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=30°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan30°=,即=,∴AE=30,∵AB=57,∴BE=AB﹣AE=57﹣30,∵四边形BCFE是矩形,∴CF=BE=57﹣30.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=57﹣30,∴BC=EF=30﹣57+30=(30﹣27)米.答:教学楼BC高约(30﹣27)米.故答案为:(30﹣27)米.16.解:∠MAN是△ABM的一个外角,∴∠AMB=∠MAN﹣∠ABM=30°﹣15°=15°,∴∠AMB=∠ABM,∴AM=AB=50米,在Rt△AMN中,∠MAN=30°,∴MN=AM=25米;故答案为:25.17.解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=α,BE=CD=30;可得CE=BE×tanα,∵sinα=,∴tanα=,∴CE=30×=40.在Rt△ABE中,∠ABE=30°,BE=30,可得AE=BE×tan30°=10.故教学楼AC的高度是AC=(10+40)m.答:教学楼AC的高度是=(10+40)m,故答案为:(10+40)m.18.解:如图,过点E作EF⊥AB于点E,作BG⊥CD于点G,∵ED⊥CD,∴四边形DEFG是矩形,∴EF=DG,ED=FG,根据题意可知:∠AEF=α=45°,∴AF=EF,∵坡度i BC=1:,∴BG;CG=3;4,设BG=3x,CG=4x,则BC=5x,∴5x=10,解得x=2,∴CG=8,BG=6,∴EF=DG=CG+CD=8+10=18,∴AF=EF=18,∵FG=ED=15,∴FB=FG﹣BG=15﹣6=9,∴AB=AF+FB=18+9=27(米).答:大楼AB的高为27米.故答案为:27.19.解:根据题意可知:∠ACD=56.35°,BC的坡度为i=1:2,∵BD=10(米),∴CD=20(米),在Rt△ACD中,AD=CD•tan∠ACD≈20×1.50=30(米),∴AB=AD﹣BD=30﹣10=20(米)答:楼房AB的高度为20米.20.解:如图所示:由题意可得,EN=BF=5米,EN⊥AB,∵α为45°,∴△AEN是等腰直角三角形,∴AN=EN=5米,∵tanβ===tan60°=,解得:BN=5,则旗杆AB=AN+BN=(5+5)米.21.解:过C作CE⊥BA交BA的延长线于点E,过点D作DF⊥BA交BA于点F.由题意知:∵点D在第10层,点C在第35层,每层楼高为2.8米,∴MD=2.8×10=28(米),CM=2.8×35=98(米),在Rt△DFB中,∠FDB=32°,BF=MD=28,∴DF==≈≈45.16(米),在Rt△CEA中,∠ACE=60°,CE=DF≈45.16,∴EA=CE•tan∠ACE=45.16×tan60°≈45.16×1.73≈78.13(米),∵BE=CM=98(米)∴BA=BE﹣AE≈98﹣78.13=19.87≈19.9(米),答:旗杆AB的高度约为19.9米.22.解:如图,作DF⊥AB于F,设BE的长度为x米,在Rt△DEC中,∠DCE=53°,∴∠CDE=90°﹣53°=37°,∴CE=CD•sin37°≈0.84,DE=CD•cos37°≈1.12,∵∠DEB=∠B=∠DFB=90°,∴四边形DEBF是矩形,∴DE=BF≈1.12,DF=BE=x,在Rt△ABC中,∠CAB=45°,BC≈x﹣0.84,∴AB=BC≈x﹣0.84,∴AF≈x﹣0.84﹣1.12=x﹣1.96,在Rt△AFD中,∠DAF=60°,AF≈x﹣1.96,DF=x,∴DF=AF•tan60°,∴x=(x﹣1.96),解得:x≈4.6,答:路灯杆BE的高度约为4.6米.23.解:设CD=xm,∵∠ADC=60°,∠CDB=45°,∴AC=x•tan60=x,CB=x•tan45°=x(m),∵∠AED=30°,DE=8m,∵∠AEC=30°,∴CE=AC,∴×x=x+8,解得x=4(m),∴AB=x+x=4+4≈10.8(m).答:该纪念碑AB的高度约为10.8m.24.解:(1)由题意,∠PBQ=∠TPB=60°,∵∠PQB=90°,∴∠BPQ=30°,∴BQ=PQ•tan30°=9×=3(米).(2)如图,过点A作AM⊥QB于M,AH⊥PQ于H.由题意,∠P AH=∠TP A=30°,设AM=a米,则BM=2a米,∵∠AHQ=∠HQM=∠AMQ=90°,∴四边形AHQM是矩形,∴AH=QM=(3+2a)米,QH=AM=a米,PH=PQ﹣HQ=(9﹣a)米,在Rt△APH中,tan∠P AH=,∴=,解得a=2,∴AM=2(米),BM=4(米),∴AB===2(米).25.解:(1)如图,过点C作CE⊥AB于点E,在Rt△ACE中,∵∠CAE=37°,∴CE=AE×tan37°=0.75AE,∴AE=CE,在Rt△BCE中,∵∠CBE=45°,∴BE=CE,∴AB=AE﹣BE=CE﹣CE=CE=100,∴CE=300(米),答:气球的高度为300米;(2)如图,过点D作DF⊥AB于点F,则四边形DFEC是矩形,在Rt△ADF中,∵∠DAF=60°,∴AF=DF=CE=100≈170(米),∴AE=CE=400(米),∴CD=EF=400﹣170=230(米),∴速度为:230÷100=2.3.答:气球飘移的平均速度每分钟为2.3米.26.解:如图,过点D作DF⊥AB于F,作DE⊥BC交BC的延长线于点E,由题意得,∠ADF=28°,CD=50m,BC=60m,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴==,设DE=4x,则EC=3x,由勾股定理可得:CD==5x,又∵CD=50,∴5x=50,∴x=10,∴EC=3x=30(m),DE=4x=40(m)=FB,∴BE=BC+EC=60+30=90(m)=DF,在Rt△ADF中,AF=tan30°×DF=×90=30(m),∴AB=AF+FB=(30+40)m,即此建筑AB的高度为(30+40)m.。

2022年九年级中考数学第一轮复习:矩形,菱形A

2022年九年级中考数学第一轮复习矩形,菱形 A一、选择题1. 如图,菱形ABCD周长为20,对角线AC,BD相交于点O,E是CD的中点,则OE的长是( )A.2.5B.3C.4D.52. 下列说法,正确的个数有( )①正方形既是菱形又是矩形;②有两个角是直角的四边形是矩形;③菱形的对角线相等;④对角线互相垂直平分且相等的四边形是正方形.A.1个B.2个C.3个D.4个3. 如图,菱形ABCD中,∠D=150°,则∠1= ( )A.30°B.25°C.20°D.15°4. 如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是( )A.1B.C.2D.5. 如图,在平行四边形ABCD中,M,N是BD上的两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是矩形,这个条件是 ( )A.OM=ACB.MB=MOC.BD⊥ACD.∠AMB=∠CND6. 如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为 ( )A.4B.4C.10D.87. 如图所示,P是菱形ABCD的对角线AC上一动点,过P垂直于AC的直线交菱形ABCD的边于M、N两点,设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象的大致形状是( )8. 如图,矩形纸片ABCD 中,AB =4,BC =6,将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( ) A. 6 B. 3 C. 2.5 D. 29. 如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =2,∠ABC =60°,则BD 的长为( )A. 2B. 3C. 3D. 2 310. 如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处.若∠2=40°,则图中∠1的度数为( ) A. 115° B. 120° C. 130° D. 140°11. 已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A. (0,0)B. (1,12)C. (65,35)D. (107,57)12. 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE =BF ,将△AEH ,△CFG分别沿边EH ,FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AEEB为( )A. 53B. 2C. 52 D. 4 二、填空题13. 已知一个菱形的边长为2,较长对角线长为2,则这个菱形的面积是 . 14. 如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠ADB=30°,AB=4,则OC= .15. 如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,OA=OC ,OB=OD ,添加一个条件使四边形ABCD 是菱形,那么所添加的条件可以是 .(写出一个即可)16. 如图,矩形ABCD 的面积是15,边AB 的长比AD 的长大2,则AD 的长是________.17. 如图,将两张长为4,宽为1的矩形纸条交叉并旋转,使重叠部分成为一个菱形.旋转过程中,当两张纸条垂直时,菱形周长的最小值是4,那么菱形周长的最大值是 .18. 如图,延长矩形ABCD 的边BC 至点E ,使CE =BD ,连接AE.如果∠ADB =30°,则∠E=_____19. 在菱形ABCD 中,∠A =30°,在同一平面内,以对角线BD 为底边作顶角为120°的等腰三角形BDE ,则∠EBC 的度数为________.20. 如图,已知在矩形ABCD 中,点E 在边BC 上,BE =2CE ,将矩形沿着过点E 的直线翻折后,点C 、D 分别落在边BC 下方的点C ′、D ′处,且点C ′、D ′、B 在同一条直线上,折痕与边AD 交于点F ,D ′F 与BE 交于点G .设AB =t ,那么△EFG 的周长为______________(用含t 的代数式表示).三、解答题21. 如图,将等腰三角形ABC绕顶点B按逆时针方向旋转α到△A1BC1的位置,AB与A1C1相交于点D,AC与A1C1,BC1分别交于点E,F.(1)求证:△BCF≌△BA1D;(2)当∠C=α时,判断四边形A1BCE的形状,并说明理由.22. 如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.23. 如图,AB是☉O的直径,DO⊥AB于点O,连接DA交☉O于点C,过点C作☉O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF.(2)连接AF并延长,交☉O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.24. 如图,▱ABCD 中,AB =2,AD =1,∠ADC =60°,将▱ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D ′处,折痕交CD 边于点E. (1)求证:四边形BCED ′是菱形;(2)若点P 是直线l 上的一个动点,请计算PD ′+PB 的最小值.25. 矩形ABCD 中,34AB AD ==,,将矩形沿EF 对折,使点C 与A 重合,如图,求折痕EF 的长GFEDCBA26. 如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,将△ABE 沿BE 折叠得到△FBE ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设ADAE=n.(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ADAB的值;(3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.27. 如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG.(1)求证:四边形EFDG 是菱形;(2)探究线段EG 、GF 、AF 之间的数量关系,并说明理由; (3)若AG =6,EG =25,求BE 的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
中考数学第一轮复习检测题9
解决时针与分针的夹角问题的关键是搞清钟面上时针和分针每分钟转过的角度。分针每分钟
(钟面上转过一小格)转过6°;时针每小时转过30°,时针每分钟转过0.5°。因此,对
于m点n分时:时针转过的度数为,分针转过的度数为,所以时针
与分针的夹角,即。若上式得到的
角大于180°,则时针与分针的夹角应为360°减去上式得到的角,即。
例1. (1)由2点到7点半,时钟的时针转过的角度是多少度?
(2)从2点11分到2点18分,分针转过的角度是多少?

解:(1)
(2)
例2. 求下列时刻时针与分针的夹角:
(1)8点15分;(2)3点25分;(3)10点10分

解:(1)
(2)
(3)
时针与分针的夹角应为
例3. 在3点多少分,时针与分针:(1)重合?(2)垂直?(3)成一条直线?(4)夹角
为30°。

解:(1)设3点n分时针与分针重合,则

解得:,故3点分时时针与分针重合。
(2)设3点n分时针与分针垂直,则

解得:n=0或
故3点整或3点分时时针与分针垂直。
2

(3)设3点n分时时针与分针成一条直线,则
解得:或舍去
故3点分时时针与分针成一条直线
(4)设3点n分时,时针与分针夹角为30°,则

解得或
故3点分或3点分时时针与分针夹角为30°

相关文档
最新文档