残余应力 消除机理

合集下载

消除焊接残余应力的方法

消除焊接残余应力的方法

消除焊接残余应力的方法一、背景介绍焊接是一种常见的金属连接方法,但是在焊接过程中会产生残余应力,这些应力可能会导致零件变形、裂纹和失效。

因此,消除焊接残余应力是非常重要的。

二、焊接残余应力的来源焊接残余应力主要来自两个方面:热应力和冷却应力。

1. 热应力在焊接过程中,由于高温作用下金属材料发生膨胀和收缩,导致产生热应力。

这种热应力会导致零件变形和内部裂纹。

2. 冷却应力当热源移开后,焊缝区域开始冷却,并且不同区域的冷却速度不同,导致产生冷却应力。

这种冷却应力会导致零件变形、裂纹和失效。

三、消除焊接残余应力的方法为了消除焊接残余应力,可以采用以下几种方法:1. 预热法预热法是指在进行实际的焊接之前,在工件上施加一定的加热处理。

这样做可以使材料温度均匀分布,减少热应力的产生。

2. 后热处理法后热处理法是指在焊接完毕后,对工件进行一定的加热或冷却处理。

这样做可以消除残余应力,并且提高材料的强度和韧性。

3. 机械加工法机械加工法是指在焊接完成后,对工件进行一定的机械加工。

这样做可以消除残余应力,并且提高材料的表面光洁度和精度。

4. 振动法振动法是指在焊接完成后,对工件进行一定的振动处理。

这样做可以消除残余应力,并且提高材料的强度和韧性。

5. 放电等离子体法放电等离子体法是指在焊接完成后,利用放电等离子体产生高温和高压作用于焊缝区域。

这样做可以消除残余应力,并且提高材料的表面硬度和耐腐蚀性。

四、总结以上就是消除焊接残余应力的几种方法,不同方法适用于不同情况。

在实际操作中需要根据具体情况选择合适的方法来消除焊接残余应力,以确保焊接工件的质量和可靠性。

浅谈焊接残余应力控制措施及消除方法

浅谈焊接残余应力控制措施及消除方法

浅谈焊接残余应力控制措施及消除方法摘要:文章主要阐述了焊接结构在焊接过程中产生的残余应力及应力的消除方法,主要说了焊接残余应力的分布、焊接残余应力施工中的控制、焊后消除焊接应力的方法。

关键词:焊接残余应力控制措施消除方法前言随着焊接技术的迅速发展,在短短的几十年中焊接已是工业技术中的重要方法之一。

如建筑钢结构、压力容器、船舶、车辆等中几乎全部用焊接代替了铆接。

部分过去一直用整铸整锻方法生产的大型毛坯也改成了焊接结构,焊接技术不仅大大减化了生产工艺,而且还降低了很多成本。

但是实际焊接中也存在不少问题,如焊接的内应力、焊接结构的变形、焊接结构的脆性断裂、焊接结构的疲劳强度等都直接影响着焊接的质量。

本文就对焊接残余应力进行具体分析。

一、焊接残余应力的分布在厚度不大(δ<15-20mm)的常规焊接结构中,残余应力基本上是双轴向的,厚度方向上的应力很小。

只有的大厚度的焊接结构中,厚度方向的应力才比较大。

焊接应力分别有焊缝方向的纵向应力、垂直焊缝方向的横向应力和厚度方向的应力。

二、焊接残余应力施工中的控制在焊接过程中采用一些简单的工艺措施往往可以调节内应力,降低残余内应力的峰值,避免在大面积内产生较大的拉应力,并使内应力分布更为合理。

这些措施不但可以降低残余应力,而且也可以降低焊接过程中的内应力。

因此有利于消除焊接裂纹。

现在把这些措施分述于后:1、采用合理的焊接顺序和方向尽量使焊缝能自由收缩,先焊收缩量比较大的焊缝。

如带盖板的双工字钢构件,应先焊盖板的对接焊缝,后焊盖板和工字钢之间的角焊缝,使对接焊缝能自由收缩,从而减少内应力。

先焊工作时受力较大的焊缝,如在工地焊接梁的接头时,应先留出一段翼缘角焊缝最后焊接,先焊受力最大的翼缘对接焊缝,然后焊接腹板对接焊缝,最后再焊接翼缘角焊缝。

这样的焊接次序可以使受力较大的翼缘焊缝预先承受压应力,而腹板则为拉应力。

翼缘角焊缝留在最后焊接,则可使腹板有一定的收缩余地,同时也可以在焊接翼缘板对接焊缝时采取反变形措施,防止产生角变形。

(完整版)残余应力

(完整版)残余应力

残余应力(Residual Stress)消除外力或不均匀的温度场等作用后仍留在物体内的自相平衡的内应力。

机械加工和强化工艺都能引起残余应力。

如冷拉、弯曲、切削加工、滚压、喷丸、铸造、锻压、焊接和金属热处理等,因不均匀塑性变形或相变都可能引起残余应力。

残余应力一般是有害的,如零件在不适当的热处理、焊接或切削加工后,残余应力会引起零件发生翘曲或扭曲变形,甚至开裂。

或经淬火、磨削后表面会出现裂纹。

残余应力的存在有时不会立即表现为缺陷,而当零件在工作中因工作应力与残余应力的叠加,使总应力超过强度极限时,便出现裂纹和断裂。

零件的残余应力大部分都可通过适当的热处理消除。

残余应力有时也有有益的方而,它可以被控制用来提高零件的疲劳强度和耐磨性能。

[1]工件在制造过程中,将受到来自各种工艺等因素的作用与影响;当这些因素消失之后,若构件所受到的上述作用与影响不能随之而完全消失,仍有部分作用与影响残留在构件内,则这种残留的作用与影响。

也称残余应力。

残余应力是当物体没有外部因素作用时,在物体内部保持平衡而存在的应力。

凡是没有外部作用,物体内部保持自相平衡的应力,称为物体的固有应力,或称为初应力,亦称为内应力。

测试仪器编辑残余应力分析仪其原理是基于著名的布拉格方程2dsinθ=nλ :即一定波长的X射线照射到晶体材料上,相邻两个原子面衍射时的X射线光程差正好是波长的整数倍。

通过测量衍射角变化Δθ从而得到晶格间距变化Δd,根据胡克定律和弹性力学原理,计算出材料的残余应力。

应力方程根据弹性力学理论, 在宏观各向同性晶体材料上角度φ和ψ(见图1)方向的应变可以用如下方程表述:(图1)正应力和剪切应力应力分量σφ和τφ为方向Sφ上正应力和剪切应力:含剪切应力的应力方程和曲线如果在垂直于试样表面上的平面上有剪应力存在(τ13≠0和/或τ23≠0),则εφψ与sin2ψ的函数关系是一个椭圆曲线,在ψ> 0和ψ<0是图形显示为“ψ分叉”(见图3)。

用热处理方法消除奥氏体不锈钢焊接残余应力

用热处理方法消除奥氏体不锈钢焊接残余应力

第22卷第4期湖 北 工 业 大 学 学 报2007年08月V ol.22N o.4 Journal of H ubei U niversity of T echnology Aug.2007[收稿日期]2007-03-20[作者简介]周金枝(1964-),女,湖北武汉人,湖北工业大学教授,工学博士,研究方向:工程结构强度分析与计算.[文章编号]1003-4684(2007)0420088203用热处理方法消除奥氏体不锈钢焊接残余应力周金枝,钟 斌(1湖北工业大学机械工程学院,湖北武汉430068;2武昌造船厂成套部,湖北武汉430060)[摘 要]通过分析焊接参数对焊接残余应力影响,结合加工试件要求,确定焊后热处理消除焊接残余应力的最佳工艺程序,并取得良好的效果.[关键词]残余应力,焊后热处理,焊接,工艺程序[中图分类号]T G 407[文献标识码]A 因为奥氏体不锈钢(如304不锈钢)在高温下的强度和低温下的断裂韧性以及耐腐蚀性非常好,被广泛应用于工程结构中.但奥氏体不锈钢具有较高的热膨胀系数和低的热传导系数,在焊接过程中产生大量的收缩、变形和残余应力.在焊接过程中,当焊接温度冷却到常温时,残余应力以热应力的形式残留在焊接构件中,消除焊接结构中的残余应力一直是工程界关心的问题,对此也进行了大量的实验研究,并取得许多研究成果.通过对焊接残余应力产生的机理和焊接参数对焊接残余应力的影响进行分析,并综合考虑加工结构特点,确定采用焊后热处理的方法来消除某防护门关键部件中的焊接残余应力,并取得了良好的结果.1 焊接残余应力焊接过程中,焊接接头区域受到不均匀的加热和冷却作用,而周围的母材金属则对焊接接头产生一定的刚性约束.焊接加热时,焊接接头区域不能自由的膨胀,焊后冷却过程中又不能自由收缩,必然会产生焊接应力和焊接变形.当焊接加热时,焊缝和附近区将产生压应力,而远离焊缝两侧会产生拉应力.当焊后冷却时,焊缝和附近区将产生拉应力,远离焊缝两侧会产生压应力,图1为熔合线附近区域材料热循环过程图.由于局部加热和随后的迅速冷却还将导致焊接接头处金相组织发生变化,产生相变应力,所以焊接残余应力为热应力(主要为冷却应力)和相变应力的叠加[1].焊接残余应力是构件未受荷载时的应力,因而是自相平衡的内应力体系,即在任何截面上残余应力均有拉又有压,内力和内力矩平衡.在熔合线附近产生并残留较大拉应力,而在焊接线以外的部分产生并残留与之相平衡的压应力.拉应力在多数情况下将达到材料的屈服点,导致焊接变形.压应力的最高值往往低于拉应力,同时在垂直于焊接线的方向上产生沿板厚方向变化的残余应力.该残余应力值在无拘束的场合比较小,但当垂直于焊接线方向上的收缩被拘束时,该值则增大,如果拘束很大就会在整个截面产生残余拉应力.图1 加热和冷却过程中残余应力残余应力对结构的脆性破坏、疲劳破坏、抗弯强度和应力腐蚀裂纹都有很大的影响.在焊接过程中,由于应力分布的不平衡,将导致构件产生焊接变形.在焊缝区、熔合线、过热区将形成晶粒粗大的树枝状组织和粗大魏氏组织,导致焊接材料产生硬化、脆化现象,使焊接结构在以后的延时或服役中产生严重的断裂破坏现象.2 焊接参数对焊接残余应力的影响试件按某防护门的关键部件支垫块、枕垫块进行1:1制作,材料是奥氏体不锈钢0Cr19Ni9N ,尺寸3500mm ×400mm ×180mm ,试板一边开长180mm 、深10mm 、坡口角度为75°的V 型坡口,采用钨极氩弧焊进行对接,焊接前进行退火处理.焊缝宽22mm ,余高115mm 左右.因为板厚>38mm ,所以焊前应进行100~120℃预热.预热应在板厚全断面均匀加热,预热区宽度应不小于焊缝两侧3倍的板厚,且不小于100mm.距焊缝50mm 处用表面测温计进行温度测量.在焊态下进行焊接接头残余应力的测量时,测量方法采用钻盲孔测量法,盲孔直径2mm 、深2mm.测试前,用钢锉锉平焊缝并用砂布打磨,方便应变片的粘贴.测试表面的处理工艺应保持一致,残余应力计算时应消除切削应力和孔边效应的影响.在距熔合线7,17,27,37,47mm 处粘贴应变计,监测焊接残余应力.在距熔合线1,13,33和45mm 处,并在表面下3mm 的地方安装4个热电耦,用于测量热循环过程中焊接残余应力的变化.焊接参数如表1所示,有5种焊接条件.表1 焊接参数焊接条件电流/A 电压/V 焊接速度/(cm ・min -1)气体流动速度/(L ・min -1)热输入/(kJ ・cm -1)A 20016.012.015.015.0B 18015.012.015.013.5C 16014.011.215.012.0D 14013.210.615.010.5E13012.810.015.010.0 在焊接条件C 情况下,最大、最小焊接残余应力随距熔合线距离的变化情况如图2所示.图2 最大、最小残余应力的变化在焊接C 条件下,热输入对最大焊接残余应力的影响如图3所示.图3 热输入对最大焊接残余应力的影响材料特性随温度的变化规律[2]如图4所示.相变温度对残余应力的影响规律[3]如图5所示.图4 材料特性随温度的变化图5 相变温度对残余应力的影响3 焊后热处理的作用及工艺方案3.1 焊后热处理的作用通过对焊接残余应力产生的原理、相变温度对残余应力的影响、材料特性随温度的变化规律及焊接参数对焊接残余应力的影响进行分析可以发现,焊接过程中材料金相变化同热处理过程非常相似.如果根据焊接构件的特性,采用合理的焊接热处理工艺过程,对焊接构件进行焊后热处理,可以充分消除焊接残余应力,达到实际工程的要求.焊后热处理消除焊接残余应力方法可分为两个过程,即加热和保温过程.在加热过程中,焊接残余应力随着材料屈服点的降低而降低,到达焊后热处理的温度后,残余应力被减弱到材料在此温度的屈服点以下.在保温过程中,由于蠕变现象(高温松弛)残余应力得以充分降低.图6为热处理释放残余应力的试验图.图中两98 第22卷第4期 周金枝等 用热处理方法消除奥氏体不锈钢焊接残余应力根试件的初始残余应力分别为500M Pa 和350M Pa ,通过热处理方法即先加热后保温来消除残余应力.加热速度为600℃/h ,加热到500℃左右后,保温2~3h ,可以达到充分消除残余应力的效果.通过该试验分析可发现,起主要作用的是加热温度,如果降低加热温度,即使延长保温时间,也达不到充分消除残余应力的理想效果[4,5].另外,在热处理过程中,焊接区和热影响区使材料硬化、脆性化的组织被软化,形成了强度、韧性较好的退火组织,提高焊缝接头材料的延展性和断裂韧性.图6 热处理释放残余应力试验图3.2 热处理工艺方案根据上述情况,结合焊接构件本身的材料特性,经过多次试验,制定某大型防护门的门轴柱、斜接柱焊后热处理工艺过程.该门轴柱、斜接柱结构复杂,板厚变化也大、焊接接头多、焊缝长.通过焊后热处理,该结构的焊接残余应力得到充分释放,取得良好的效果.其焊后热处理工艺程序为:1)加热、保温温度:防止变形的下限温度550±10℃;2)加热速度:V 1≤200×25/δmax ℃/h ,其中δmax 为最大板厚;3)保温时间:以构件钢板(或焊缝)的最大厚度计算,按2~2.5min/mm 计算保温时间;4)进炉温度:为减少构件在加热过程中炉温与工件之间过大的温度差,应以低温进炉,进炉炉温≤300℃;5)冷却速度:冷却速度V 2≤260℃/h ,到300℃以下出炉在空气中冷却.图7 工艺曲线为防止变形,采用等温升温,即使工件在300~400℃温度范围等温1h ,使工件整体温度均匀一致,当厚板、薄板的温度完全均匀一致后再升到保温温度.4 结论通过对门轴柱、斜接柱热处理前后的残余应力测试对比,可发现焊后热处理对焊接构件的及时消氢、消除焊接残余应力具有很好效果.对大型、板厚不均匀的焊接结构进行焊后热处理后,整个结构将有如下特点:1)在1.96mm 深处的平均应力能较全面地反映整个焊件宏观残余应力水平.2)通过对热处理前后的残余应力值进行比较,可发现经热处理后,残余应力的最大值低于1/3屈服极限.材料的应力强度越高,残余应力峰值下降越明显,降低幅度平均为70%.材料的应力强度越低,残余应力峰值降低越小,但整体残余应力水平下降许多.3)残余应力分布均匀化.4)热处理前后的硬度基本上无变化.[ 参 考 文 献 ][1] 拉达伊D.焊接热效应温度场、残余应力、变形[M ].北京:机械工业出版社,1997.[2] Lin Y C ,Chou C P.A New Technique for Reducingthe Residual Stress Induced by Welding in Type 304Stainless Steel [J ].J.Eng.Mater.Technol.,1995,48:693-698.[3] 王文先,霍立兴.相变温度对焊接残余应力的影响规律及机理分析[J ].中国机械工程,2003,14(3):246-249.[4] 陈怀宁,林泉洪,吕建民.现场快速降低小直径管道焊接接头残余应力的方法[P ].中国专利:03133348.6,2003205220.[5] 张定铨,何家文.材料中残余应力的X 射线衍射分析和作用[M ].西安:西安交通大学出版社,1999.[6] 许天已.钢铁热处理实用技术[M ].北京:化学工业出版社,2005.[7] 张 洁.属热处理及检验[M ].北京:化学工业出版社,2005.(下转第96页) R esearch Iinto the Functions of B ed Course in Compound FoundationGU Bing2rong1,HUAN G J u2hua(1W uhan R ailw ay B ri d ge S econdary S chool,W uhan430052,Chi na;2S chool of Mechanical Engi n.,H ubei Uni v.of Technolog y,W uhan430068,Chi na)Abstract:Considering t he formation of compound foundation,t his paper deals wit h t he important f unctio ns of bed course in compound foundation and t he reaso nable t hickness setting of bed course.K eyw ords:compound foundation;bed course;f unction;t hickness setting[责任编辑:张 众] (上接第90页)E limination Welding R esidu al Stress in Austenite StainlessSteel with H eat T reatment MethodZHOU Jin2zhi,ZHON G Bin(1S chool of M echanical Engi n,H ubei Uni v.of Technolog y,W uhan430068,Chi na;2De p artment of Equi p ment i n S ets B usi ness S ection,W uhan430060,Chi na)Abstract:Through analyzing t he influence of welding parameter on welding residual st ress,and taking into account t he processing requirement of test sample,t he best craft p rocedure of heat t reat ment is deter2 mined,which can eliminate welding residual st ress,and show t he good result.K eyw ords:residual st ress;heat t reat ment after welding;weld;craft p rocedure[责任编辑:张岩芳]。

超声波冲击设备 消除应力原理

超声波冲击设备 消除应力原理

超声波冲击设备消除应力原理
超声波冲击设备消除应力原理超声波焊接应力消除设备的基本原理就是利用大功率超声波推动冲击工具以每秒二万次以上的频率冲击金属物体表面,由于超声波的高频、高效和聚焦下的大能量,使金属表层产生较大的压缩塑性变形;同时超声波焊接应力消除设备波改变了原有的应力场,产生一定数值的压应力;并使被冲击部位得以强化。

所以超声波焊接应力消除设备能够显著提高金属焊接接头及结构的疲劳强度,大幅度延长其疲劳寿命;消除残余拉应力,并使被冲击部位产生压应力,从而提高工件的承载能力;有效改善焊趾的几何形状,大大降低焊趾处的应力集中系数,其效果大大优于TIG工艺;消除焊趾表层微小裂纹和焊接缺陷,抑制裂纹提前萌生;强化金属零件表面,提高表面质量和使用寿命。

该设备高效、节能、无污染、使用方便,不受工件形状、场地、环境的限制,处理效果显著。

 超声波焊接应力消除设备提高焊接接头疲劳性能的基本原理金属结构件在焊接时,普遍采用熔化焊接的方法,在金属的填充过程中,在接头部位留有余高、凹坑及各种焊接缺陷,造成严重的应力集中;同时还产生一定的焊接残余应力。

在绝大多数情况下,残余拉应力对焊接结构的疲劳强度是不利的。

同时,大量研究表明,在焊趾部位距离表面0.5mm左右处一般存有熔渣等缺陷,该缺陷较尖锐,相当于疲劳裂纹提前萌生。

在应力集中、焊趾熔渣缺陷及焊接残余拉应力的联合作用下,焊接接头的疲劳强度和疲劳寿命被严重降低。

 超声波焊接应力消除设备处理法提高焊接接头疲劳强度和疲劳寿命的基本原理焊后利用超声波推动冲击工具以每秒二万次以上的频率沿焊缝方向冲击焊缝的焊趾部位,使之产生较大的压缩塑性变形,使焊趾处产生圆滑的几何过渡,从而大大降低了焊趾处余高和凹坑造成的应力集中;消除了焊趾处表层的微小。

热处理消除应力原理

热处理消除应力原理

热处理消除应力原理热处理是一种常用的金属加工方法,通过控制材料的加热和冷却过程,可以改变材料的组织结构和性能。

在金属加工过程中,由于内部应力的存在,会导致材料的变形和破裂。

为了解决这个问题,热处理消除应力成为了一种有效的方法。

热处理消除应力的原理是基于材料的塑性变形和热膨胀系数不同。

当材料受到外部应力作用时,会发生塑性变形,从而产生内部应力。

这些内部应力会导致材料的变形和破裂。

而热处理可以通过加热和冷却的方式,改变材料的组织结构,从而减小内部应力。

在热处理过程中,首先需要将材料加热到一定温度,使其达到固溶化的状态。

在这个温度下,材料的晶粒会发生再结晶,原有的晶粒边界消失,形成新的晶粒。

这种再结晶的过程可以消除材料中的内部应力,使其恢复到较为稳定的状态。

接下来,需要对材料进行冷却。

冷却的速度和方式会影响材料的组织结构和性能。

通常情况下,快速冷却可以使材料形成细小的晶粒,从而提高材料的硬度和强度。

而缓慢冷却则可以使材料形成大的晶粒,提高材料的韧性和延展性。

热处理消除应力的过程中,还需要注意一些关键因素。

首先是加热温度和保温时间的选择。

加热温度应该根据材料的性质和要求来确定,过高或过低的温度都会影响热处理效果。

保温时间则需要根据材料的厚度和热传导性来确定,保证材料内部温度的均匀性。

其次是冷却速度的控制。

快速冷却可以使材料形成细小的晶粒,但过快的冷却速度可能会导致材料的变形和开裂。

因此,需要根据材料的性质和要求来选择适当的冷却速度。

最后是热处理后的处理方式。

热处理后的材料可能会出现一些问题,如氧化、变形等。

因此,需要对材料进行适当的处理,以保证其质量和性能。

热处理消除应力是一种有效的金属加工方法。

通过控制材料的加热和冷却过程,可以改变材料的组织结构和性能,从而消除内部应力,提高材料的质量和性能。

在实际应用中,需要根据材料的性质和要求来选择合适的热处理工艺参数,以达到最佳的效果。

应力释放导致产品变形机理

应力释放导致产品变形机理
应力释放是指材料内部的应力在外部条件改变的情况下得到释
放的过程。

在产品制造过程中,材料会受到各种应力的影响,包括
加工过程中的机械应力、热应力、残余应力等。

当产品制造完成后,这些应力可能会导致产品变形,其机理包括以下几个方面:
首先,残余应力释放是一个常见的机理。

在产品制造过程中,
由于材料的非均匀性或者加工过程中的变形,会在产品内部形成残
余应力。

一旦产品离开加工环境,这些残余应力就会试图达到平衡
状态,导致产品发生变形。

其次,热应力释放也是一个重要的机理。

在产品制造过程中,
特别是在高温加工过程中,材料会受到热应力的影响。

一旦产品冷
却到室温,热应力会逐渐释放,导致产品发生变形。

此外,机械应力的释放也是导致产品变形的重要原因。

在产品
制造过程中,机械加工会在材料内部引入机械应力,一旦这些应力
得到释放,也会导致产品的形状发生变化。

除了上述机理外,材料的结构变化、外部环境的影响等因素也
可能导致应力释放而引起产品变形。

总的来说,应力释放导致产品变形的机理是一个复杂的过程,需要综合考虑材料的性质、加工工艺、产品设计等多个方面的因素。

因此,在产品设计和制造过程中,需要充分考虑材料的性质和加工过程中可能产生的应力,采取相应的措施来减轻应力的影响,以尽量避免产品变形。

这可能涉及到材料选择、加工工艺优化、残余应力的调控等方面的工作。

通过合理的设计和制造,可以最大程度地减少应力释放对产品造成的影响,确保产品的质量和稳定性。

消除焊接残余应力的方法

消除焊接残余应力的方法焊接是一种常见的连接方法,但往往会在焊接过程中产生焊接残余应力。

这些残余应力可以导致焊接材料的变形和裂纹,影响焊接结构的稳定性和强度。

因此,消除焊接残余应力对于确保焊接结构的质量和可靠性至关重要。

下面将介绍几种常见的消除焊接残余应力的方法:1. 预热和后焊热处理:预热是在焊接之前加热焊接材料的方法,可以提高焊接材料的可塑性,降低焊接残余应力的产生。

后焊热处理是在焊接完成后对焊接区域进行加热处理,通过退火、正火或淬火等方法,使焊接结构的组织和性能得到调整和改善,从而减少焊接残余应力。

2. 堆焊:堆焊是在焊接接头上堆积焊条或焊丝,增加焊接材料的体积并形成一定的凸起。

通过堆焊,可以使焊接区域的残余应力分布更均匀,降低焊接接头的变形和残余应力。

3. 振动消除法:振动消除法是利用机械振动的力量来消除焊接残余应力。

通过在焊接过程中施加外力或机械振动,可以改变焊接材料的晶格结构和分子排列方式,使焊接结构中的残余应力得到释放,从而达到消除焊接残余应力的目的。

4. 加工消除法:加工消除法是通过机械或热加工来消除焊接残余应力。

例如,采用热冲压、磨削、切削等方法对焊接结构进行加工,可以改变其形状和尺寸,从而减小残余应力。

5. 冷却消除法:冷却消除法是利用焊接材料的热膨胀系数差异来消除焊接残余应力。

通过在焊接过程中控制焊接材料的冷却速度,可以使焊接结构在冷却过程中产生相应的热应力,从而消除焊接残余应力。

6. 松弛应力消除法:松弛应力消除法是通过施加外力来消除焊接残余应力。

通过对焊接结构施加拉伸、压缩、扭曲等外力,可以使焊接结构的应力场重新分布,降低焊接残余应力。

在实际应用中,常常会按照实际需要,结合不同的方法来消除焊接残余应力。

同时,选择合适的焊接方法、焊接参数和焊接材料也是消除焊接残余应力的重要因素,对于提高焊接质量和可靠性具有重要的影响。

总之,消除焊接残余应力是确保焊接结构质量和可靠性的重要措施之一。

振动时效机理研究及其工艺参数选择


中,要求外加应力和残余应力的叠加要超过材料 的 起的。也可 以认为 , 残余应力以一种畸变能的形式存
屈 服极 限 [ 4 】 , 即
d+ O" r> O' s
在于晶体 中。位错在 晶体 中之所 以不能均匀分布 , 除 了位错塞积之外 , 另一个重要原因就是位错 的钉扎 , 位错线的两端被钉扎而不能 自由移动。在外加振 动
E q u i p me n t Ma n u f a c t u r i n g Te c h n o l o g y No . 2, 2 0 1 4
振动 时效机理研 究及 其工艺参数选择
关六 三 ’ 。 程 卫 z
( 1 . 黄河水利职业职业技术学院, 河南 开封 4 7 5 0 0 4 ; 2 . 广西大学 , 广西 南宁 5 3 0 0 0 4 )
收稿 日期 : 2 0 1 3 — 1 2 — 0 3 作者简 介: 关六 三( 1 9 6 3 一) , 男, 河南人 , 副教授 , 研究 方 向: 计算机 应用及 机械制 造 ; 程 卫( 1 9 8 6 一) , 男, 浙江 人 , 研 究生 , 研究 方向 : 机械设计 。
2 0
布 和 峰值 过 高 造成 工 件 抗 变形 能 力下 降 、疲 劳极 限 部 晶格 畸变 的一种 体现 形 式 。
降低 、 以及抗拉性能下降等 。 为了消除残余应力, 传统
工件 中的残余应力不是恒值 ,它们可 以随时间
工艺 中通 常采用热 时效 的方法来加以解决 ,但这种 及 因各种外界作用而变化 。 残余应力的消除或调整 , 方法的缺点也非常显著 。近年来 , 在日 益完善 的振动 有靠热作用的方法也有靠机械作用的方法 。热方 法 理论和测试技术的影 响下 ,振动时效正逐步代替热 即普通所说的退火 。机械方法是靠施加静应力或动 时效成为消除残余应力使用最 多的一种方法 。振动 应力 , 使残余应力减小或再分布。当施加的外力和残 时效作为一种 比较新颖的时效工艺, 其优点是非常明 余应力 叠加超过材 料 的弹性极 限并引起 塑性变 形

退火消除内应力的机理

退火消除内应力的机理引言:退火是一种常见的金属加工工艺,通过加热和冷却过程中的晶格再排列,来消除材料内部的应力。

本文将详细介绍退火消除内应力的机理,以及其在金属加工中的重要性。

一、退火的定义和作用退火是指将材料加热到一定温度,保持一定时间后再缓慢冷却的过程。

通过这种方法,可以使材料内部的应力得到释放和消除,从而提高材料的机械性能和稳定性。

二、退火的机理1. 晶体结构的再排列退火过程中,材料的晶体结构会发生再排列。

晶体内部的位错和缺陷会通过原子的扩散运动,重新分布和排列,从而减少晶界和位错的密度,进而降低材料的内部应力。

2. 晶粒长大和细化退火过程中,晶粒的尺寸会发生变化。

在加热过程中,原子的扩散速度增加,晶粒会长大;而在冷却过程中,原子的扩散速度减慢,晶粒会细化。

晶粒的长大和细化可以改变材料的内部应力分布,进而减小应力集中区域,提高材料的抗应力集中能力。

3. 残余应力的释放退火过程中,材料中的残余应力会逐渐释放。

在加热过程中,材料内部的应力会逐渐减小,达到平衡状态;在冷却过程中,由于晶体结构的再排列,材料的内部应力会进一步减小,直至消除。

三、退火对材料性能的影响1. 提高材料的塑性和韧性退火可以使材料的晶体结构更加均匀和稳定,减少内部应力和缺陷,从而提高材料的塑性和韧性。

在退火后的材料中,原子的扩散能力增强,晶体结构更加完善,有利于材料的变形和形变。

2. 改善材料的硬度和强度虽然退火可以提高材料的塑性和韧性,但同时也会降低材料的硬度和强度。

在退火过程中,晶界和位错的密度减小,晶粒尺寸增大,导致材料的强度降低。

因此,在金属加工过程中,需要根据实际需求来选择合适的退火工艺,以平衡材料的硬度和韧性。

3. 优化材料的微观组织和性能退火可以优化材料的微观组织和性能。

通过合理的退火工艺,可以调控材料的晶粒尺寸、晶界特征和位错密度,从而改善材料的力学性能、耐腐蚀性能和热稳定性。

四、退火在金属加工中的应用退火是金属加工工艺中不可或缺的环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

残余应力消除机理
一、残余应力的定义和产生原因
残余应力是指材料在加工或应力加载后,未能完全消除的应力。

其产生原因主要有热应力、冷却应力、机械应力等。

比如在金属加工过程中,由于塑性变形和相变引起的温度梯度,会导致残余应力的产生。

二、残余应力的危害和影响
残余应力对材料性能和使用寿命的影响是不容忽视的。

首先,残余应力可能导致材料的变形、破裂和失效。

其次,残余应力会降低材料的强度和韧性,影响其力学性能。

此外,残余应力还会影响材料的耐蚀性、疲劳寿命和尺寸稳定性。

三、残余应力消除的方法和机理
为了消除残余应力,可以采取以下几种方法:
1. 热处理:通过加热和冷却的方式,利用材料的热塑性变形特性,使残余应力得到释放和消除。

2. 机械加工:通过切削、打磨等机械加工方法,改变材料的形状和尺寸,达到消除残余应力的目的。

3. 冷却处理:通过控制冷却速率,使材料均匀冷却,避免产生温度梯度,从而减少残余应力的产生。

残余应力的消除机理主要有以下几种:
1. 塑性变形:材料在塑性变形过程中,原先存在的残余应力会得到部分或完全释放。

2. 相变:材料的相变过程中,晶体结构的变化会引起残余应力的消除。

3. 热稳定:在高温下,材料的晶体结构会重新排列,从而消除残余应力。

4. 弹性回复:材料在受到外力作用后,会发生弹性变形,在外力去除后,材料会部分或完全恢复原状,从而消除残余应力。

四、残余应力消除的应用领域和意义
残余应力消除技术在工程领域有着广泛的应用。

比如在航空航天、汽车制造、电子设备等领域,对材料的残余应力进行有效的消除,可以提高产品的性能和可靠性,减少材料失效的风险。

此外,残余应力消除还可以提高材料的加工性能,减少加工工艺中的变形和破损情况。

总结起来,残余应力消除是一项重要的材料工程技术,对于提高材料的性能和可靠性具有重要意义。

通过合理的方法和机理,可以有效地消除残余应力,保证材料的稳定性和可靠性,提高产品的质量和寿命。

相关文档
最新文档