新王牌九年级数学秋季班入学测试卷
初中九年级第二学期数学(下)开学收心试卷(解析版)

九年级(下)开学数学试卷一、选择题:(共10小题,每小题3分,共30分)1.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1) C.(1,2) D.(﹣1,﹣2)2.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm3.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心4.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°5.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin ∠OBD=()A.B.C.D.6.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.7.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.8.已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()A.a+b B.a﹣2b C.a﹣b D.3a9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:2510.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE 分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个 C.3 个 D.4个二、填空题(共8小题,每小题3分,共24分)11.“打开电视,正在播放《新闻联播》”是事件.12.如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为.13.抛物线y=2x2﹣2x+1与坐标轴的交点个数是.14.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是.15.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为.16.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.17.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=.18.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共10小题,共96分)19.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.20.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)21.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)并说明理由.22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.23.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<7 2二7≤m<8 7三8≤m<9 a四9≤m≤10 2(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).24.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC 分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.25.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.26.九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x 为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件)198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.27.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.28.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.九年级(下)开学数学试卷参考答案与试题解析一、选择题:(共10小题,每小题3分,共30分)1.抛物线y=(x+1)2+2的顶点()A.(﹣1,2)B.(2,1) C.(1,2) D.(﹣1,﹣2)【考点】二次函数的性质.【分析】由抛物线解析式可求得其顶点坐标.【解答】解:∵y=(x+1)2+2,∴抛物线顶点坐标为(﹣1,2),故选A.2.如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是()A.40cm B.50cm C.60cm D.80cm【考点】圆锥的计算.【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【解答】解:∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故选A.3.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心【考点】三角形的内切圆与内心;三角形的外接圆与外心.【分析】根据网格得出OA=OB=OC,进而判断即可.【解答】解:由图中可得:OA=OB=OC=,所以点O在△ABC的外心上,故选B4.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°【考点】切线的性质;圆周角定理.【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【解答】解:连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°.故选B.5.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A.B.C.D.【考点】锐角三角函数的定义.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.6.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:根据题意可得:口袋里共有12只球,其中白球2只,红球6只,黑球4只,故从袋中取出一个球是黑球的概率:P(黑球)==,故选:C.7.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD 的余弦值是()A.B.C.D.【考点】解直角三角形.【分析】设BC=x,由含30°角的直角三角形的性质得出AC=2BC=2x,求出AB=BC= x,根据题意得出AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,由等腰三角形的性质得出AM=AD=x,在Rt△AEM中,由三角函数的定义即可得出结果.【解答】解:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根据题意得:AD=BC=x,AE=DE=AB=x,作EM⊥AD于M,则AM=AD=x,在Rt△AEM中,cos∠EAD===;故选:B.8.已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()A.a+b B.a﹣2b C.a﹣b D.3a【考点】二次函数图象与系数的关系.【分析】观察函数图象找出“a>0,c=0,﹣2a<b<0”,由此即可得出|a﹣b+c|=a﹣b,|2a+b|=2a+b,根据整式的加减法运算即可得出结论.【解答】解:观察函数图象,发现:图象过原点,c=0;抛物线开口向上,a>0;抛物线的对称轴0<﹣<1,﹣2a<b<0.∴|a﹣b+c|=a﹣b,|2a+b|=2a+b,∴|a﹣b+c|+|2a+b|=a﹣b+2a+b=3a.故选D.9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3 B.1:4 C.1:5 D.1:25【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到=,==,结合图形得到=,得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,∴S△BDE与S△CDE的比是1:4,故选:B.10.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2 个 C.3 个 D.4个【考点】相似三角形的判定与性质;全等三角形的判定与性质.【分析】由直角三角形斜边上的中线性质得出FD=AB,证明△ABE是等腰直角三角形,得出AE=BE,证出FE=AB,延长FD=FE,①正确;证出∠ABC=∠C,得出AB=AC,由等腰三角形的性质得出BC=2CD,∠BAD=∠CAD=∠CBE,由ASA证明△AEH≌△BEC,得出AH=BC=2CD,②正确;证明△ABD~△BCE,得出=,即BC•AD=AB•BE,再由等腰直角三角形的性质和三角形的面积得出BC•AD=AE2;③正确;2-1-c-n-j-y由F是AB的中点,BD=CD,得出S△ABC=2S△ABD=4S△ADF.④正确;即可得出结论.【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S△ABC=2S△ABD=4S△ADF.④正确;故选:D.二、填空题(共8小题,每小题3分,共24分)11.“打开电视,正在播放《新闻联播》”是随机事件.【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“打开电视,正在播放《新闻联播》”是随机事件,故答案为:随机.12.如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为2.【考点】反比例函数系数k的几何意义.【分析】根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.即可求解.【解答】解:△ABO的面积是:×|﹣4|=2.故答案是:2.13.抛物线y=2x2﹣2x+1与坐标轴的交点个数是2.【考点】抛物线与x轴的交点.【分析】当x=0时,求出与y轴的纵坐标;当y=0时,求出关于x的一元二次方程2x2﹣2x+1的根的判别式的符号,从而确定该方程的根的个数,即抛物线y=2x2﹣2x+1与x轴的交点个数.【解答】解:当x=0时,y=1,则与y轴的交点坐标为(0,1),当y=0时,2x2﹣2x+1=0,△=(2)2﹣4×1×2=0,所以,该方程有两个相等解,即抛物线y=2x2﹣2x+1与x轴有一个点.综上所述,抛物线y=2x2﹣2x+1与坐标轴的交点个数是2个.故答案为:2.14.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是20°.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=40°,再由圆周角定理即可得出结论.【解答】解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故答案为:20°.15.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC:S△A′B′C′=25:9,故答案为:25:9.16.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25.【考点】扇形面积的计算.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意=CD+BC,由此即可解决问题.【解答】解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故答案为25.17.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2=4:9.【考点】正方形的性质.【分析】设大正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设大正方形的边长为x,根据图形可得:∵=,∴=,∴=,∴S1=S正方形ABCD,∴S1=x2,∵=,∴=,∴S2=S正方形ABCD,∴S2=x2,∴S1:S2=x2:x2=4:9.故答案是:4:9.18.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.【考点】反比例函数系数k的几何意义.【分析】过点B作直线AC的垂线交直线AC于点F,由△BCE的面积是△ADE的面积的2倍以及E是AB的中点即可得出S△ABC=2S△ABD,结合CD=k即可得出点A、B的坐标,再根据AB=2AC、AF=AC+BD即可求出AB、AF的长度,根据勾股定理即可算出k的值,此题得解.【解答】解:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(﹣,﹣),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k===.故答案为:.三、解答题(共10小题,共96分)19.计算:(﹣1)2016+2sin60°﹣|﹣|+π0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方和乘法,然后从左向右依次计算,求出算式(﹣1)2016+2sin60°﹣|﹣|+π0的值是多少即可.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=220.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】Rt△ADB中用AB表示出BD、Rt△ACB中用AB表示出BC,根据CD=BC﹣BD 可得关于AB 的方程,解方程可得.【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.21.如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)并说明理由.【考点】作图—相似变换.【分析】直接利用过直线外一点作已知直线的垂线作法得出AD,再利用相似三角形的判定方法得出答案.【解答】解:如图,AD为所作.理由:∵AD⊥BC,∴∠B+∠BAD=90°,∵∠BAC=90°,∴∠BAD+∠DAC=90°,∴∠B=∠DAC,又∵∠ADB=∠ADC,∴△ABD∽△CAD.22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.【考点】作图﹣位似变换;作图﹣平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).23.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<7 2二7≤m<8 7三8≤m<9 a四9≤m≤10 2(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=162°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:=,即第一组至少有1名选手被选中的概率是.24.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC 分别交于点E、F,且∠ACB=∠DCE.www-2-1-cnjy-com(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【考点】圆的综合题.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.…理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…25.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.26.九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x 为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元)时间x(天) 1 30 60 90每天销售量p(件)198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.【考点】二次函数的应用;一元一次不等式的应用.【分析】(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50≤x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50≤x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k≠0),∵y=kx+b经过点(0,40)、(50,90),∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50≤x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由数据可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m≠0),∵p=mx+n过点(60,80)、(30,140),∴,解得:,∴p=﹣2x+200(0≤x≤90,且x为整数),当1≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;当50≤x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.(2)当1≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,∵a=﹣2<0且1≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50≤x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.(3)当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21(天);当50≤x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50≤x≤53,∵x为整数,∴50≤x≤53,53﹣50+1=4(天).综上可知:21+4﹣1=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于5600元.27.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)利用正方形的性质和勾股定理计算即可;(2)先判断出EO为△AFC的中位线,再由EO∥BC得出,进而利用直角三角形得出CM=EM,再判断出△CBN∽△COM得出比例式,进而得出CN=CM,即可得出结论.2·1·c·n·j·y【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=2EM理由:∵四边形ABCD是正方形,∴AC⊥BD,OA=OC∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,AE=FE∴EO为△AFC的中位线∴EO∥BC∴∴在Rt△AEN中,OA=OC∴EO=OC=AC,∴CM=EM∵AF平分∠ACF,∴∠OCM=∠BCN,∵∠NBC=∠COM=90°,∴△CBN∽△COM,∴,∴CN=CM,即CN=2EM.28.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=﹣6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=yF﹣yP=3,CF=xF﹣xC=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).中学九年级(下)收心数学试卷一、选择题(本大题共10小题,共40.0分)1.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=62.抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(﹣4,3)B.(﹣4,﹣3) C.(3,﹣4)D.(﹣3,﹣4)3.如图;把直角三角形ABC绕直角顶点顺时针方向旋转90°后到达△A′B′C,延长AB交A′B′于点D,则∠ADA′的度数是()A.30°B.60°C.75°D.90°4.如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是()A.30°B.45°C.60°D.75°5.下列事件(1)打开电视机,正在播放新闻;(2)父亲的年龄比他儿子年龄大;(3)下个星期天会下雨;(4)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(5)一个实数的平方是正数(6)若a、b异号,则a+b<0.属于确定事件的有()个.A.1 B.2 C.3 D.46.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限7.如图,△ABC中,DE∥BC,EF∥AB,则图中相似三角形的对数是()A.1对B.2对C.3对D.4对8.在Rt△ABC中,各边都扩大3倍,则角A的正弦值()A.扩大3倍 B.缩小3倍 C.不变 D.不能确定9.下列几何体中,哪一个几何体的三视图完全相同()A.B.C.D.10.如图中几何体的俯视图是()A.B.C.D.二、填空题(本大题共5小题,共20.0分)11.如图,△ABC中,AB=AC,将△ABC绕点A逆时针旋转60°后得到△ADE,若AB=1,则CE的长为.12.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.13.有5张纸签,分别标有数字1,1,2,2,3从中随机抽出一张,则抽出标有数字为奇数的概率为14.如果点(n,﹣2n)在双曲线上,那么双曲线在象限.15.在△ABC中,∠C=90°,AB=13,AC=5,那么∠A的余弦值是.三、计算题(本大题共1小题,共10.0分)16.解方程:(1)x2﹣2x﹣1=0(用配方法);(2)x(2x﹣6)=x﹣3.四、解答题(本大题共3小题,共30.0分)17.如图,已知二次函数y=﹣x2+bx﹣6的图象与x轴交于一点A(2,0),与y轴交于点B,对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.18.如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.19.如图,在△ABC中,已知AB=AC,D、E、B、C在同一条直线上,且AB2=BD•CE,求证:△ABD∽△ECA.中学九年级(下)收心数学试卷参考答案与试题解析一、选择题(本大题共10小题,共40.0分)1.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6 B.b=﹣1,c=﹣6 C.b=5,c=﹣6 D.b=﹣1,c=6【考点】根与系数的关系.【分析】根据根与系数的关系得到2+(﹣3)=﹣b,2×(﹣3)=c,然后可分别计算出b、c的值.【解答】解:根据题意得2+(﹣3)=﹣b,2×(﹣3)=c,解得b=1,c=﹣6.故选A.2.抛物线y=﹣2(x+3)2﹣4的顶点坐标是()A.(﹣4,3)B.(﹣4,﹣3) C.(3,﹣4)D.(﹣3,﹣4)【考点】二次函数的性质.【分析】直接根据顶点式的特点写出顶点坐标.【解答】解:因为y=﹣2(x+3)2﹣4是抛物线的顶点式,根据顶点式的坐标特点,顶点坐标为(﹣3,﹣4).故选D.3.如图;把直角三角形ABC绕直角顶点顺时针方向旋转90°后到达△A′B′C,延长AB交A′B′于点D,则∠ADA′的度数是()2·1·c·n·j·yA.30°B.60°C.75°D.90°【考点】旋转的性质.【分析】根据旋转的性质得到∠A′=∠A,利用对顶角相等得∠A′BD=∠ABC,然后根据三角形内角和定理即可得到∠ADA′=∠C=90°.2-1-c-n-j-y【解答】解:∵直角三角形ABC绕直角顶点顺时针方向旋转90°后到达△A′B′C,∴∠A′=∠A,∵∠A′BD=∠ABC,∴∠ADA′=∠C=90°.故选D.4.如图,⊙O的直径AB=2,点C在⊙O上,弦AC=1,则∠D的度数是()A.30°B.45°C.60°D.75°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ACB的度数,再由AC=1,AB=2得出∠ABC=30°,故可得出∠A的度数,根据圆周角定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°.∵AB=2,AC=1,∴∠ABC=30°,∴∠A=90°﹣30°=60°,∴∠D=∠A=60°.故选C.5.下列事件(1)打开电视机,正在播放新闻;(2)父亲的年龄比他儿子年龄大;(3)下个星期天会下雨;(4)抛掷两枚质地均匀的骰子,向上一面的点数之和是1;(5)一个实数的平方是正数(6)若a、b异号,则a+b<0.属于确定事件的有()个.A.1 B.2 C.3 D.4【考点】随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:(1)打开电视机,正在播放新闻是随机事件;(2)父亲的年龄比他儿子年龄大是必然事件;(3)下个星期天会下雨是随机事件;。
初中数学九年级上数学入学测试卷

(3,4),D 是 OA 的中点,点 E 在 AB 上,当△CDE 的周长最小时,点 E 的坐标
为
.
16.(3.00 分)如图,在直角坐标系 xOy 中,A(﹣4,0),B(0,2),连接 AB
并延长到 C,连结 CO,若△COB∽△CAO,则点 C 的坐标为
.
第 3 页(共 27 页)
三、解答题(17 题 6 分;18 题 7 分;19 题 6 分;20 题 7 分;21 题 7 分; 22 题 9 分;23 题 10 分,共计 52 分) 17.(6.00 分)先化简,后求值: + ÷ ,其中 a= . 18.(7.00 分)已知:如图,M 为平行四边形 ABCD 边 AD 的中点,且 MB=MC.求 证:四边形 ABCD 是矩形.
A.1 B.2 C.3 D.4
二、填空题(每小题 3 分,共 12 分)
13.(3.00 分)分解因式:a2b﹣4ab2+4b3=
.
14.(3.00 分)如图,在正方形 ABCD 的外侧,作等边△ADE,则∠BED 的度数
是
.
15.(3.00 分)矩形 OABC 在平面直角坐标系中的位置如图所示,点 B 的坐标为
第 10 页(共 27 页)
故选:C. 【点评】此题考查了相似三角形的判定: ①有两个对应角相等的三角形相似; ②有两个对应边的比相等,且其夹角相等,则两个三角形相似; ③三组对应边的比相等,则两个三角形相似.
10.(3.00 分)如图,有一块锐角三角形材料,边 BC=120mm,高 AD=80mm,要 把它加工成正方形零件,使其一边在 BC 上,其余两个顶点分别在 AB、AC 上, 则这个正方形零件的边长为( )
位长度).
2024-2025学年河南省信阳市息县部分学校九年级(上)开学数学试卷(含解析)

2024-2025学年河南省信阳市息县部分学校九年级(上)开学数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程中,是一元二次方程的是( )−x=1 D. y−x2=4A. x2+2x=0B. x(x−3)=yC. 1x22.若y=(2−m)x m2−2是二次函数,则m的值为( )A. 2B. −2C. 2或−2D. 03.如图,在▱ABCD中,AC=4,BD=6.则BC边的长可能是( )A. 4B. 5C. 6D. 74.设一元二次方程x2−2x+3=0的两个实根为x1和x2,则x1x2=( )A. −2B. 2C. −3D. 35.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是( )A. 6B. 7C. 8D. 96.电影《流浪地球》一上映就获得追捧,第一天票房收入约8亿元,第三天票房收入达到了11.52亿元,设第一天到第三天票房收入平均每天增长的百分率为x,则可列方程( )A. 8(1+x)=11.52B. 8(1+2x)=11.52C. 8(1+x)2=11.52D. 8(1−x)2=11.527.对于函数y=6x2,下列说法正确的是( )A. 当x>0时,y随x的增大而减小B. 当x<0时,y随x的增大而减小C. y随x的增大而减小D. y随x的增大而增大8.关于x的一元二次方程x2−x=3的根的情况是( )4A. 没有实数根B. 有一个实数根C. 有两个相等的实数根D. 有两个不相等的实数根9.如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为( )A. 35×20−35x−20x+2x2=600B. 35×20−35x−2×20x=600C. (35−2x)(20−x)=600D. (35−x)(20−2x)=60010.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,关于x的不等式k2x>k1x+b的解集为( )A. x>−2B. x<3C. x<−2D. x>3二、填空题:本题共5小题,每小题3分,共15分。
人教版九年级数学入学考试试卷含答案

九年级(上)入学考试数学试卷(满分:100分 考试时间:90分钟)一、选择题:(每小题3分,共30分。
每小题只有一个选项符合题意,请将正确选项的序号1.下列判断中,你认为正确的是( ) A .0的倒数是0 B 2 C .π是有理数D 3±2.观察下列各式:①2a+b和a+b ;②)(5b a m -和b a +-;③)(3b a +和b a --;④22y x -和22y x +;其中有公因式的是( )A .①②B .②③C .③④ D·①④ 3.当x=2时,下列各式的值为0的是( ) A .2322+--x x x B .21-x C .942--x x D .12-+x x4.在△ABC 与△C B A '''中,有下列条件:①C B BC B A AB ''='';⑵C A ACC B BC ''=''③∠A =∠A ';④∠C =∠C '。
如果从中任取两个条件组成一组,那么能判断△ABC ∽△C B A '''的共有()组。
A 、1B 、2C 、3D 、45.一盒苹果分给几个学生,若每人分4个,则剩下3个,若每人分6个,则最后一个学生能得到的苹果不超过2个,则学生人数是( ) A 、3 B 、4 C 、5 D 、66、如图,是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是A .6米B .8米C .18米 D .24米 7.不等式组的解⎨⎧->2x 在数轴上表示正确的是( )8.解关于x 的方程116-=--x mx x 产生增根,则常数m 的值等于( ) A .2- B .3- C .1 D .5-DC A B9.2009年某市大约有50000名学生参加高考,为了考查他们的数学成绩考试情况,评卷人抽去了2000名学生的数学成绩进行统计,那么下列四个判断正确的是( )A .每名学生的成绩是个体B .50000名学生是总体C .2000名考生是总体的一个样本D .上述调查是普查10.如图,在△ABC 中,∠ACB=ο90,∠B=ο30,AC=1,过点C 作AB CD ⊥1与1D ,过1D 作AB D D ⊥21于2D ,过2D 作AB D D ⊥32于3D ,这样继续作下去,线段1+n n D D 的长度(n为正整数)等于( )A .121+⎪⎭⎫ ⎝⎛n B .123+⎪⎭⎫ ⎝⎛n C .n ⎪⎪⎭⎫ ⎝⎛23 D .123+⎪⎪⎭⎫⎝⎛n二、填空题:(每小题3分,共18分)11.如果b a +=8,ab =15,则a 2b +ab 2的值为 。
2023年上海市新九年级上学期数学开学考模拟卷(范围:相似三角形、锐角的三角比、二次函数)含详解

上海市新九年级暑期成果评价卷测试范围:相似三角形、锐角的三角比、二次函数一.选择题(共6小题,满分24分,每小题4分)1.(4分)如图,边长为1的小正方形网格中,点A、B、C、E在格点上,连接AE、BC,点D在BC上且满足AD ⊥BC,则∠AED的正切值是()A.B.7C.D.2.(4分)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组3.(4分)已知和都是单位向量,那么下列结论中正确的是()A.=B.+=2C.﹣=0D.||+||=24.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①abc<0;②2a+b=0;③a﹣b+c <0;④4ac﹣b2<0.其中正确的结论是()A.②④B.③④C.①③④D.②5.(4分)一本书的宽与长之比为黄金比,书的长为14cm,则它的宽为()A.(7+7)cm B.(21﹣7)cm C.(7﹣21)cm D.(7﹣7)cm6.(4分)△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:4C.1:9D.1:16二.填空题(共12小题,满分48分,每小题4分)7.(4分)若,且b+d+f=6,则a+c+e=.8.(4分)已知C是线段AB的中点,设,那么=.(用向量表示)9.(4分)sin60°•cos45°=.10.(4分)已知△ABC∽△DEF,相似比为2,则它们的周长之比是.11.(4分)将二次函数y=3x2的图象向上平移3个单位长度,再向左平移2个单位长度,那么得到新的图象相应的函数关系式为.12.(4分)如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为米.13.(4分)初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…﹣2﹣1012…y…﹣15.5﹣5﹣3.5﹣2﹣3.5…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=.14.(4分)如图,已知AB∥CD∥EF,AD=6,DF=3,BC=7,那么线段CE的长度等于.15.(4分)给出下列两条抛物线:.请尽可能多地找出这两条抛物线的共同点:(5条以上得满分)16.(4分)在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=cm.17.(4分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,点C落在点N处,EF为折痕,AB=1,AD =2,设AM=t,四边形CDEF的面积为S,则S关于t的函数表达式为.18.已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m=.三.解答题(共7小题,满分78分)19.(10分)已知二次函数y=x2﹣2x﹣3.(1)将二次函数的表达式化为y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象;(3)若y>﹣3,则x的取值范围是.(4)当﹣1<x<5时,y的取值范围是.20.(10分)如图,▱ABCD中.点E为DC上的一点,CE=2DE,AC与BE相交于点F,如果=,=.(1)用向量、分别表示下列向量;=;=;=.(2)在图中求作AF分别在、方向上的分向量.(不写作法,但要写出画图结果)21.如图:△ABC中,MD∥AB,MN∥AE.求证:=.22.(10分)已知:如图,斜坡AP的坡度为1:2.4,坡长AP为260米,在坡顶A处的同一水平面有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)23.(12分)如图,在△ABC中,BD⊥AC于点D,DE⊥AB于点E,BD•DE=BE•CD.(1)求证:△BCD∽△BDE;(2)若BC=10,AD=6,求AE的长.24.(12分)如图,在平面直角坐标系中有一Rt△AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线L:y=﹣x2+bx+c经过A、B两点.(1)求抛物线L的解析式及顶点G的坐标.(2)抛物线L是否经过点C,说明理由.(3)在第二象限内,抛物线上存在异于点G的一点P,使△PCD与△GCD的面积相等,若存在请求出点P的坐标,不存在请说明理由.25.(14分)如图①,在正方形ABCD中,AB=1,点E,F为AD边上的两点,且AE=DF,连接CF交BD于点G,连接AG交BE于点H.(1)求证:AG⊥BE;(2)如图②,点M为DC的中点,连接DH,M,求DH+HM的最小值;(3)连接BM,当点E与点F重合时,求tan∠EBM的值.上海市新九年级暑期成果评价卷测试范围:相似三角形、锐角的三角比、二次函数一.选择题(共6小题,满分24分,每小题4分)1.(4分)如图,边长为1的小正方形网格中,点A、B、C、E在格点上,连接AE、BC,点D在BC上且满足AD ⊥BC,则∠AED的正切值是()A.B.7C.D.【分析】连接OD,证明点A、D、B、E在以O为圆心,1为半径的同一个圆上,把求∠AED的正切值转化为求∠ABC的正切值.【解答】解:连接OD,∵AD⊥BC,O是AB中点,∴,∴OD=OA=OE=OD∴点A、D、B、E在以O为圆心,1为半径的同一个圆上,∴∠ABC=∠AED,∴.故选:A.【点评】本题考查了解直角三角形,掌握四点共圆的证明及三角函数的应用是解题关键,其中连接OD,证明点A、D、B、E在以O为圆心,1为半径的同一个圆上是本题的难点.2.(4分)下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形.其中一定相似的有()A.2组B.3组C.4组D.5组【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【解答】解:①不相似,因为没有指明相等的角或成比例的边;②不相似,因为只有一对角相等,不符合相似三角形的判定;③相似,因为其四个角均相等符合相似的条件;④不相似,因为没有指明边的情况,虽然其四个角均相等,不符合相似的条件;⑤不相似,因为无法得到相等的角或成比例的边;⑥相似,因为两正五边形有相等的角或成比例的边故正确的有③⑥,故选:A.【点评】边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.3.(4分)已知和都是单位向量,那么下列结论中正确的是()A.=B.+=2C.﹣=0D.||+||=2【分析】根据平面向量的性质进行一一分析判断.【解答】解:A、向量与方向相同时,该等式才成立,故本选项不符合题意.B、当向量与方向相反时,+=,故本选项不符合题意.C、当向量与方向相同时,﹣=,故本选项不符合题意.D、由题意知,||+||=2,故本选项符合题意.故选:D.【点评】本题主要考查了平面向量,注意:平面向量既有大小,又有方向.4.(4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①abc<0;②2a+b=0;③a﹣b+c <0;④4ac﹣b2<0.其中正确的结论是()A.②④B.③④C.①③④D.②【分析】根据二次函数的图象与性质即可求出答案.【解答】解:①∵抛物线开口向上,交y的负半轴,∴a>0,c<0,∵﹣>0,∴b<0,∴abc>0,故①错误;②由对称轴可知:﹣=1,∴2a+b=0,故②正确;③点(3,y)关于直线x=1的对称点为(﹣1,y),由于x=3时,y>0,∴x=﹣1时,y>0,∴a﹣b+c>0,故③错误;④由抛物线与x轴有两个交点可知:b2﹣4ac>0,∴4ac﹣b2<0,故④正确;故选:A.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.5.(4分)一本书的宽与长之比为黄金比,书的长为14cm,则它的宽为()A.(7+7)cm B.(21﹣7)cm C.(7﹣21)cm D.(7﹣7)cm【分析】根据黄金比值是进行计算即可.【解答】解:∵一本书的宽与长之比为黄金比,书的长为14cm,∴它的宽=×14=(7﹣7)cm,故选:D.【点评】本题考查的是黄金分割,掌握黄金比值为是解题的关键.6.(4分)△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:4C.1:9D.1:16【分析】根据相似三角形的面积的比等于相似比的平方解答即可.【解答】解:∵△ABC∽△DEF,相似比为1:3,∴△ABC与△DEF的面积比为1:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.二.填空题(共12小题,满分48分,每小题4分)7.(4分)若,且b+d+f=6,则a+c+e=4.【分析】根据已知条件得出a=b,c=d,e=f,再把a、b、c相加,即可得出答案.【解答】解:∵===,∴a=b,c=d,e=f,∴a+c+e=b+d+f=(b+d+f)=×6=4.故答案为:4.【点评】此题考查了比例的性质,解题的关键是根据已知条件得出a=b,c=d,e=f.8.(4分)已知C是线段AB的中点,设,那么=.(用向量表示)【分析】由题意得=﹣,则==.【解答】解:∵C是线段AB的中点,,∴=﹣,∴==.故答案为:.【点评】本题考查平面向量,熟练掌握平面向量的加法运算法则是解答本题的关键.9.(4分)sin60°•cos45°=.【分析】将sin60°=,cos45°=代入计算可得.【解答】解:sin60°•cos45°=×=,故答案为:.【点评】本题主要考查特殊锐角的三角函数值,解题的关键是熟记特殊锐角的三角函数值.10.(4分)已知△ABC∽△DEF,相似比为2,则它们的周长之比是2.【分析】根据相似三角形周长比等于相似比解答即可.【解答】解:∵△ABC∽△DEF,相似比为2,∴它们的周长之比是为2,故答案为:2.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长比等于相似比是解题的关键.11.(4分)将二次函数y=3x2的图象向上平移3个单位长度,再向左平移2个单位长度,那么得到新的图象相应的函数关系式为y=3(x+2)2+3.【分析】把抛物线y=3x2的顶点向上平移3个单位长度,再向左平移2个单位长度得到点的坐标为(﹣2,3),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向上平移3个单位长度,再向左平移2个单位长度得到点的坐标为(﹣2,3),所以新的图象相应的函数关系式为y=3(x+2)2+3.故答案为y=3(x+2)2+3.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12.(4分)如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为米.【分析】根据题意坡度为1:2,设垂直距离为x米,则水平距离为2x米,根据勾股定理即可求出结果.【解答】解:根据题意可知:沿着有一定坡度的坡面前进了5米,坡度为1:2,设垂直距离为x米,则水平距离为2x米,所以x2+4x2=52,解得x=±(负值舍去).∴x=(米).答:与水平地面的垂直距离为米.故答案为:.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解决本题的关键是掌握坡度坡角定义.13.(4分)初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…﹣2﹣1012…y…﹣15.5﹣5﹣3.5﹣2﹣3.5…根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=﹣5.【分析】由点的坐标结合二次函数的对称性可以找出该二次函数图象的对称轴,找出与x=3对称的点的坐标,由此即可得出y值.【解答】解:∵点(0,﹣3.5)、(2,﹣3.5)在二次函数y=ax2+bx+c的图象上,∴二次函数图象的对称轴为x==1,∵1×2﹣3=﹣1,且点(﹣1,﹣5)在二次函数y=ax2+bx+c的图象上,∴当x=3时,二次函数y=ax2+bx+c中y=﹣5.故答案为:﹣5.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是找出与x=3对称的点的坐标.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象的对称性找出y值相等的两点是关键.14.(4分)如图,已知AB∥CD∥EF,AD=6,DF=3,BC=7,那么线段CE的长度等于.【分析】根据平行线分线段所得线段对应成比例解答即可.【解答】解:∵AB∥CD∥EF,AD=6,DF=3,BC=7,∴,即,解得:CE=,故答案为:【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.15.(4分)给出下列两条抛物线:.请尽可能多地找出这两条抛物线的共同点:①抛物线开口向上,②抛物线都与y轴交于点(0,1),③当x>﹣1时,y随x的增大而增大,④抛物线都不经过第四象限,⑤两条抛物线最小值都为﹣1.等等.(5条以上得满分)【分析】可以从两条抛物线的开口方向,对称轴,顶点坐标,与y轴的交点,增减性等方面找两条抛物线的共同点.【解答】解:两条抛物线的共同点:①抛物线开口向上,②抛物线都与y轴交于点(0,1),③当x>﹣1时,y随x的增大而增大,④抛物线都不经过第四象限,⑤两条抛物线最小值都为﹣1.等等.【点评】本题考查了二次函数的性质.二次函数的性质主要是从开口方向,顶点坐标,对称轴,最大(小)值,增减性,图象与x轴(y轴)的交点等方面描叙.16.(4分)在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=cm.【分析】根据重心到顶点的距离与重心到对边中点的距离之比为2:1.【解答】解:在等腰△ABC中,AB=AC,AD⊥BC于D,∴D,G在一条直线上,∵G是重心,∵AG:GD=2:1,∵AG=9cm,∴GD=AG=cm,故答案为:.【点评】本题考查了重心的性质,掌握重心的性质是解题的关键.17.(4分)如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,点C落在点N处,EF为折痕,AB=1,AD=2,设AM=t,四边形CDEF的面积为S,则S关于t的函数表达式为S=t2﹣t+1.【分析】连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,由勾股定理得出(2﹣x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.【解答】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∴∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,=(CF+DE)×1=t+1.∴S四边形CDEF故答案为:S=t+1.【点评】本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.18.(4分)已知y是关于x的函数,若该函数的图象经过点P(t,﹣t),则称点P为函数图象上的“相反点”,例如:直线y=2x﹣3上存在“相反点”P(1,﹣1).若二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,则m=.【分析】将P(t,﹣t)代入y=x2+2mx+m+2中得t2+2mt+m+2=﹣t,即t2+(2m+1)t+m+2=0,将二次函数y =x2+2mx+m+2的图象上存在唯一“相反点”,转化为方程有两个相等的实数根,Δ=0,求解即可.【解答】解:将P(t,﹣t)代入y=x2+2mx+m+2中,得t2+2mt+m+2=﹣t,即t2+(2m+1)t+m+2=0,∵二次函数y=x2+2mx+m+2的图象上存在唯一“相反点”,∴方程有两个相等的实数根,∴Δ=(2m+1)2﹣4×1×(m+2)=0,解得,故答案为:.【点评】本题考查了二次函数、一元二次方程根的判别式,解题的关键是将函数问题转化为方程问题.三.解答题(共7小题,满分78分)19.(10分)已知二次函数y=x2﹣2x﹣3.(1)将二次函数的表达式化为y=a(x﹣h)2+k的形式;(2)在平面直角坐标系xOy中,画出这个二次函数的图象;(3)若y>﹣3,则x的取值范围是x>2或x<0.(4)当﹣1<x<5时,y的取值范围是﹣4≤y<12.【分析】(1)利用配方法把一般式化为顶点式;(2)先确定顶点坐标,再确定抛物线与y轴的交点坐标,然后解方程x2﹣2x﹣3=0得抛物线与x轴的交点坐标,最后利用描点法画出函数图象;(3)先分别计算出自变量为﹣1和5所对应的函数值,然后利用函数图象和二次函数的性质求解.【解答】解:(1)y=x2﹣2x﹣3=(x﹣1)2﹣4;(2)抛物线的顶点坐标为(1,﹣4);当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴抛物线与x轴的交点坐标为(﹣1,0),(3,0),当x=0时,y=x2﹣2x﹣3=﹣3,∴抛物线与y轴的交点坐标为(0,﹣3),如图:(3)观察函数图象,y>﹣3,x的取值范围是x>2或x<0;故答案为:x>2或x<0;(4)当x=﹣1时,y=x2﹣2x﹣3=0;当x=1时,y有最小值﹣4;当x=5时,y=x2﹣2x﹣3=12,∴当﹣1<x<5时,y的取值范围是﹣4≤y<12.故答案为:﹣4≤y<12.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.20.(10分)如图,▱ABCD中.点E为DC上的一点,CE=2DE,AC与BE相交于点F,如果=,=.(1)用向量、分别表示下列向量;=;=﹣;=﹣.(2)在图中求作AF分别在、方向上的分向量.(不写作法,但要写出画图结果)【分析】(1)利用平行四边形的性质三角形法则求解即可;(2)构造平行四边形即可.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴==,∵CE=2DE,∴=,=﹣,∴=+=﹣,∵AB∥CE,∴==,∴AF=AC,∵=+=﹣,∴=﹣.故答案为:,﹣,﹣.(2)如图,,即为所求.【点评】本题考查作图﹣复杂作图,平行四边形的性质,三角形法则等知识,解题的关键是掌握三角形法则,属于中考常考题型.21.(10分)如图:△ABC 中,MD ∥AB ,MN ∥AE .求证:=.【分析】由MD ∥AB ,可知=,由MN ∥AE ,可知=,通过等量代换可求证=.【解答】证明:∵MD ∥AB ,∴=,∵MN ∥AE ,∴=,∴==,即=.【点评】本题主要考查了平行线段分线段成比例,通过平行找到相对应的线段成比例是解决问题的关键.22.(10分)已知:如图,斜坡AP 的坡度为1:2.4,坡长AP 为260米,在坡顶A 处的同一水平面有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶的仰角为76°.求:(1)坡顶A 到地面PO 的距离;(2)古塔BC 的高度(结果精确到1米).(参考数据sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)【分析】(1)过点A作AH⊥PO,垂足为点H,根据斜坡AP的坡度为1:2.4,设AH=5x米,PH=12x米,则AP=13x米,进而可得结果;(2)延长BC交PO于点D,由题意得,∠BPO=45°,∠BAC=76°,设BC=a米,则a+100=240+DH.得AC=DH=(a﹣140)米,利用锐角三角函数即可求解.【解答】解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,∴,设AH=5x米,PH=12x米,则AP=13x米,∴13x=260,解得x=20,∴AH=100米,PH=240米,坡顶A到地面PO的距离为100米;(2)延长BC交PO于点D,由题意得,∠BPO=45°,∠BAC=76°,∵BC⊥AC,∴BD⊥PO,∴四边形AHDC是矩形,∴CD=AH=100米,AC=DH,在Rt△BPD中,∠BPD=45°,设BC=a米,则a+100=240+DH.∴AC=DH=(a﹣140)米,在Rt△ABC中,∠BAC=76°,则,即,解得a≈187(米).答:古塔BC的高度为187米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解答本题的关键是根据仰角构造直角三角形,利用三角函数求解.23.(12分)如图,在△ABC中,BD⊥AC于点D,DE⊥AB于点E,BD•DE=BE•CD.(1)求证:△BCD∽△BDE;(2)若BC=10,AD=6,求AE的长.【分析】(1)BD•DE=BE•CD得到,由∠BDC=∠BED=90°可得到结论;(2)根据相似三角形的性质∠EBD=∠DBC,根据等腰三角形三线合一的性质可CD=AD=6,则有BA=BC=10,根据勾股定理求出BD,再利用相似三角形的性质求出BE,于是可求出AE的长.【解答】(1)证明:∵点BD⊥AC于点D,DE⊥AB于点E,∴∠BDC=∠BED=90°,∵BD•DE=BE•CD,∴,∴△BCD∽△BDE;(2)解:∵△BCD∽△BDE,∴∠EBD=∠DBC,∵BD⊥AC,∴CD=AD=6,BA=BC=10,∵BD⊥AC,∴BD==8,∵△BCD∽△BDE,∴,∴,∴BE=,∴AE=BA﹣BE=10﹣=.【点评】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定和性质是解题的关键.也考查了等腰三角形的性质.24.(12分)如图,在平面直角坐标系中有一Rt△AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线L:y=﹣x2+bx+c经过A、B两点.(1)求抛物线L的解析式及顶点G的坐标.(2)抛物线L是否经过点C,说明理由.(3)在第二象限内,抛物线上存在异于点G的一点P,使△PCD与△GCD的面积相等,若存在请求出点P的坐标,不存在请说明理由.【分析】(1)先求出点A的坐标,再用三角函数求出OB,得出点B坐标,最后将点A,B坐标代入抛物线解析式中,求解即可得出结论;(2)先利用旋转求出OC,进而得出点C坐标,最后将点C坐标代入抛物线解析式中检验,即可得出结论;(3)先求出点D坐标,进而求出直线CD的解析式,再过点G作PG∥CD交抛物线于P,进而求出直线PG的解析式,最后联立抛物线解析式和直线PG的解析式,解方程组即可得出结论.【解答】解:(1)∵OA=1,∴A(1,0),在Rt△AOB中,tan∠BAO===3,∴OB=3,∴B(0,3),∵点A,B在抛物线L:y=﹣x2+bx+c上,∴,∴,∴抛物线L的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点G的坐标为(﹣1,4);(2)抛物线L是经过点C,理由:由旋转知,OC=OB=3,∴C(﹣3,0),由(1)知,抛物线L的解析式为y=﹣x2﹣2x+3,当x=﹣3时,y=﹣(﹣3)2﹣2×(﹣3)+3=0,∴抛物线L是经过点C;(3)存在,如图,由旋转知,OD=OA=1,∴D(0,1),由(2)知,C(﹣3,0),∴直线CD的解析式为y=x+1,过点G(﹣1,4)作PG∥CD,交抛物线于P,∴直线PG的解析式为y=x+①,由(1)知,抛物线L的解析式为y=﹣x2﹣2x+3②,联立①②解得,或,∴P(﹣,).【点评】此题时二次函数综合题,主要考查了锐角三角函数,待定系数法,旋转的性质,解方程组,利用同底等高的两三角形面积相等来作辅助线PG∥CD是解本题的关键.25.(14分)如图①,在正方形ABCD中,AB=1,点E,F为AD边上的两点,且AE=DF,连接CF交BD于点G,连接AG交BE于点H.(1)求证:AG⊥BE;(2)如图②,点M为DC的中点,连接DH,M,求DH+HM的最小值;(3)连接BM,当点E与点F重合时,求tan∠EBM的值.【分析】(1)证明△DAG≌△DCG,△ABE≌△DCF,从而得出∠ABE=∠DCG=∠DAG,进一步得出结论;(2)由∠ABH=90°,可得点H在以AB的中点O为圆心,为半径的圆上运动,连接OH,OM,在OM上截取ON=,连接HN,可证明△HON∽△MOH,从而得出HN=,进一步得出结果;(3)设CM=DE=DM=a,则CE=BM=a,可得出CQ和QM,进而求得EQ和BQ,可证得∠BQE=90°,进而求得结果.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCG,∵四边形ABCD是正方形,∴AB=CD,∠BAE=∠CDF=90°,∵AE=DF,∴△ABE≌△CDF(SAS),∴∠ABE=∠DCF,∴∠DAG=∠ABE,∵∠BAE=90°,∴∠ABE+∠AEB=90°,∴∠DAG+∠AEB=90°,∴∠AHE=90°,∴AG⊥BE;(2)如图1,∵∠ABH=90°,∴点H在以AB的中点O为圆心,为半径的圆上运动,连接OH,OM,在OM上截取ON=,连接HN,∵OA=,DM=,AB=CD,∴OA=DM,∵AB∥CD,∴四边形AOMD是平行四边形,∵∠BAD=90°,∴▱AOMD是矩形,∴OM=BC,∠DMN=90°,∴OM=AB=2OA,∴,∵∠HON=∠MOH,∴△HON∽△MOH,∴=,∴HN=,∴DH+=DH+HN,∴当D、H、N共线时,DH+HN最小,最小值为DN的长,∵DN===,∴DH+的最小值为:;(3)如图2,在Rt△CBM和Rt△DCE中,tan∠CBM=,tan∠DCE=,∴∠CBM=∠DCE,∵∠BCM=90°,∴∠CBM+∠CMB=90°,∴∠DCE+∠CMB=90°,∴∠BQE=∠CQM=90°,设CM=DE=DM=a,则CE=BM=a,∴sin∠DEC=,∴QM=CM•sin∠DEC=a,∴CQ=2QM=a,∴EQ=CE﹣CQ=a﹣=a,BQ=BM=QM=﹣a=a,∴tan∠EBM=.【点评】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造相似三角形.。
九年级数学入学考试试题 试题

卜人入州八九几市潮王学校城金海双语实验2021届九年级数学入学考试试题
一、选择题〔8个小题,每一小题3分,一共24分〕 1、在代数式、、、、、中,分式有〔〕 A、2个B、3个C、4个D、5个 2、在反比例函数y=的图象上的一个点的坐标是〔〕 A、〔2,1〕B、〔-2,1〕C、〔2、〕D、〔,2〕 3、如图,四边形ABCD是平行四边形,以下结论中不正确的选项是〔〕 A、当AB=BC时,它是菱形B、当AC⊥BD时,它是菱形 C、当∠ABC=90°时,它是矩形D、当AC=BD时,它是正方形 4、以下每组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是〔〕 A、3、4、5B、6、8、10 C、、2、D、5、12、13 5、三角形的三边长分别为6、8、10,它的最短边上的高为〔〕 A、6B、4.5 C、D、8 6、在一次射击比赛中,甲、乙两名运发动10次射击的平均成绩都是7环,其中甲成绩的方差为1,乙成绩的方差为8,由此可知〔〕 A、甲比乙的成绩稳定B、乙比甲的成绩稳定 C、甲、乙两人的成绩一样稳定D、无法确定谁的成绩更稳定 7、等腰梯形的两底之差等于一腰长,那么腰与下底的夹角为〔〕 A、120°B、125°C、60°D、45° 8、如图,在周长为20cm的ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD,交AD于点E,那么△ABE的周
A D B C C A
长为〔〕 A、4cmB、6cmC、8cmD、10cm 二、填空题〔8个小题,每一小题3分,一共24分〕 9、将0.000702用科学记数法表示,结果为。 10、一个三角形三边长为5:12:13,且周长为60cm,那么它的面积为。 11、假设正比例函数y=k1x(k1≠0)和反比例函数y=〔k2≠0〕的图象的一个交点为〔m、n〕,那么另一个交点为 12、某一组数据x1,x2,x3````````x20,其中样本方差S2=[〔x1-5〕2+(x2-5)2+…+(x20-5)2],那么这20个数据的总和是。 13、在ABCD中,AB,BC,CD,的三条边的长度分别是〔x-2〕cm,〔x+3〕cm,8cm,那么ABCD的周长为cm。 14、假设矩形一个内角的平分线分它的长边为两局部,长分别为2和3。那么该矩形的面积为。 15、假设菱形的一条对角线长是另一条对角线长的2倍,且菱形的面积为16cm2,那么菱形的周长为cm。 16、一组数据-1,0,3,5,x的极差是7,那么x的值可能有个。 三、解答题〔一共78分〕 17、〔6分〕解方程:+=1 18、〔6分〕先化简式子〔+1〕÷〔a+1〕·,再求值。其中a=2 19、〔6分〕直线y=kx+b过x轴上的点A〔,0〕,且与双曲线y=相交于B、C两点,B点坐标为〔-,4〕, 求直线和双曲线的解析式。 20、(6分)如下列图,是一块地的平面图,其中AD=4米,CD=3米,AB=13米,BC=12米,∠ADC=90°, 求这块地的面积。
人教版九年级入学测试卷数学试题
人教版九年级入学测试卷数学试题姓名:________ 班级:________ 成绩:________一、单选题1 . 点关于y轴对称的点的坐标是A.B.C.D.2 . 已知x、y都是正实数,且满足x2+2xy+y2+x+y−12=0,则x(1−y)的最小值为()A.-1B.4C.-2D.无法确定3 . 根据图中的程序,当输入方程x2=2x的解x时,输出结果y=()A.-4 B.2 C.-4或2D.2或-24 . 用配方法解方程,变形结果正确的是()A.B.C.D.5 . 在同一平面直角坐标系中,直线=2x+3与y=2x-5的位置关系是()A.平行B.相交C.重合D.垂直6 . 一元二次方程的根的情况是()A.有两个不相等实数根B.有两个相等实数根C.没有实数根D.无法确定7 . 下列关于x的方程中,一定是一元二次方程的为()A.C.D.B.8 . 已知关于x的方程x2﹣2kx+4=0有两个不相等的实数根,那么在下列各数中,k的取值是()A.0B.1C.2D.39 . 已知,m、n是一元二次方程x2-3x+2=0的两个实数根,则2m2-4mn-6m的值为()A.-12B.10C.-8D.-1010 . 据调查,2014年5月某市的平均房价为7600元/m2,2016年同期将达到8200元/m2,假设这两年该市房价的年平均增长率为x,,根据题意,所列方程为()A.7600(1+x%)2=8200B.7600(1-x%)2=8200C.7600(1+x)2=8200D.7600(1-x)2=8200二、填空题11 . 如图,在矩形中,,,为边上一点,将沿翻折,点落在点处,当为直角三角形时,________.12 . 已知关于的方程有两个不相等的实数根,则的取值范围是______.13 . 已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2;④当a+b=ab时,方程有一根为1.则正确结论的序号是_____.(填上你认为正确结论的所有序号)14 . 某数学小组在活动结束后互相握手28次,则次小组人数为_________人.15 . 如图,在中,,,在边长为的小正方形组成的网格中,的顶点、均在格点上,点在轴上,点的坐标为.点关于点中心对称的点的坐标为________;(2)绕点顺时针旋转后得到,那么点的坐标为________;线段在旋转过程中所扫过的面积是________.三、解答题16 . 已知在等边三角形的三边上,分别取点.(1)如图1,若,求证:;(2)如图2,若于点于于,且,求的长;(3)如图3,若,求证:为等边三角形.17 . 某商家计划从厂家采购空调和冰箱两种产品共台,空调和冰箱的采购单价与销售单价如表所示:采购单价销售单价空调冰箱若采购空调台,且所采购的空调和冰箱全部售完,求商家的利润;厂家有规定,采购空调的数量不少于台,且空调采购单价不低于元,问商家采购空调多少台时总利润最大?并求最大利润.18 . 定义新运算“”如下:当时,;当时,.(1)计算:;(2)若,求的值.19 . 在矩形ABCD中,AB=4cm,BC=8cm,动点P从点A出发,以1cm/s的速度沿AB向点B运动,动点Q从点B 出发,以2cm/s秒的速度沿BC向点C运动.P、Q分别从A、B同时出发,设运动时间为t秒.(如图1)(1)用含t的代数式表示下列线段长度:①PB=__________cm,②QB=_____cm,③CQ=_________cm.(2)当△PBQ的面积等于3时,求t的值.(3) (如图2),若E为边CD中点,连结EQ、AQ.当以A、B、Q为顶点的三角形与△EQC相似时,直接写出满足条件的t的所有值.20 . 如图,平面直角坐标系中,点A是直线上一点,过点A作AB⊥x轴于点B(2,0),(1)若,求∠AOB的度数;(2)若点C(4–a,b),且AC⊥OC,∠AOC=45°,OC与AB交于点D,求AB的长.21 . 某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有121台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?22 . 已知关于的方程:()求证:无论取什么实数值,这个方程总有两个相异实根.()若这个方程的两个实数根、满足,求的值及相应的、.23 . 先化简:,然后从的范围内选取一个合适的整数为的值代入求值.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、三、解答题1、2、3、4、5、6、7、8、。
初中九年级下学期入学数学试卷(附答案,解析)
2015-2016学年九年级(下)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤35.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.11112.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.14.计算:2×(﹣π)0﹣12016+的值为.15.若△ABC∽△DEF,且周长比为2:3,则相似比为.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为cm2.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN 为底角的等腰三角形时,EN=.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2015-2016学年九年级(下)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.2【分析】根据负数是小于0的数,可得答案.【解答】解:A、不是负数,故A错误;B、﹣1是负数,故B正确;C、0不是负数,故C错误;D、是正数,故D错误;故选:B2.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a15【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a3•(﹣a5)=﹣2a8.故选:B.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤3【分析】根据二次根式的性质的意义,被开方数大于等于0,列不等式求解.【解答】解:依题意,得3﹣x≥0,解得x≤3,故选D.5.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某品牌手机的屏幕是否耐摔,宜选择抽样调查,故A错误;B、为了了解玉兔号月球车的零部件质量,精确度要求高,故已选择全面调查,故B错误;C、为了了解南开步行街平均每天的人流量,选择抽样调查,故C正确;D、为了了解中秋节期间重庆市场上的月饼质量,宜选择抽样调查,故D错误;故选:C.6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°【分析】根据两直线平行,内错角相等可得∠1=∠B,根据垂直的定义可得∠AEB=90°,然后根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠1=∠B=60°,∵BE⊥AF,∴∠AEB=90°,∴∠DEF=180°﹣∠1﹣∠AEB=180°﹣60°﹣90°=30°.故选C.7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米【分析】利用所给角的正切函数求得线段BC的长即可.【解答】解:由题意得:AC=1500米,tan∠B=,∴在Rt△ACB中,BC===2500米,故选D.9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°【分析】先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故选C.10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.【分析】根据老师在校车上时S为零,打出租车返回路程变化快,乘车追赶时路程变化慢,可得答案.【解答】解:老师乘校车时路程为零,打车返回学校时两车行驶方向相反路程变化快,乘车追赶路程变化慢,故B符合题意.故选:B.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.111【分析】首先观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,其次观察数列排列中,每一行的第一个数的绝对值,与所在行数的关系:第n行的第一个数的绝对值为:(n﹣1)2+1,由此即可进行判断.【解答】解:观察数列排列中,第n行的第一个数的绝对值为:(n﹣1)2+1,所以第11行的第一个数的绝对值为:(11﹣1)2+1=101,第11行中从左边数第10个数的绝对值是:101+(10﹣1)=110,观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,所以:第11行中从左边数第10个数是:110.故选B.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故答案为:6.75×104.14.计算:2×(﹣π)0﹣12016+的值为2.【分析】原式利用零指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+3=4﹣2=2,故答案为:215.若△ABC∽△DEF,且周长比为2:3,则相似比为2:3.【分析】由△ABC∽△DEF,且周长比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.【解答】解:∵△ABC∽△DEF,且周长比为2:3,∴相似比为:2:3.故答案为:2:3.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为1cm2.【分析】连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出阴影部分的面积=S△AOD,故可得出结论.【解答】解:连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S阴影=S△AOD=×2×1=1.故答案为:1.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.【分析】首先利用分式方程的知识求得当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解,再利用一次函数的性质,求得当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用概率公式即可求得答案.【解答】解:∵方程两边同乘以(x+1),∴k﹣1=(k﹣2)(x+1),∴当k=2或k=1时,关于x的分式方程=k﹣2无解,∴当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解;∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,∴k>﹣,∴当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,∴得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的有﹣1,3;∴使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为:=.故答案为:.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN为底角的等腰三角形时,EN=13或+3.【分析】情形1:如图1中,当∠BEF=∠NME时,易证BN=NA′,设BN=NA′=x,在RT△BND′利用勾股定理即可解决问题.情形2:如图2中,当∠MEN=∠MNE时,证明BN=BA′即可解决问题.【解答】解:如图1中,当∠BEF=∠NME时,∵∠BEF+∠ABC=90°,∠A+∠ABC=90°,∴∠BEF=∠A=∠BA′D′=∠NME,∴BA′∥EM,∴∠NBA′=∠BEF=∠BA′N,∴NB=NA′,设BN=NA′=x,在RT△BND′中,∵BD′2+ND′2=BN2,∴32+(6﹣x)2=x2,x=,∴EN=EB+BN=EC+BC+BN=+3+=13,如图2中,当∠MEN=∠MNE时,∵∠MEN=∠BAC=∠BA′N=∠A′NE,∴BA′=BN=AB===3,∴EN=EC+BC+BN=+3=3=+3.故答案为13或+3.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用代入消元法求出解即可.【解答】解:(1)去分母得:x2+2x﹣x2+4=1,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解;(2),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果,求出不等式组解集确定出a的值,代入计算即可求出值.【解答】解:原式=+•﹣3=+﹣3==﹣,由不等式组得到<a<3,∵a为整数,∴a=1或2,又∵a≠1,∴a=2,当a=2时,原式=﹣2.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).【分析】(1)用C的度数除以360度求出所占的百分比,由C的件数除以所占的百分比即可得到调查的总件数;进而求出B的件数;(2)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)张老师所调查的4个班征集到作品有:=12(件),其中B班征集到作品数为:12﹣2﹣5﹣2=3(件),补全图形如下:(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==;故答案为:(1)12,3.23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.【分析】(1)过E点作EH⊥BC于H点,在RT△BEH中利用三角函数求得BH的长,然后在直角△EAH 中,利用三角函数求得AH的长,根据AB=AH﹣BH即可求解;(2)根据机器的总生产量等于机器数与每台生产的产品数即可列方程求解.【解答】解:(1)过E点作EH⊥BC于H点,由题:∠AEH=52°,∠BEH=45°,EH=12m,在RT△BEH中,∵∠BEH=45°∴BH=EH=12m在Rt△EAH中,AH=EH•tan52°=15.36m∴AB=AH﹣BH≈3.4m(2)由题意得:40000(1+10%)=400(1﹣1.25a%)•100(1+2.4a%),解得:a1=25,a2=.∵20<a<30,∴a=25.答:a的值为25.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.【分析】(1)设一个四位数的末三位数为B,末三位数以前的数为A,根据题意可得A=13n+B,即这个四位数是1000(13n+B)+B=13(1000n+77B),可得;(2)设任意一个6位摆动数的十位数字为a、个位数字为b,表示出末三位数为100b+10a+b,末三位数以前的数为100a+10b+a,将二者相减分解出因数13可得.【解答】解:(1)设一个四位数的末三位数为B,末三位数以前的数为A,则这个四位数为:1000A+B,由题意:A﹣B=13n(n为整数),∴A=13n+B,从而1000A+B=1000(13n+B)+B=13000n+1001B=13(1000n+77B),∴这个四位数能被13整除∴任意一个四位数都满足上述规律;(2)设任意一个6位摆动数的十位数字为a,个位数字为b,所以这个6位摆动数的末三位数为:100b+10a+b,末三位数以前的数为:100a+10b+a,∵100a+10b+a﹣(100b+10a+b)=91a﹣91b=13(7a﹣7b)∴这个6位摆动数的末三位数以前的数与末三位数之差能被13整除,∴任意一个6位摆动数能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点D的坐标;(2)由平移性质,可知重叠部分为一平行四边形.如答图2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点N在x轴上方、下方两种情况,分类讨论,避免漏解.设M(t,0),利用全等三角形求出点N的坐标,代入抛物线W′的解析式求出t的值,从而求得点M的坐标.【解答】方法一:解:(1)设抛物线W的解析式为W=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为W=x2﹣x.∵W=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.。
初中入学测试试题
初中入学数学测试试卷考试时间:90分钟满分:100分卷首语:亲爱的同学:祝贺你完成了小学阶段的数学学习,现在是你展示你的学习成果之时,请你认真答卷,尽情发挥,相信你是最棒的一、认真思考,准确填写20分1、一幅地图的比例尺是,实际距离600千米,在地图上应画厘米;2、一个长方体上、下两个面是正方形,它的表面积是56平方厘米,能截成三个体积相等的正方体,它的表面积增加了平方厘米;3、地球和太阳的平均距离是一亿四千九百六十万千米,这个数写作,改写成用亿作单位的数是,四舍五入到亿位约是 ;4、 8吨50千克= 吨时= 时分平方米= 平方分米毫升=立方分米5、三个连续偶数,中间一个是m,另外两个分别是、 ;6、把3米长的铁丝等分成5段,每段长米,每段长度是这根铁丝的 ;7、 5吨增加15吨是吨,5吨增加15是吨;8、一个数,如果将它的小数点向右移动一位,得到的数比原数大,原数是 ;9、如果a + 1 = ba、b都是自然数,且不等于0,那么a和b的最大公因数是 ,最小公倍数是 ;10、学校为艺术节选送节目,要从3个合唱节目中选出2个,2个舞蹈节目中选出1个,一共有种选送方案;二、火眼金睛,明辨是非;5分1、一段钢材,锯成三段需12分钟,如果锯成5段需20分钟;2、 .长方形、正方形、菱形、圆都是轴对称图形;3、三角形的高一定,底和面积成正比例;4、半圆的周长等于圆周长的一半;5、等底等高的平行四边形与三角形的面积比是2:1 ; 三、慎重考虑,精心选择5分1、要清楚的地表示六年级学生人数占总人数的百分之几,制统计图较合适;A.条形B.折线C.扇形2、在三角形的三个内角中,123∠=∠+∠,则这个三角形一定是三角形;A.锐角B.直角C.钝角3、.甲、乙两地相距45千米,小明骑自行车从甲地到乙地用了3小时,回来时用了小时;他这一趟往返的平均速度是 ;千米千米千米千米4、下面四个积中与其他三个积不相等的是×28×33 B. 9×35×88 ×77 ×15 ×30×215、下面哪组中的三条线段不可以围成一个三角形;、6cm、7cm 、5cm、10cm 、6cm、4cm四、看清题目,精心计算32分1、直接写得数4分-= 198+397= 1÷1199= +3 =6×35% = ×99 = 12×13÷12×13=-=72、脱式计算能简算的要简算,16分3错误!++×3错误!×÷ 777×9+37×1113、求未知数x6分16 :28=x: 错误!×5÷x+5=3 x - ×15 =184、列式计算6分一个数的25%比这个数的错误!少18,求这个数用方程解减与的积,所得的差除,商是多少五、求阴影部分面积;5分六、探索操作;8分根据要求在图中操作,并回答问题;1、用数对表示图中AB、C的位置2、把三角形ABC绕B点逆时针旋转90度,画出旋转后的图形;3、以虚线为对称轴画出三角形ABC的对称图形abc;4、把三角形abc向下平移四格,画出平移后的图形;七、知识应用,解决问题;25分1、张师傅加工一批零件,原打算每天做50个,为了提早10天完成,他把效率提高,每天做75个,问张师傅实际要做多少天用方程解2、校园书画展共征集作品125幅,其中一等奖占16%,剩下的作品按3:4分配二、三等奖;获得三等奖的作品有多少幅3、非洲野狗奔跑的最高速度是56千米/时,比骆驼最高速度的50%多千米,骆驼奔跑的最高速度是多少4、某商店到苹果产地收购了2吨苹果,收购价为每千克元,从产地到商店的距离是400千米,运费为每吨货物每运1千米收元,如果在运输及销售过程中的损耗为10%,那么商店要实现的15%的利润率,零售价就是每千克多少元5、小明和小红去看电影,一张电影票价是小明所有钱的24%,是小红所有钱的60%.他们各自买电影票后,小明剩下的钱比小红剩下的钱多30元,两人买电影票之前各有多少钱卷后语:祝贺你,你已经做完了,但不要忘了检查;如果你能仔细检查,你的成绩将会更加优秀加油、试卷答案一、1、12;2、16;3、0, 亿, 1亿;4、, 4, 30, 908, ;5、m-2, m+2;6、, ;7、; 6;8、;9、1, ab;二、×、√、√、×、√;三、C、 B、 C、 B、 B;四、2、50;;; 11100;3、1/7; 2; 20;4、x=36; 1/4 ;五、9 x9﹢ 4+9 x 4÷2-9 x 9÷2- 4+9 x 4÷2 =平方厘米七、x=20天; 60幅;千米/时;2 x1000 + x 400 x 2x1+15%÷2÷1000÷1-10%=元小明:50元;小红:2元;解:设电影票价x元;X÷24%=25/6 X X÷60%=5/3 X25/6 X - X-5/3 X - X=30X=1225/6x12=50 5/3 x12=20。
九年级上学期数学开学试卷第5套真题
九年级上学期数学开学试卷一、单选题1. 若二次根式有意义,则x的取值范围是()A . x≥B . x≤C . x≥D . x≤2. 已知点A(﹣2,y1),B(3,y2)在一次函数y=﹣x﹣2的图象上,则()A . y1>y2B . y1<y2C . y1≤y2D . y1≥y23. 若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A . 3.6B . 4C . 4.8D . 54. 某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:金额/元5102050100人数4161596则他们捐款金额的中位数和平均数分别是()A . 10,20.6B . 20,20.6C . 10,30.6D . 20,30.65. 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若BD,AC的和,为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A . 6cmB . 9cmC . 3cmD . 12cm6. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A .B .C .D .7. 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A . 1B .C . 2-D . 2 ﹣28. 一顶点重合的两个大小完全相同的边长为3的正方形ABCD和正方形AB′C′D′,如图所示,∠DAD′=45°,边BC与D′C′交于点O,则四边形ABOD′的周长是()A . 6B . 6C . 3D . 3+39. 如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A .B .C .D .二、填空题10. 若函数y=(m﹣1)x|m|是正比例函数,则该函数的图象经过第________象限.11. 直角三角形两直角边长分别为3和4,则它斜边上的高为________.12. 已知一组数据为1,2,3,4,5,则这组数据的方差为________.13. 已知一元二次方程x2+mx+m﹣1=0有两个相等的实数根,则m=________.14. 如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是________.三、解答题15.(1)计算:(2)用配方法解方程:x2﹣10x+9=0.16. 如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B 在原点上方,点C在原点下方,已知AB=(1)求点B的坐标;(2)若△ABC的面积为4,求直线l2的解析式.17. 垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表测试序号12345678910成绩(分)7687758787(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)18. 已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.19. 某旅游景点为了吸引游客,推出的团体票收费标准如下:如果团体人数不超过25人,每张票价150元,如果超过25人,每增加1人,每张票价降低2元,但每张票价不得低于100元,阳光旅行社共支付团体票价4800元,则阳光旅行社共购买多少张团体票.20. 在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2 .(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新王牌九年级数学秋季班入学测试卷
1.方程组 2226x-5xy+y=0 1y=x+6x+4 2的解的个数( )
A.4 B.3 C.2 D.1
2.方程组ax+by=4bx+ay=5 的解是x=2y=1 ,则a+b=
A.1 B. 3 C.5 D.-3
3.若方程组 2y=mx+2 1y+4x+1=2y 2没有实数解,则实数m的取值范围是( )
A.m>1 B.m<-1 C.m<1且m≠0 D.m>-1且m≠0
4、△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB垂足为E,若AB=10cm ,
则△DBE的周长为( )
A、10 cm B、8cm C、12 cm D、9cm
5、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判断
△ABE≌△ACD的是( )
A、AD=AE B、∠AEB=∠ADC C、BE=CD D、AB=AC
A
C
B
E
D
6. 方程组03202yxxyx解的情况是( )
A、有两组相同的实数解 B、有两组不同的实数解
C、没有实数解 D、不能确定
7. 方程组86xyyx的解是 ( )
A.4,2yx B. 2,4yx
C. ;2,211yx D. .4,16;16,42211yxyx
8. 下列判断错误的是 ( )
A、方程15xx没有负数根 B、方程22xxx的解的个数为2
C、方程xx39没有正数根 D、方程04)3)(2(2xxx的解为3,221xx
9. 在给定的条件中,能画出平行四边形的是( )
A、以60cm为一条对角线,20cm、34cm为两条邻边 B、以6cm、10cm为两条对角线,8cm为一边
C、以20cm、36cm为两条对角线,22cm为一边 D、以6cm为一条对角线,3cm、10cm为两条邻边
10. 正方形具有而菱形不一定具有性质的是( )
A、对角线互相平分 B、对角线相等 C、对角线平分一组对角 D、对角线互相垂直
5
11. 用两个完全相同的直角三角板,不能..拼成如下图形的是( )
A、平行四边形 B、矩形 C、等腰三角形 D、梯形
12.如图,把矩形纸片ABCD纸沿对角线折叠,
设重叠部分为△EBD,那么,下列说法不正确的是( )
A.△EBD是等腰三角形,EB=ED ;
B.折叠后∠ABE和∠CBD一定相等;
C.折叠后得到的图形是轴对称图形;
D.△EBA和△EDC一定是全等三角形.
13. 顺次连结任意四边形四边中点所得的四边形一定是( )
A、平行四边形 B、矩形 C、菱形 D、正方形
14. 如图,平行四边形ABCD中,∠A的平分线AE交 CD于E,
AB=5,BC=3,则EC的长( )
A、1 B、1.5 C、2 D、3
15. 如图,在周长为20cm的□ABCD中,AB≠AD,AC、BD相交
于点O,OE⊥BD交AD于E,则△ABE的周长为( )
(A)4cm (B)6cm
(C)8cm (D)10cm
16. 如图所示,梯形ABCD中,AD∥BC,M为AB的中点,
ME⊥CD于E,AD=5cm,AB=13cm,BC=19cm,CD
=15cm,
则ME的长为( )
A.20cm B.25cm
C.1013cm D.485cm
17. 下列命题正确的是( )
A.对角线互相平分的四边形是菱形;
B.对角线互相平分且相等的四边形是菱形
C.对角线互相垂直且相等的四边形是菱形;
D.对角线互相垂直且平分的四边形是菱形.
A
B
C
D
E
A D
B
C
M E
A
B
C
D
O
E
E
A
B
C
D
第12题图
18. 向量OMBCBOMBAB化简后的结果等于( )
A. BC B. AB C. AC D. AM
19. 点C在线段AB上,且ABAC53,若BCmAC,则m的值等于( )
A.32 B. 23 C. 32 D. 23
20. 已知一个单位向量e,设ba、是非零向量,则下列等式中正确的是( )
A.aea B. bbe C. eaa1 D. aa1bb1
Keys:
1-5 DBBAD
6-10 BDBCB
11-15 DBACD
16-20 CDCDB