泛函分析中的不动点定理及应用

合集下载

巴拿赫不动点定理及其应用

巴拿赫不动点定理及其应用

巴拿赫不动点定理及其应用
巴拿赫不动点定理是函数分析中的一项基本定理,又称为Banach不动点定理。

该定理是由波兰数学家斯蒂芬·巴拿赫于1922年提出的。

巴拿赫不动点定理可以简单地表述为:在完备度量空间中,连续映射必有不动点。

这个定理的意义在于,对于一些映射或者变换,必然存在一个点不会移动,这个点就被称作“不动点”。

而根据巴拿赫不动点定理,只要一个映射是连续的并且作用于完备度量空间,那么它必然存在不动点。

这个定理有很多应用,下面列举一些常见的:
1.在求解微积分方程、微分方程、积分方程时,巴拿赫不动点定理是很重要的工具。

2.在数值分析中,巴拿赫不动点定理可以用于求解线性方程组、优化问题以及非线性方程组的数值解。

3.在动力学系统中,巴拿赫不动点定理可以用于证明某些系统存在定点。

4.在实际应用中,巴拿赫不动点定理可以用于证明某些算法的收敛性以及求解某些不动点问题。

总之,巴拿赫不动点定理是数学中的一项重要定理,它的实际应用十分广泛。

不动点定理及其应用

不动点定理及其应用

不动点定理及其应用不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ;②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素.则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈?∈x x T ,以及()[]()1,01∈?<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<="">定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点.证任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0??≤??? ??=??? ??x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==??<即所以ρ.证毕.注(i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得(4)此即误差的先验估计,它指出近似解n x 与精确解* x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ,此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5)的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少.如设(]1,0=X ,定义T 如下:2 xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件.如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- ,(6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 ,(7)该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<定理1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈?a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈?有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证只需证明(),,B x B B T ∈?? ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ?∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ,(8)那么T 在X 中存在唯一的不动点.证由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限.定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈?-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈?<≤∈?使得则{}n x 收敛.证①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛.证只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+?n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根.注该题体现了不动点定理证明方程解的存在性.例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈?+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<="" p="" x="">k n因为01lim01=--∞→x x k k n n ,所以εε<--<->>?+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()() """"*>≥可该为会自动满足()I x ∈?1,这时f 的不动点存在必唯一从而*x A =,证(分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =.② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈?<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ?与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-++-c x x c c x c x x c cx c x cx c x x c xc x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n ,(10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛.② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证(1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证(利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明①b ?使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><="" (即f="" ,故g="">② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<.证毕.<="" bdsfid="663" f="" g="" p="" x="" ,即),(x="">4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性.例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμ?d x t k t t x b a )(),()()(?+=,(11)其中[]b a L ,2∈?为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞a b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证令τττμ?d x t k t t Tx ba )(),()()(?+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(≤??ττττd x dt d t k ba ba b a 22)(),(=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12d t k a ba b a ττμ,于是 2/12))()()(,(),(??-??=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -≤ττμ()),(),(2/12y x dtd t k b a b aρττμ??=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解.注该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ?τττμ+?= (12)对任何[]b a C ,∈?以及任何常数μ存在唯一的解[]b a C x ,0∈.证作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=?τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]?-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-?= -++[]),()(!/2111x x ds a s k M k t a k k ρμ-?≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性.例8 设),(τt k 是[][]b a b a ,,?上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +?=τττλ,(14)当λ充分小时对每一个取定的)(t f 有唯一解.证在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +?=τττλ (15)当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()?-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,m ax max ,τττλd t y x t k b a bt a )()(),(max -≤≤≤),(y x M ρλ?≤此处ττd t k M ba bt a ),(max ?=≤≤.故当λ1<="">[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=?τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ?-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(?+=λ []()1,0∈t 的连续解.解法一据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =?+=λ,其中??≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ?+==λ)(1t x n +()()()∑?=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-?= )2(≥n ,从而 ??≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n--++-+-++=--+011221!1!21λλλλΛ,故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→?+==λλ法二令ds s x t y t)()(0?=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程=+=0)0()()()('y t y t f t y λ (16)易知方程(16)的解为 ds s f e t y s t t )()()(0-?=λ再令 ()()()()()()?-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0?=,由(17)知ds s x t f t x t )()()(0?+=λ,故ds s f e t f t x s t t )()()()(0-?+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性.例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==? (20)可知,当n i a aii nj,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记=------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性.例11 考察微分方程()y x f dxdy,=,00y y x =,(21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线.证微分方程(21)加上初值条件00 y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00?+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=?000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]?-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()?-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ?+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。

几个不动点定理及其应用

几个不动点定理及其应用

几个不动点定理及其应用
1. 香农不动点定理:若一个函数在一个闭区间上是连续的,那么这个函数在这个闭区间上至少有一个不动点。

应用:此定理可以用来证明某些函数的最小值或最大值存在。

2. 黎曼不动点定理:若一个函数在一个闭区间上是连续的,又在这个闭区间上的两个端点处有有限的导数,那么这个函数在这个闭区间上至少有一个不动点。

应用:此定理可以用来证明某些函数的最小值或最大值存在,也可以用来证明某些不可导函数的最小值或最大值存在。

3. 卡尔曼不动点定理:若一个函数在一个闭区间上是连续的,又在这个闭区间上的两个端点处有有限的导数,且在这个闭区间上的每一点处都有有限的导数,那么这个函数在这个闭区间上至少有一个不动点。

应用:此定理可以用来证明某些函数的最小值或最大值存在,也可以用来证明某些不可导函数的最小值或最大值存在,还可以用来判断某些函数的最小值或最大值是否存在。

不动点定理及其应用

不动点定理及其应用

不动点定理及其应用一、不动点定理不动点定理fixed-point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =⋅⋅⋅,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。

(一)、压缩算子:1、定义: 设(1)X距离空间;(2)算子:T X X →的映射。

若(01),..,s t x y X θθ∃≤<∀∈,恒有(,)(,)Tx Ty x y ρθρ≤, 则称T 是X 上的压缩算子。

θ为压缩系数。

2、性质:压缩算子T 是连续的 证 :若nx x →,即(,)0n x x ρ→,则(,)(,)0n n Tx Tx x x ρθρ≤→例:11:T R R →,则 ①12Tx x =是压缩算子因为1111(,)(,),2222Tx Ty Tx Ty x y x y ρρθ=-=-==②0Tx x =是压缩算子(0θ= ) ③Tx x =不是压缩算子(1θ= )(二)、不动点定理1、定义:设(1)X ---- 是完备的距离空间;(2):T X X →的压缩算子。

则T 在X 上存在唯一的不动点*x ,即***,..x X s t x Tx ∃∈=2、注意(1)定理的证明过程就是求不动点的方法,称为构造性的证明。

(2)定理的条件是结论成立的充分非必要条件。

(3)迭代的收敛性和极限点与初始点无关。

但T 的选取及初始点0x 的选取对迭代速度有影响。

初始点离极限点越近,其收敛速度越快,而不影响精确度。

(4)误差估计①事前(或先验)误差:根据预先给出的精确度,确定计算步数。

此方法有时理论上分析困难。

设迭代到第n 步,将*n xx ≈,则误差估计式为*0010(,)(,)(,)11n nn x x Tx x x x θθρρρθθ≤=--②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取*n x x ≈。

不动点定理及其应用的开题报告

不动点定理及其应用的开题报告

不动点定理及其应用的开题报告
不动点定理是数学中的一个重要定理,在不同领域有着广泛的应用。

本文将介绍不动点定理的基本概念以及其在最优化、微积分和微分方程等方面的具体应用。

首先,本文将介绍不动点定理的定义和基本性质。

不动点定理指的是:对于一个函数,若存在一个点,使得该点的函数值等于该点本身,则称该点为函数的不动点。

而不动点定理则指出:任何连续函数在一个区间内必定存在至少一个不动点。

同时,本文还将介绍不动点定理的证明过程,以及其在实际应用中的意义。

接下来,本文将探讨不动点定理在最优化问题中的应用。

具体来说,我们将介绍不动点迭代法及其优化问题的求解方法。

该方法通过不断迭代函数的不动点,逐渐逼近最优解。

同时,本文还将介绍该方法的优点和局限性,并给出实际案例进行说明。

除此之外,本文还将介绍不动点定理在微积分和微分方程中的应用。

在微积分中,不动点定理可以用来证明柯西-施瓦茨定理和泰勒公式。

而在微分方程中,不动点定理可以用来证明某些特殊微分方程的解的存在性和唯一性。

本文将详细介绍这些应用,并给出相关的例子进行说明。

最后,本文将总结不动点定理及其应用的主要内容,并对其未来的发展进行展望。

通过本文的介绍,读者可以更加深入地了解不动点定理在数学中的重要性和实际应用。

- 1 -。

经济学中的数学分析方法——7 函数空间与不动点原理

经济学中的数学分析方法——7 函数空间与不动点原理
事实上第一二条公理是显然的对第三条公理三角不等式设xyzx则有xyx?yx?zz?yx?zz?yxzzy根据两点之间距离的定义可知在rcab和lab中两点之间的距离分别为
*第七章 函数空间与不动点原理
本章介绍的是数学中“泛函分析”的内容。主要研究无限维空间中的数学分析,它是有 限维空间(如欧氏空间 R n)及线性代数的一种推广。泛函分析的研究方法是比较抽象的, 但也是比较深刻的。为什么要学习这些抽象的内容呢?首先,是在现代经济学中已经用到它 们,如在“一般经济均衡理论”,“对策论”以及讨论长期经济模型时,都在用它们来刻画或 分析经济问题。其次,经过这种抽象思维的训练,再回过头来看如数学分析,线性代数中的 概念时,将会理解得更加深刻和清晰。
i=1
i=1
i=1
i=1
这是一个关于 λ 的二次三项式,要使它恒大于等于零,则其判别式应小于等于零,即
n
n
n
∑ ∑ ∑ 4(⋅ aib)i 2-4 ⋅ ai2 bi2 ≤ 0
i=1
i=1 i=1
移项后即为 Cauchy 不等式。利用 Cauchy 不等式不难看出下列的不等式:
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ n
x =max x(t )
(7.4)
t∈[a, b]
( ) 则 C[a, b], 也是一个线性赋范空间。
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建
证明:条件(1)、(2)显然成立,只证明条件(3)。
Q
x(t ) + y(t ) = x(t) | + | y(t) ≤ max x(t ) + max y(t)
2)设 A ⊂ X ,若存在一个开球 S( x0 , r) ,使 A ⊂ S( x0 , r) ,则称 A 为 X 中的

不动点定理及其应用 - 西安交通大学苏州附属中学

不动点定理及其应用215021 西安交通大学苏州附属中学 蒋亚军摘 要:本文研究了不动点定理的一些典型问题的经典解法,并对不动点理论在高中数学中的应用作了一些探究。

关键词:不动点;函数1 引言1912年,荷兰数学家布劳维证明,任意一个把n 维球体映入自己的连续映象(即拓扑变换)至少有一个不动点。

这就是著名的拓扑不动点定理。

我们知道,直线是一维空间,平面是二维空间,普通空间是三维空间,四维、五维以上至n 维空间就很抽象了,下面对一维球体做出一个有趣的例子。

某学生进城早晨六点从家里出发,下午六点到达。

第二天沿原路返回,早晨六点离城,下午六点到达。

他对老师谈一上述经过。

老师告诉他:“你知道吗?途中有一个地点,你昨天进城和今天经过那个地方时,所用的时间完全相同。

”学生说:“没有这么巧的事吧?我在路上走得时快时慢,有时还停下来休息、吃东西,两次经过某地的时间怎么会完全相同呢?”老师说:“不是不可能的,而是肯定有这一点,虽说我不知道它到底在哪里。

”究竟谁是正确的呢?看起来,学生理由充足,振振有词;而老师既然“肯定”有这一点,又“知道”这点在哪里,似乎自相矛盾。

其实,老师是正确的。

道理很简单,设想进城和回家发生在同一天,学生离家出走,而学生的“替身”则同时离城回家(途中经过情况与学生回家完全相同)。

那么两人必定路上相遇,进城和回家经过这相遇点的时间不是完全相同了吗?所以老师是正确的。

这个有趣的问题给著名的“拓扑不动定理”提供了一个极其生动简明的例证。

我们对上面一维球体的例证再用数学模型建立起来研究一下,直观化一些,设甲同学从家里往学校走,乙同学从学校往甲同学的家里走,所走的路线是一样的,而且两人出发的时间都是早上6点,那么他们在某一时刻一定会相遇,这一点就是上面提及的不动点。

用个图形来简单的描绘一下: 甲同学 乙同学理想化假设两人都是匀速行走的,那么设甲的速度为1v ,乙的速度为2v ,从学校到甲的家里的路程为s ,则两人相遇的时间为t ,从而得到式子12s v t v t =⋅+⋅,一旦速度确定了,这个不动点就肯定确定了,而且就是在距甲的家里1v t ⋅的点处或者距学校2v t ⋅的点处。

不动点收敛定理

不动点收敛定理引言:在数学中,不动点收敛定理是一种重要的收敛性证明方法,它在多个领域有着广泛的应用。

不动点收敛定理指出,对于某种函数或操作,如果存在一个不动点,即函数或操作的输出与输入相等的点,那么通过迭代运算,可以将输入逐步靠近不动点,从而实现收敛。

本文将介绍不动点收敛定理的基本概念、原理以及应用。

一、不动点的定义:在函数论中,给定一个函数 f(x),如果存在一个实数 a,使得 f(a) = a,那么 a 就是函数 f(x) 的不动点。

不动点可以看作是函数f(x) 的输入与输出相等的点,即满足 f(a) = a 的点。

二、不动点收敛定理:不动点收敛定理是指,如果一个函数 f(x) 在某个区间上连续且导数存在,且在该区间上 f'(x) 的绝对值小于 1,那么通过迭代运算x_{n+1} = f(x_n),其中 x_0 是初始值,可以将 x_n 逐步靠近不动点 a。

定理的证明如下:假设函数 f(x) 在区间 [a, b] 上连续且导数存在,且在该区间上f'(x) 的绝对值小于 1。

我们设 x_0 是初始值,通过迭代运算x_{n+1} = f(x_n),我们希望证明 x_n 逐步靠近不动点 a。

根据函数的导数存在性,我们可以使用拉格朗日中值定理。

根据拉格朗日中值定理,存在一个点c,使得f(c) - f(x_0) = f'(c)(x_0 - c)。

由于 f'(x) 的绝对值小于 1,所以 |f'(c)| < 1,从而我们可以得到 |f(c) - f(x_0)| < |x_0 - c|。

接下来,我们将证明在每一步迭代中,x_n 与不动点 a 的差值不断减小。

假设在第 n 步迭代后,x_n 与不动点 a 的差值为 d_n = x_n - a,那么根据迭代运算有 x_{n+1} = f(x_n)。

我们可以将x_{n+1} 和 a 分别表示为 x_{n+1} = a + d_{n+1} 和 a + d_n,其中 d_{n+1} = x_{n+1} - a。

布劳威尔不动点定理

布叙述
目录
02 历史 04 例子
在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间并构成了一 般不动点定理的基石。布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(荷兰语:. Brouwer)。
关于不动点的定理很多,但布劳威尔不动点定理是最著名的不动点定理之一,因为它在不少领域中都有应用。 在最初的领域中,这个结果与若尔当曲线定理、毛球定理和博苏克-乌拉姆定理一样,是少数刻画欧几里得空间 之拓扑性质的关键定理之一。因此,布劳威尔定理在拓扑学中也有重要的地位。这个定理也被应用于证明各种微 分方程的深入结果中,在大部分的微分几何课程中都可以见到对这个定理的介绍。即使在看上去与这个定理没有 什么关系的领域,例如博弈论中,也能见到布劳威尔定理的应用。在经济学中,布劳威尔不动点定理以及其推广: 角谷静夫定理在证明经济学市场中全局平衡的存在性中扮演了重要角色。后者是由诺贝尔奖获得者吉拉德·德布 鲁和肯尼斯·阿罗在二十世纪五十年代发展起来的。
例子
这个定理可以通过很实际的例子来理解。比如:取两张一样大小的白纸,在上面画好垂直的坐标系以及纵横 的方格。将一张纸平铺在桌面,而另外一张随意揉成一个形状(但不能撕裂),放在第一张白纸之上,不超出第 一张的边界。那么第二张纸上一定有一点正好就在第一张纸的对应点的正上方。一个更简单的说法是:将一张白 纸平铺在桌面上,再将它揉成一团(不撕裂),放在原来白纸所在的地方,那么只要它不超出原来白纸平铺时的 边界,那么白纸上一定有一点在水平方向上没有移动过。
最初研究这个定理的是专研微分方程的以亨利·庞加莱和皮卡为首的法国数学家,因为在证明类似庞加莱-本 迪克松定理时需要用到拓扑学的方法。19世纪末期,这个定理的各种类似的版本。一般性的定理是由法国数学家 雅克·阿达马在1910年证明的,1912年,鲁伊兹·布劳威尔给出了一个新的证明。

第六章 不动点定理


b a
b K 2 (s,t)dsdt < ∞ 时,方程
a
(6.28)有唯一的平方可积函数解。
证明: 这里只证第二种情况。
∫ 令
Tx(s) =
f (s) + λ
b
K (s,t)x(t)dt
a
(6.28) ⇔ x = Tx
(6.29)
9 T : L2[a,b] → L2[a,b] 。
9 L2[a,b] 完备。
计算的步数。
设给定精度 ρ (xn , x*) < ε ,则应有
ε(1− θ) n > ln ρ(Tx0 ,x0 )
ln θ
ρ(xn ,
x* )

θ 1−θ
ρ(xn ,
xn−1 )
———后验误差估计,
利用中间结果估计误差。
定理给出的是充分条件而非必要条件,条件可以变为如
下两个推论的条件。
推论 1 设(1) X 是完备距离空间,(2)T : X → X ,若(3)T 在 闭球 s (x0, r) ⊂ X 上是压缩映射,并且 ρ(Tx0, x0 ) ≤ (1−θ )r , 则T 在 s (x0, r) 中存在唯一的不动点。
证明:
只要证明对任意的 x ∈ s ,有 Tx ∈ s 即可。
设任意的 x ∈ s ,则有 ρ(x, x0 ) ≤ r ,
ρ(Tx, x0 ) ≤ ρ(Tx,Tx0 ) + ρ(Tx0, x0 ) ≤ θρ(x, x0 ) + (1−θ )r
≤ θ r + (1−θ )r = r
因此Tx ∈ s 。从而T : s → s ,又T 在 s 上为压缩算子,则

L max
x0 |x−x0 |≤δ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析中的不动点定理及应用泛函分析是数学中的一个重要分支,主要研究向量空间中的函数和
算子的性质及其相互关系。

不动点定理是泛函分析中的一项基本定理,它在数学和应用领域中有着广泛的应用。

本文将介绍不动点定理的概念、主要结果以及其在一些实际问题中的应用。

一、不动点定理的概念
不动点定理是指在给定的函数空间中,存在一个函数,它在函数空
间中的作用下保持不变。

具体而言,设X为一个非空集合,f为从X
到X的映射,如果存在一个元素x∈X,使得f(x)=x,则称x为f的不
动点。

不动点定理的证明主要基于完备度和收敛性的概念。

如果给定的空
间是完备的,并且函数的映射是连续的,那么不动点定理可以成立。

常见的不动点定理有Banach不动点定理、Brouwer不动点定理和Schwarz-Zippel不动点定理等。

二、主要的不动点定理结果
1. Banach不动点定理:设X为一个完备的度量空间,f为X上的一
个压缩映射,即存在一个常数k(0 < k < 1),对于任意的x, y∈X,有
d(f(x), f(y)) ≤ k · d(x, y)。

则f存在唯一的不动点,即存在x∈X,使得
f(x) = x。

2. Brouwer不动点定理:设D是欧几里德空间中的一个非空、闭、
有界的凸集,f为D到D的连续映射,则f存在不动点,即存在x∈D,使得f(x) = x。

3. Schwarz-Zippel不动点定理:设D是n维欧几里德空间中的有界
凸集,f为D到D的连续映射,并且满足f(0) = 0。

如果f是单调递增的,并且存在一个点a∈D,使得f(a) ≥ a,则f存在不动点。

三、不动点定理的应用
不动点定理在实际问题中有着广泛的应用,例如在经济学、力学、
计算机科学等领域。

在经济学中,不动点定理可以用来证明一些重要的经济模型的存在性。

例如,通过对需求曲线和供给曲线的分析,可以利用Banach不动
点定理证明市场均衡点的存在性。

在力学中,不动点定理可以用来证明牛顿方程的解的存在性。

通过
将动力学方程转化为一个映射关系,并利用Brouwer不动点定理,可
以得到运动方程的解。

在计算机科学中,不动点定理可以应用于程序设计中。

通过将程序
的执行过程视作一个函数映射,不动点定理可以用来找到程序的不动点,从而帮助优化程序的性能。

总之,泛函分析中的不动点定理是一项重要的数学工具,它在数学
和应用领域中都具有重要的价值和意义。

通过不动点定理,我们可以
证明各种各样的问题存在唯一解的存在性,并且应用到实际问题中。

这些不动点定理为我们提供了解决复杂问题的新思路和方法。

相关文档
最新文档