无砟轨道的施工技术论文
高铁无砟轨道施工技术研究

高铁无砟轨道施工技术研究随着中国高铁建设的不断发展,高铁无砟轨道施工技术成为高铁建设中不可或缺的一部分。
无砟轨道是指在地基上采用直接安装或嵌入式轨道的一种新型轨道结构,不需要传统的石块基础支撑,因此具有施工周期短、投资少、运营成本低、运营安全性高等优势。
本文将从高铁无砟轨道的定义、特点、施工技术以及发展趋势等方面对该技术进行深入研究。
一、高铁无砟轨道的定义与特点高铁无砟轨道是指在地基上不需要铺设传统的石块基础支撑,直接安装或嵌入式轨道的一种新型轨道结构。
这种轨道结构因其特殊的设计和施工方式,具有以下显著特点:1. 施工周期短:相比传统的石块基础支撑,无砟轨道采用直接安装或嵌入式轨道,施工过程简化,施工周期短,能够大大缩短工程周期,提高施工效率。
2. 投资少:由于无砟轨道不需要大量的石块基础支撑和相关工程设施,所以节约了大量的建设成本,使得投资减少,经济效益明显。
3. 运营成本低:无砟轨道采用特殊材料和设计,轨道结构稳定,基本不需要进行维护,运营成本大大降低。
4. 运营安全性高:无砟轨道的耐久性和稳定性较高,能够满足高速列车的需求,保障了高铁运营的安全性。
二、高铁无砟轨道的施工技术1. 路基处理无砟轨道的施工首先需要对路基进行处理,确保路基的平整度和稳定性。
在路基处理过程中,需要根据设计要求对路基进行挖填、夯实和边坡修整等工程,保证路基的质量符合无砟轨道的施工要求。
2. 轨道定位在路基处理完成后,需要对轨道进行定位,确定轨道的位置和参数。
特别是在高速列车运行的情况下,轨道的定位至关重要,需要严格按照设计要求进行定位,确保轨道的平直度和竖曲度满足高铁线路的要求。
3. 铺轨铺轨是无砟轨道施工的关键环节,需要通过专业的设备和技术对轨道进行铺设。
铺轨过程中需要控制轨道的弯曲度、纵向和横向坡度等参数,确保轨道的平整度和曲线半径符合设计要求。
4. 螺栓固定轨道铺设完成后,需要对轨道进行螺栓固定,确保轨道的连接紧密和稳固。
新型装配式无砟轨道施工技术在城市轨道交通建设应用探析

新型装配式无砟轨道施工技术在城市轨道交通建设应用探析摘要:施工管理是确保其工程质量的关键,但诸多建设工程在施工期间,具有施工周期长、施工规模大、施工环节多的特点,因此工程建设的内容也比较复杂。
本文主要对新型装配式无砟轨道施工技术在城市轨道交通建设应用进行探析。
关键词:装配式;无砟轨道;施工技术引言近年来,中国高速铁路发展迅速,无砟轨道因稳定性高、耐久性好及便于维护等优点逐渐成为高速铁路所采用的主要结构形式。
路基是无砟轨道的基础,其稳定性对列车运行安全至关重要,工程界对其不均匀沉降引起的轨道变形问题尤为关注。
路基除受自重、填料不均匀的影响外,还受列车荷载、水侵蚀等外界因素的影响,其变形将不断累积,从而产生不均匀沉降。
当路基发生不均匀沉降时,轨道结构平顺性受到影响,甚至出现空吊现象,列车通过轨道不平顺区域,会引起沿轨道纵向不一致的轮轨作用力,影响乘客舒适度,轨道与路基之间的脱空区域受列车荷载反复作用,会造成周期性的“拍打”现象。
路基不均匀沉降导致的轨道不平顺以及轨道与路基之间形成局部脱空的刚度不平顺,使轮轨力加剧,严重时会增大列车脱轨系数,最终影响列车运营安全。
1 新型装配式无砟轨道施工技术原理新型装配式无砟轨道道床主要由预制轨道板、自密实混凝土填充层和回填层构成。
回填层的主要材质是钢筋混凝土,利用预埋构件等方式连接上方限位部件。
回填层主要用于实现轨道的高低曲度找平。
如果轨道有附加的减振要求,应在增加轨道板厚度、参振质量及浇筑连接轨道板长度的同时,在填充层与回填层中间加装聚氨酯或橡胶材质的减振材料垫层。
2 新型装配式无砟轨道施工技术力学性能分析2.1桥梁竖向变形要求为了保证无砟轨道具有好的线形条件和列车行驶时的舒适性,要求大跨度桥具有较大的竖向刚度。
目前国内外对于市域铁路大跨度桥竖向刚度的限值没有明确的标准。
我国高速铁路有砟轨道斜拉桥的挠跨比一般不大于 1/700;根据赣江特大桥和裕溪河特大桥研究成果,高速铁路无砟轨道大跨桥挠跨比按不大于1/800 控制。
高铁无砟轨道施工技术研究

高铁无砟轨道施工技术研究随着中国高铁的迅猛发展,高铁无砟轨道施工技术也得到了越来越多的关注和研究。
无砟轨道是指高速铁路轨道上的道床不采用传统的石子碎石垫层,而是直接将轨道直接铺设在特定的基础上。
这种施工技术不仅能够提高铁路的稳定性和安全性,同时也能够降低施工成本和维护成本。
本文将对高铁无砟轨道施工技术进行深入探讨,为相关研究和实践提供参考。
一、高铁无砟轨道施工技术的发展历程无砟轨道的概念最早可以追溯到20世纪60年代,当时的法国TGV高速列车就采用了无砟轨道技术。
随着高铁技术的不断发展,无砟轨道在国际上得到了越来越多的应用和推广。
中国作为世界上高铁建设最为迅猛的国家之一,也开始加大对无砟轨道施工技术的研究和推广。
在中国高铁无砟轨道施工技术的发展过程中,先后涌现出了一系列关键技术和创新成果。
最具代表性的成果之一就是高铁无砟轨道的动态压实技术。
该技术采用了先进的动态压实设备和压实方法,能够在短时间内完成对轨道基础的良好压实,从而大大提高了轨道的稳定性和承载能力。
无砟轨道还应用了先进的轨道板接触网技术、长期应力监测技术等,为高铁的安全运行提供了更为可靠的保障。
采用无砟轨道施工技术具有多种优势,这也是其得到广泛应用和推广的重要原因之一。
无砟轨道能够大大降低铺轨用碎石数量,减少了施工成本,并且极大程度上减少了列车行驶时的噪音和振动,提升了乘车的舒适性。
无砟轨道厚度较薄,能够减小路基填挖量,降低了对环境的影响,有助于生态环保。
无砟轨道能够提高路基稳定性和承载能力,减少了路基变形和维护频次,降低了对维护人力物力的需求。
在新一代高铁建设和运营中,高铁无砟轨道施工技术也表现出了更为显著的优势。
在技术创新方面,无砟轨道结构设计更加精细,采用了更为先进的建材和施工工艺,能够更好地适应高速列车的运行需求。
在运维管理方面,无砟轨道更容易进行巡检和维护,能够更快速地发现问题并进行处理,提高了铁路的安全性和稳定性。
高铁无砟轨道施工技术的应用不仅有利于提高高铁的运行效率和安全性,还有利于减少对环境的影响,为高铁的可持续发展提供了更为坚实的基础。
高铁无砟轨道施工技术研究

高铁无砟轨道施工技术研究随着我国铁路建设的不断发展与完善,高铁无砟轨道成为了现代化铁路建设的重要组成部分。
高铁无砟轨道是一种新型的轨道结构形式,它主要采用碎石混凝土作为轨道基床,利用机具加工形成轨道曲线和直线,使轨道呈现出较为平滑的弧形,利于列车的安全和稳定行驶。
本文就高铁无砟轨道的施工技术进行了结论性总结,旨在对铁路工程的发展做出一定的贡献。
高铁无砟轨道的施工需要经过几个基本的步骤,包括轨道定线、基床施工、轨枕安装、轨道焊接安装等。
首先,轨道定线是一个非常关键的环节,它决定了未来轨道行驶的方向和轨道应有的高低起伏。
在轨道定线前,需要对地势进行初步勘测,确定走行线路。
然后,可以根据勘测的地形要求和轨道设计要求进行定位,使用高精度的仪器进行轨道线路的测量和绘制,确保轨道施工的精度和质量。
其次,在轨道基床施工环节,需要使用大型挖掘机进行基床的开挖,然后使用土方机械将土方进行平整、夯实等处理,使得轨道基床有足够的坚固性和平整度,再进行压实、碾压等处理,以确保轨道基床的强度和平整度达到标准要求。
第三,轨枕安装是另一个重要的施工环节,轨枕的稳定支撑是保证轨道质量的关键,需要在轨道基床上安装铁路轨枕,以确保轨道内更好地承载列车的重量。
在轨枕的选择方面,由于高速铁路轨枕的承载能力要求更高,一般采用钢筋混凝土轨枕。
同时,轨枕的间距、数量和底部垫片的选择等都需要遵循一定的设计要求。
最后,轨道的焊接安装环节是高铁无砟轨道施工的最后一个环节,在轨枕的安装后,可以根据设计要求进行轨道的校正和固定,然后焊接轨段,形成完整的轨道线路。
在轨道的焊接安装中,需要使用轨道焊接机进行轨道连接,焊接完毕后,需要进行轨道的旋转校验和磨光处理,达到高速行驶的要求。
总之,高铁无砟轨道的施工技术涉及到地形勘测、轨道定线、基床施工、轨枕安装、轨道焊接安装等多个环节,需要使用大型机械设备和高精度的测量仪器,以确保施工效果的精准和稳定。
同时,高铁无砟轨道的施工历程是一个复杂的过程,需要进行细致的计划和安排,以确保轨道施工的顺利与高效。
高铁无砟轨道施工技术研究

高铁无砟轨道施工技术研究随着我国高速铁路建设的不断推进,无砟轨道也越来越受到广泛关注。
高速铁路无砟轨道是指将轨道固定在特殊混凝土基座上,不需要石碴等铺垫,保证了铁路的运行平稳安全,大大提高了旅客乘坐的舒适度。
本文主要就高速铁路无砟轨道的施工技术进行探讨。
一、无砟轨道施工原理高速铁路无砟轨道采用特殊混凝土作为基座材料,采用螺旋钢筋及预应力钢筋进行加固,将钢轨和混凝土基础固定在一起,构成无砟轨道结构体系。
无砟轨道不需要石碴等铺垫,也不需要进行机械压实,能够保证铁路的运行平稳,不会产生随机振动,同时减小了噪声污染。
在无砟轨道的施工中,首先需要进行基座施工,然后进行轨道设备的安装,最后进行线路的调整。
施工工作需要考虑无砟轨道的可靠性、稳定性和密封性等,既要满足机车的高速行驶要求,又要考虑列车的安全。
1、基座施工无砟轨道的基座采用混凝土材料,需要先进行基座的施工。
基座施工分为浇注和拼装两种方法,具体施工方式要根据实际情况进行选择。
浇注施工可以采取模板、钢模板和无模施工等方式,拼装式施工则较为灵活,可以满足不同需求。
2、轨道设备安装无砟轨道设备主要包括轨道线路、桥梁、钢轨等,需要进行设备的安装。
轨道线路主要包括轨道道床、轨道板、轨道防撞墙等部分。
桥梁、钢轨等部分的安装也需要特别注意。
3、线路调整线路调整主要是按照调整参数进行调整,可调节点应注明基本坐标或位置和调整大小和方向。
在调整线路时需要注意以下几个方面:(1)轴位调整。
轴位调整主要是保证轴向偏差小于要求,轨道中心线符合要求。
(2)路面水平调整。
路面水平调整强度水平要高于作业时轮轨压力。
(3)道岔、道岔区的调整。
需要其各项调整参数符合要求。
1、施工前需要进行充分的技术准备。
2、注意材料质量,选用合适的施工方法。
3、严格遵守安全规定,保证施工质量和施工安全。
4、施工时需要按照标准进行验收,保证无砟轨道的可靠性和稳定性。
总之,高速铁路无砟轨道的施工技术是目前研究的热点,对于提高高速铁路的服务水平和竞争力具有重要意义。
高速铁路无砟轨道智能化技术研究

高速铁路无砟轨道智能化技术研究摘要:本研究旨在探讨高速铁路无砟轨道智能化技术的研究和应用。
通过对该技术的介绍和分析,提出一系列管理措施和技术创新方向。
研究结果表明,高速铁路无砟轨道智能化技术的应用可以提高施工效率和质量,降低维护成本,推动相关领域的技术进步和创新。
因此,需进一步加强高速铁路无砟轨道智能化技术的研发和应用,为我国高速铁路事业实现可持续发展奠定坚实基础。
关键词:高速铁路;无砟轨道;智能化技术1前言随着全球经济的快速发展和城市化进程的加速,高速铁路作为一种高效、安全、环保的交通方式,在全球范围内得到了广泛的应用和推广。
作为高速铁路建设的关键技术,无砟轨道智能化技术的研究和应用对于提高高速铁路的运营效率、保障行车安全、降低维护成本等方面具有重要意义。
通过研究,希望能够为我国高速铁路事业的发展提供一定保障。
2高速铁路无砟轨道的基本概述高速铁路无砟轨道是一种新型的轨道结构,相较于传统有砟轨道具有更高的稳定性和使用寿命。
主要特点是采用混凝土或沥青混凝土等无机材料取代传统的道砟,从而提高轨道的整体性和稳定性,减少维护修复成本。
高速铁路无砟轨道还具平顺性与舒适性,能够保证列车在高速行驶时的稳定性和安全性,以便适应各种复杂的环境和气候条件,不易受到自然灾害等外部因素的影响。
在施工过程中,高速铁路无砟轨道采用先进测量和控制技术,能够确保轨道的几何尺寸和位置精度达到毫米级别。
此外,无砟轨道的结构设计也充分考虑了列车的动力学性能和轨道的耐久性,以确保其长期稳定地运行。
3高速铁路无砟轨道智能化技术的运用3.1案例概况山东潍坊至烟台铁路站前工程WYTLSG-2标段CRTSⅢ型板式无砟道床施工是一个重要的工程项目。
该工程旨在建设一条高效、安全、舒适的高速铁路,以满足日益增长的交通需求。
山东潍坊至烟台铁路线路全长237.3km、设计时速为350km/h。
于2020年10月开工建设,预计2024年投入运营,起自山东潍坊昌邑市,自昌邑站与潍荣高铁潍莱段接轨,经青岛平度市,烟台莱州市、招远市、龙口市、蓬莱区、经济技术开发区、福山区和芝罘区,至烟台市莱山区,通过青烟直通线引入既有芝罘站和烟台南站。
高速铁路无砟轨道施工技术探究
高速铁路无砟轨道施工技术探究摘要无砟轨道是我国铁路建设发展过程中出现的一项新技术。
与传统轨道相比,无砟轨道具有可靠性高、稳定性好等优点。
突破了传统轨道对列车速度的限制是我国高速铁路安全运营的重要保障,由于我国无砟轨道技术起步较晚,仍处于发展和经验积累过程中。
因此,当前加强无砟轨道的研究,是保证我国铁路事业健康发展的重要环节。
关键词:高速铁路;无砟轨道;施工技术;探究引言就目前中国交通运输业的发展而言,随着社会经济的快速发展,交通运输业的发展也取得了很大的进步。
近年来,高速铁路以其高速、高舒适的优点在人们的日常生活中得到了广泛的应用。
现在它已经成为人们出行的主要选择方案之一。
由于高铁的建设质量直接关系到高铁的运营性能,因此加强高铁轨道的建设尤为重要。
但由于我国高速铁路无砟轨道施工技术起步较晚,施工技术应用积累的经验不够丰富,因此,在修建无碴轨道的过程中存在许多问题,这影响了高速铁路无砟轨道的施工质量,因此,我们必须尽快采取有效措施,充分了解无砟轨道施工技术的应用及相关知识,确保无砟轨道施工技术在施工过程中的合理应用,有效的提高施工质量。
所以,如何优化高铁有砟轨道施工技术的应用方法,加强无砟轨道施工技术的应用,已成为目前我国高铁建设领域相关人员的重点研究课题之一一、高速铁路无砟轨道施工技术概述无砟轨道是用水泥全覆盖的形式取代原来的碎石铺垫工作原理。
在许多情况下,轨道的路基是用砾石建造的。
无砟轨道的结构中,轨道的施工现场包括水和水泥材料。
无砟轨道本身的基本特点,要求施工规格精度高其误差单位精确到毫米,这是保证车辆稳定性的必要条件。
此外,使用无砟轨道可以有效地节约铁路的维护成本,减少环境污染,具有良好的耐久性,可以满足时速高达250km/h的列车的需要。
目前,在我国高速铁路建设中,路基中几乎没有石块和碎片,而是使用了定制板钢筋混凝土轨道。
为了实现轨道施工速度快、施工效率高的目的,保证列车投入使用时的稳定性,该轨道已成为高速铁路结构的必然选择。
铁路工程中无砟轨道施工技术研究
铁路工程中无砟轨道施工技术研究摘要:CRTSⅢ型板式无砟轨道具有整体稳定性好、结构耐久性强、施工造价低等特点,是高速铁路首选轨道形式之一。
进入21世纪以来,我国自主创新成果CRTSⅢ型板式无砟轨道的应用,促进了中国高铁走在世界前列。
CRTSⅢ型板式无砟轨道分为3个部分:上部由钢轨、弹性扣件、轨道板组成;中部由平面和限位槽四周的隔离垫层、自密实混凝土组成;下部由底座组成。
关键词:铁路工程;无砟轨道;施工技术引言在CRTSⅢ型板式无砟轨道施工过程中,确保轨道几何状态和道床实体质量是施工控制的重点和难点,特别是在高寒干旱地区尤为突出。
在无砟轨道施工过程中,通过多次的工艺性试验,对施工方法和工艺进行分析总结,最终确定轨道排架铺设及精调、混凝土浇筑、保温保湿养护关键技术措施的作业标准和控制要点。
在施工过程中严格按照施工方法和工艺流程执行,有效指导现场施工,提高了工作效率,保证了施工质量。
在线路交验和联调联试时均取得了良好效果,确保了线路开通运营安全性和舒适性,对今后类似工程具有一定的借鉴意义。
1.铁路工程中无砟轨道施工技术的发展现状目前国内外尚无大跨度悬索桥铺设无砟轨道的先例,为探索大跨度悬索桥铺设CRTSⅢ型板式无砟轨道的可行性,通过分析已建成的有砟轨道的梁体线形受荷载和自然环境影响的变化规律及梁体线形对轨道的影响,借鉴典型无砟轨道斜拉桥应用经验,从无砟轨道对梁体空间大变形的适应性、测量控制技术、成桥线形控制技术3个方面开展了可行性研究。
在空间大变形适应性研究方面,利用仿生学原理,提出对大跨度悬索桥铺设CRTSⅢ型板式无砟轨道进行“轨道-桥梁”一体化设计,以减小单元轨道板长度,强化单元轨道结构;提出增设辅助墩、边墩和辅助墩均增设纵向位移单向竖向支座,以控制梁端转角;选择下承式梁端钢轨伸缩装置,用以满足梁端部位钢轨伸缩变形。
在测量控制技术方面,提出了梁体在厂内“3+1”预拼装时,建立相对平面控制网,成桥后利用开口“连通器”原理快速建立相对高程控制网的思路,以促进制造精度提升、降低自然环境影响、提高大跨度悬索桥铺设CRTSⅢ型板式无砟轨道施工质量和精度。
无砟轨道施工技术
无砟轨道施工技术在铁路和城市轨道交通系统中,轨道施工是至关重要的一个环节。
传统的轨道施工常使用砟石作为铺轨的基础材料,但随着科技的进步和工程技术的发展,无砟轨道施工技术逐渐崭露头角。
本文将介绍无砟轨道施工技术的基本概念、优势和应用场景。
无砟轨道施工技术,顾名思义,即不使用砟石作为轨道基础的施工方法。
相比传统的有砟轨道,无砟轨道施工技术采用特殊的材料和工艺来支撑铁轨,在一定程度上提高了铁路线路的强度和稳定性。
这种施工方法通常适用于高速列车、城市轨道交通以及在地质条件较为复杂的区域。
无砟轨道施工技术的主要优势之一是减少了砟石的使用。
由于无砟轨道不需要使用大量的砟石作为铺轨的基础材料,可以降低施工成本。
此外,无砟轨道的施工速度也较快,可以缩短施工周期,提高工作效率。
无砟轨道的抗震性能也较好,能够增加铁轨的耐久性和使用寿命。
无砟轨道施工技术还具有较高的适应性和可塑性。
通过调整支撑材料的种类和厚度,可以根据地质条件的不同来灵活地设计铁路线路。
同时,无砟轨道技术也更具环保性,减少了对自然资源的损耗,有利于可持续发展。
无砟轨道施工技术的应用场景主要包括以下几个方面。
首先是高速列车。
在高速铁路上,列车的运行速度相对较快,需要一个稳定的轨道基础来保障运营安全。
无砟轨道能够提供较好的强度和稳定性,适用于高速列车的运行需求。
其次是城市轨道交通系统。
城市轨道交通通常需要在繁忙的城市区域内进行线路扩建或改造,无砟轨道的施工速度快、适应性强,能够更好地满足城市轨道交通的需求。
此外,在地质条件复杂的区域,如山区、沼泽地等,无砟轨道也能够发挥其独特的优势。
尽管无砟轨道施工技术在一些特定场景下具有明显的优势,但也面临一些挑战和限制。
首先是技术的成熟度和可靠性。
无砟轨道施工技术相对较新,需要进一步的实践和研究来完善和验证其可行性。
其次是成本问题。
与传统的有砟轨道相比,无砟轨道的施工成本较高,需要综合考虑经济效益和可行性。
另外,无砟轨道施工技术的推广和推动也需要政府的政策支持和资金投入。
客运专线无砟轨道施工技术研究
客运专线无砟轨道施工技术研究第1章绪论1.1 问题的提出现代高速铁路是以重型钢轨和混凝土枕为基础的有碴轨道结构,在列车速度达到250~300km/h的线路上能够确保行车的安全。
但这种有碴轨道在列车载荷反复作用下的不足之处是轨道残余变形积累很快,而且沿轨道纵向方向,其变形积累的分布也不均匀,从而导致轨道高低的不平顺,影响了旅客乘坐的舒适性;同时也增大了轨道养护维修的工作量,加大了铁路后期的经济投入,使铁路建设和运营的整体成本提高。
为了提高轨道在高速运行条件下的稳定性和耐久性,减少轨道后期维修,实现有效降低整体成本的目的,就必须改变轨下基础的结构形式,大力发展混凝土板式轨下基础。
因此采用无碴轨道结构是目前国内外高速铁路发展的方向。
秦沈客运专线作为国家跨世纪的重点建设项目是我国自行研究、设计、制造、建设的第一条时速200km/h运营线,是集新技术、新工艺、新材料、新设备于一体的高新技术的系统工程;是我国铁路步入高速化的起点及技术水平的标志性工程;同时它的建成也将为我国今后高速铁路的建设提供技术储备。
沙河和狗河特大桥上的长枕埋入式和板式无碴轨道不仅是秦沈客运专线的高速试验项目之一,也是我中铁十一局集团公司承担施工的B26-1标段的重难点工程。
由于时速200km/h以上的无碴轨道施工在我国尚无先例,因此开展对长枕埋入式和板式无碴轨道施工技术的研究将是保障无碴轨道设计平顺性的实现和秦沈客运专线无碴轨道综合试验成功的关键。
1.2 国内外现状日本、德国是铺设应用无碴轨道最多的国家。
秦沈客运专线应用的板式无碴轨道结构基本是仿效日本的板式(Slab)轨道结构(图1-1示),长枕埋入式无碴轨道结构则基本是从德国的早期Rheda型轨道结构(图1-2示)演变而来。
对无碴轨道的研究,日本和德国他们早期研究的出发点各有不同:日本的研究目标主要是少维修(省力化轨道);德国则注重于刚度一致的高平顺性轨道。
日本铁路是发展无碴轨道较早、较快的国家,早在1923年就铺设过混凝土整体道床,到了60年代中期,日本铁路成功地研制发展了板式无碴轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无砟轨道的施工技术论文
1水硬性混凝土支承层铺设
我们按照设计方案的配比进行水硬性混凝土的搅拌后混合均匀,之后
倾倒入运输车内。
对混凝土摊铺时,要沿着定位桩拉线,这样就可以
对摊铺机方向实现控制。
我们将摊铺机调整到合适的收集物料和投放
物料的速度以及碾压力,拉线检查支承层的顶面高程。
支承层水硬性
混凝土摊铺完毕后,占用半天时间对支承层表面用锯切出伸缩缝隙,
其中深度可达0.1m,间距可达5m。
与此同时对支承层边缘轮廓尺寸进
行修整。
最后将保湿棉垫覆盖在支撑层上,从而使在不受风吹和阳光
直射3天的前提下,混凝土的表面充分润湿。
2轨道安装定位
对于轨道安装定位,最开始要安装工具轨、铺设轨枕;对轨道进行定
位和调整,检查轨道电路的参数来判断性能,最后准确定位出轨道位置。
而且100m是一个施工单元。
一般使用散枕机协助安装工具轨轨枕
和铺设轨枕施工。
散枕机是一种特殊的挖掘机,就是安装专用的液压
轨枕夹钳,使得轨枕的吊装和轨枕的摆放到位。
然后利用专用的支撑
架和双向调整轴架完成轨道调整定位施工。
双向调整轴架基座应该安
装在钢轨底面,每间距3根轨对称设置,中间间隔2.5m在轨道面高程
测量方面,一般水准仪是必要的工具,加之借助竖直调整装置,就可
以将标高控制在合理范围之内。
将双向调整轴架的竖直螺栓强行固定,使得端头和垫板顶死。
使用扳手旋转传力杆将传力杆逐步调整到中线
位置,差值大致为5mm,同时采用全站仪进行复核。
复核合格之后,对预埋位置进行钻孔和安装定位支座。
最后,在道床板混凝土浇筑前的
一个半小时和二个小时之前进行固定规定精确调整,根据轨检小车输
出的检测数据确定检测断面处轨道精确调整的量值。
根据细调定位支
座位置对检测断面划分,利用全站仪和轨检小车逐步检测每一个断面
路线的轨向、高低和水平等中线位置和几何位形。
使用扳手对竖直螺
栓丝杆进行微调,同时对几何位形调整,达到设计的标准。
在细调定
位支座上安装螺旋调整器,对调整手柄进行旋转,将调整刻度调到调
整量值。
在细调定位支座内插入U形卡板然后卡紧,焊死轨枕和卡板
的钢筋桁架,这样轨道就可以被固定了。
3道床板的混凝土浇筑
入模处理混凝土之后,马上将准备好的振动棒插入混凝土,并对混凝
土进行一定速度和频率的振捣,同时针对轨枕底部的混凝土加剧振捣,以在较大程度上保证混凝土具有较好的密实性。
这里需要说明的是,
在进行捣固的时候还应避免振动棒触碰到附近的双向调整轴架的竖直
螺栓或其它固定装置。
针对道床板混凝土的表面而言,应采用平板式
的振动器,并于振平之后利用人工抹平,同时,还必须保证道床板的
相关设计达到相关规定或标准。
随后,道床板浇筑混凝土,过来两到
五个小时之后,即可松开双向调整轴架的竖直螺栓。
最后,一旦混凝
土的灌注完成,需要立即有效覆盖其表面,等到混凝土最后凝结后,
即应该喷洒一定标准的养护剂,且应一直持续半个月,以避免其出现
裂痕。
4结语
无砟轨道作为高速铁路的关键性组成部分之一,其平顺性和良好的综
合质量对于高速铁路的运行及其稳定性都至关重要,同时,由上述分
析可以看出,无砟轨道是铁路交通运输领域的重要发展方向,因此,
为了促进铁路行业持续的进步,施工单位与相关技术人员必须注重针
对无砟轨道施工技术的学习和研究,熟练掌握其施工过程中的关键环
节和核心技术,进而保证其施工效果。
无砟轨道的施工技术论文。