第二章-混凝土结构设计原理知识讲解
课件-钢筋混凝土结构原理-2结构设计基本原理

案例的结构设计要点解析
结构类型: 框架结构、 剪力墙结构、 筒体结构等
荷载分析: 重力荷载、 风荷载、地
震荷载等
结构计算: 内力计算、 配筋计算、 稳定性计算
等
结构优化: 优化结构布 置、优化材 料选择、优 化施工工艺
等
结构安全: 满足抗震设 防要求、满 足防火要求、 满足耐久性
要求等
结构经济性: 降低工程造 价、提高施 工效率、降 低维护成本
软件操作与建模基础
软件选择:根据项目需求选择合适的结构设计软件
软件安装:按照软件安装指南进行安装
软件操作:熟悉软件的基本操作和功能
建模基础:掌握建模的基本原理和方法,如网格划分、材 料属性设置等
模型检查:对模型进行验证和检查,确保模型的准确性和 可靠性
模型优化:根据项目需求对模型进行优化,提高模型的效 率和性能
稳定性分析:计算结构在稳定性作 用下的内力和变形
疲劳分析:计算结构在疲劳作用下 的内力和变形
抗震分析:计算结构在地震作用下 的内力和变形
优化设计:通过优化设计方法提高 结构的性能和效率
结构优化设计
结构优化设计的 目的:提高结构 安全性、稳定性 和耐久性
结构优化设计的 方法:有限元分 析、拓扑优化、 形状优化等
影响因素:市场需求、技术 进步、政策法规等
更新频率:根据行业发展和 技术进步,定期更新
更新目的:提高Βιβλιοθήκη 构设计的 安全性、经济性和环保性常用结构设计软件介绍
AutoCAD:广泛应用于建筑、机械、电 子等领域,具有强大的绘图和编辑功能。
Revit:主要用于建筑信息模型(BIM) 设计,支持从概念设计到施工图的全过程。
结构优化设计的 应用:桥梁、高 层建筑、隧道等
混凝土结构第2章

材料性能等取值而选用的时间参数,与结构的设计使
用年限是两个概念,不能混淆。
作用按随空间位置的变异可分为: 固定作用与自
由作用。
作用按结构的反应特点可分为:
(1)静态作用,使结构产生的加速度可以忽略不计的作 用,如自重、一般风荷载、雪荷载等,其作用效应 与结构的动力特性无关;
(2)动态作用,使结构产生的加速度不可忽略不计的作 用,如地震,其作用效应不仅与作用的大小有关, 而且与结构的动力特性(如刚度、质量分布、自振 周期等)有关。
2.2 两类极限状态 2.2.1 建筑结构的功能
结构的可靠性指的是结构在设计使用年限内,在 规定的条件下,完成预定功能的能力。
所谓的预定功能是指建筑结构必须满足安全性、 适用性、耐久性。 安全性:指结构在预定的使用期限内,应能承受正常 施工、正常使用时可能出现的各种荷载、外加变形、 约束变形等的作用。在设计规定的偶然事件发生时及 发生后,仍能保持整体稳定性,不发生倒塌或连续破 坏,应避免个别构件或局部破坏而导致整体破坏。
例题2-1
已知:板宽0.6m,板的计算跨度 l0 3.3m , 板自重:1.62kN / m2 板面25mm水泥砂浆抹面: 0.025 20 0.5kN / m2
板底15mm纸筋石灰粉刷:0.01516 0.24kN / m2
合计:2.36kN / m2
在板宽0.6米内的均布线恒载的标准值为:
gk Gkb 2.36 0.6 1.42kN / m
在板宽0.6米内的均布线活载的标准值为:
qk Qkb 2.0 0.6 1.2kN / m
跨中弯矩设计值:
M
0S
0 ( G
1 8
4.61kN m
《混凝土结构设计原理》电子教案

《混凝土结构设计原理》电子教案第一章:混凝土结构的基本概念1.1 混凝土结构的定义1.2 混凝土结构的分类1.3 混凝土结构的受力分析1.4 混凝土结构的材料特性第二章:混凝土的设计强度2.1 混凝土抗压强度2.2 混凝土抗拉强度2.3 混凝土抗剪强度2.4 混凝土的耐久性第三章:混凝土结构的设计方法3.1 极限状态设计方法3.2 安全系数设计方法3.3 荷载组合与内力计算3.4 结构可靠度与极限状态方程第四章:梁和板的设计4.1 梁的设计4.2 板的Design4.3 受弯构件的设计4.4 受剪构件的设计第五章:柱和墙的设计5.1 柱的设计5.2 墙的设计5.3 轴心受压构件的设计5.4 偏心受压构件的设计第六章:混凝土结构构件的连接设计6.1 连接的基本要求6.2 钢筋的锚固与焊接6.3 钢筋的连接方式6.4 混凝土构件的拼接设计第七章:钢筋混凝土构件的抗震设计7.1 抗震设计的基本概念7.2 地震作用及其效应7.3 抗震设防要求与抗震等级7.4 钢筋混凝土构件的抗震设计方法第八章:钢筋混凝土结构的经济设计8.1 结构经济性的概念8.2 结构设计中的成本分析8.3 结构优化设计方法8.4 钢筋混凝土结构的经济设计案例分析第九章:混凝土结构的施工图绘制9.1 施工图的基本知识9.2 混凝土结构施工图的绘制步骤9.3 常用施工图的符号与表示方法9.4 施工图的审核与修改第十章:混凝土结构设计的案例分析10.1 案例分析的基本方法10.2 框架结构设计案例10.3 剪力墙结构设计案例10.4 筒体结构设计案例重点和难点解析一、混凝土结构的基本概念:理解混凝土结构的定义、分类、受力分析以及材料特性是学习后续章节的基础。
特别是混凝土结构的受力分析,它是理解结构在不同荷载作用下的响应的关键。
二、混凝土的设计强度:掌握混凝土的抗压、抗拉、抗剪强度以及耐久性是进行结构设计的前提。
学生需要理解这些强度参数的测定方法和应用条件。
《混凝土结构设计原理》课程复习要点

混凝土结构设计原理复习要点第一章钢筋与混凝土材料物理力学性能1 .钢筋的种类、级别及其主要的力学性能记识:(1)钢筋的种类、级别;(2)有明显屈服点钢筋的应力应变曲线;没有明显屈服点钢筋的应力应变曲线;(3)钢筋设计强度的取值依据,没有明显屈服点钢筋的条件屈服强度;(4)冷加工钢筋的性能;(5)混凝土结构对钢筋性能的要求;(6)有明显屈服点钢筋4=G M(I-2.05),没有明显屈服点钢筋九=b∕”"(1-2.()b),保证率为97.73%02 .混凝土的强度及变形记识:(1)混凝土立方体抗压强度的标准试验方法,混凝土强度等级,轴心抗压强度和轴心抗拉强度。
普通混凝土:∕cw-0.76f.Um,∕t7,,-0.88XO.76∕ru,,,=0.67f eum;《混凝土结构设计规范》:心二0.88印2人成,保证率为95虬0∙88是实际构件与实验室条件下试件的差异系数,匕=0.76是轴心抗压强度与立方体抗压强度的系数,的高强混凝土脆性折减系数。
普通混凝土:加=0∙395£鬻,(九二0.26,∕cm=0.88X0.26∕c^=0.23∕c^)o《混凝土结构设计规范》:力广0.88月X0∙395/裁5(「I.645b)0R保证率为95机(2)复合应力状态下混凝土强度产生变化的概念;(3)单轴受压时混凝土的应力应变曲线(右、英.);(4)混凝土弹性模量的定义;(5)混凝土徐变和收缩的定义及其对结构的影响。
领会:(1)从钢筋与混凝土的力学性能来理解钢筋混凝土是一种非弹性、非匀质的结构材料;(2)对单轴受压时混凝土的应力应变关系曲线有一定的认识和理解。
3 .钢筋与混凝土的粘结识记:(1)粘结的定义,光圆钢筋与变形钢筋粘结力的组成;(2)保证可靠粘结的主要构造措施。
第二章混凝土结构设计方法1 .作用效应S与结构抗力R识记:(1)作用效应S与结构抗力A,作用效应与结构抗力的不确定性;(2)直接作用(又称荷载)、间接作用、偶然作用。
第2章 混凝土结构设计的基本原理

返回主目录
前进
后退
END
◆极限状态设计法
除要求对承载力极限状态进行设计外,还包括的挠度和裂 缝宽度(适用性)的极限状态的设计。 对于承载力极限状态,针对荷载、材料的不同变异性,不 再采用单一的安全系数,而采用的多系数表达,
f ck f sk M (∑ k qi qik ) ≤ M u ( , ,As,b,h0, ) … kc k s
返回主目录 前进 后退 END
◆以概率理论为基础的极限状态设计法
由于实际结构中的不确定性,因此无论如何设计结构,都 会有失效的可能性存在,只是可能性大小不同而已。 为了科学定量的表示结构可靠性的大小,采用概率方法是 比较合理的。
失效概率
Pf = P (S > R)
失效概率越小,表示结构可靠性越大。因此,可以用失 效概率来定量表示结构可靠性的大小。结构可靠性的概率度 量称为结构可靠度。 当失效概率Pf小于某个值时,人们因结构失效的可能性 很小而不再担心,即可认为结构设计是可靠的。该失效概率 限值称为容许失效概率[Pf]。
按承 受时 间的 变异 性
可变作用在设计基准期内,其值随时间变化、
且其变化值与平均值相比不可忽略的作用安装荷 载、楼面活荷载、风荷载、温度变化等
偶然作用在设计基准期内,其值不一定出现,
而一旦出现,其量值则很大,且持续时间很短的 作用:地震、爆炸、冲击等。
混凝土结构设计基本原理:第2章 混凝土结构计算基本原则new

➢ 结构的作用
按 时 间 变 异 分 中类
南
大
学
永久作用:在结构使用期内,其值不随时间变化,或变
化幅度与平均值相比可忽略不计,这种作用称永久作用。 如:结构自重、土压力、预应力等
可变作用:在结构使用期内,其值随时间变化,且变化
幅度与平均值相比不可忽略,这种作用称可变作用。如: 楼面活荷载、路面行车荷载、风载、雪荷载等。
施加在结构上的集中力或分布力,以及引起结构强迫变形或约
束变形的各种因素统称为作用——即使结构或构件产生内力 (应力)、变形(位移、应变)和裂缝的各种原因。
直接作用:荷载
间接作用:引起结构变形的作用
(温度应力、基础沉降,地震作用)
中
南 大
固定作用
学
可动作用
静态作用 动态作用
Fundamentals of Concrete Structure Design 混凝土结构设计基本原理
大
学
2.1 结构设计要求
Fundamentals of Concrete Structure Design 混凝土结构设计基本原理
➢ 正常使用极限状态
定义:指构件达到正常使用或耐久性能的某项规定限值。
出现下列情况之一时结构就超过了承载能力极限状态:
✓ 影响正常使用或影响外观的过大变形
✓ 裂缝过宽,影响正常使用和耐久性
偶然作用:在结构使用期内不一定出现,一旦出现,其
量值很大,且持续的时间很短,这种作用称偶然作用如: 地震、爆破、撞击等
Fundamentals of Concrete Structure Design
2.2 结构的作用、作用效应和抗力
混凝土结构设计基本原理
02第二章 钢筋混凝土结构设计基本原理
第二章钢筋混凝土结构设计基本原理以往,我国公路工程结构曾采用过多种计算方法,不论它们属于弹性理论还是非弹性理论,都是把影响结构可靠性的各种参数视为确定的量,结构设计的安全系数一般依据经验或主要依据经验来确定。
这些方法统称为“定值设计法”。
然而,影响结构可靠性的诸如荷载、材料性能、结构几何参数等因素,无一不是随机变化的不确定的量。
1999年颁布的国家标准〈公路工程结构可靠度设计统一标准〉GB/T50283-1999(以下简称〈公路统一标准GB/T50283-1999〉)引入了结构可靠度理论,把影响结构可靠性的各种因素均视为随机变量,以大量调查实测资料和试验数据为基础,运用统计数学的方法,寻求各随机变量的统计规律,确定结构的失效概率(或可靠度)来度量结构的可靠性。
这种方法称为“可靠度设计法”,用于结构的极限状态设计也可称为“概率极限状态设计法”。
我国公路工程结构设计由长期沿用的,不甚合理的“定值设计法”转变为“概率极限状态设计法”,即在度量结构可靠性上由经验方法转变为运用统计数学的方法,这无疑是设计思想和设计理论的一大进步,使结构设计更符合客观实际情况。
§2-1 结构的可靠性与极限状态概念一、结构的功能要求和结构的可靠性1、结构功能要求所有建筑结构在设计时必须符合技术先进、经济合理、安全适用的要求。
建筑结构的功能要求主要有下列三方面:(1) 安全性结构的安全性是指结构在规定的使用期限内,能承受在正常施工和正常使用过程中可能出现的各种作用。
其中包括荷载的作用、变形的作用、温度的作用等;在偶然事件(如地震、爆炸等)发生及发生后,允许有局部严重破坏,但不引起倒塌。
(2) 适用性结构的适用性是指结构在正常使用时,能满足预定的使用要求,如构件的变形不能太大,裂缝宽度不能太大等。
(3) 耐久性结构的耐久性是指结构在正常维护下,材料性能虽然随时间变化,但结构仍能满足设计的预定的功能要求。
例如,在使用期限内结构材料的腐蚀必须在一定的限度内。
混凝土结构设计原理绪论第一、二章总结
1钢筋和混凝土为什么能结合在一起工作:①粘结力是这两种性质不同的材料能够共同工作基础,混凝土结硬后能和钢筋牢固粘结在一起,相互传递内力②线膨胀系数接近,温度变化时钢筋和混凝土不会发生粘结破坏2钢筋混凝土结构有哪些主要优缺点:优点:就地取材节约钢材耐久耐火可模性好整体性好,刚度大;缺点:自重大抗裂性差性质较脆1混凝土结构对钢筋性能的要求及其达到的目的:强度高(节省钢材获得较好的经济效益);塑性好(给人以破坏的征兆);可焊性好(保证焊接后的接头性良好);与混凝土的粘结锚固性能好(使钢筋的强度能够被充分利用,保证焊接后的接头性能良好);低温性能好2混凝土的立方体强度的确定:边长150mm立方体标准试件,在标准条件下(20±3℃,≥90%湿度)养护28天,用标准试验方法(加载速度0.15~0.3N/mm2/sec,两端不涂润滑剂)测得的抗压强度。
(在试件承压面上涂一些润滑剂,这时试件与压力机垫板间的摩擦力大大减小,试件沿着力的作用方向平行地产生几条裂缝而破坏,所以测得的抗压极限强度较低)3试述受压混凝土棱柱体一次加载的σ-ε曲线的特点:从开始加载到A点,混凝土变性主要是弹性变性。
A点为比例极限点。
超过A点后,进入稳定裂缝扩展的第二阶段,至临界点B。
此后,试件中所积蓄的弹性应变能始终保持大于裂缝发展所需要的能量,形成裂缝快速发展的不稳定状态直至峰值C点,即第三阶段。
裂缝迅速发展,试件平均应力强度下降,当曲线下降到拐点D后,曲线有凸向水平方向发展,出现曲率最大点E称为收敛点。
E点后结构内聚力几乎耗尽,失去结构的意义4混凝土的弹性模量是如何确定的:采用棱柱形试件,取应力上限为0.5fe重复加荷5-6次。
由于混凝土的塑性性质,每次卸载为零时,存在残余变形。
但随荷载多次重复,残余变形逐渐减小,重复加载5-6次后,变形趋于稳定,混凝土的σ-ε曲线在0.5fe以下段接近于直线,自原点至σ-ε曲线上σ=0.5fe对应的点的连线的斜率为混凝土的弹性模量5简述混凝土在三向受压情况下强度和变形的特点:混凝土在三向受压的情况下,其最大主压应力的抗压强度取决于侧向压应力的约束强度。
混凝土结构设计原理(课件)
高性能混凝土的研究和应用,使得混凝土 结构的性能更加优异,满足了更加复杂和 多样化的工程需求。
02 混凝土结构设计基本原则
结构设计原则
01
02
03
04
Hale Waihona Puke 结构完整性确保混凝土结构在各种工况下 的整体性,避免出现裂缝、断
裂等损伤。
承载能力
根据预期的载荷和应力要求, 设计混凝土结构的承载能力。
耐久性
考虑环境因素和预期使用寿命 ,确保混凝土结构在使用期间
工现场进行搅拌、浇注和养护的混凝土构件。
按受力特点分类
混凝土结构可以分为框架结构、剪力墙结构、框架-剪力墙结构等。框架结构的受力特 点是主要承受横向和纵向的荷载,通过梁和柱的连接实现;剪力墙结构的受力特点是主 要承受横向荷载,通过剪力墙的连接实现;框架-剪力墙结构的受力特点是结合了框架
和剪力墙的特点,形成了一种混合结构形式。
05 混凝土结构设计中的问题 及解决措施
混凝土裂缝问题及解决措施
总结词
混凝土裂缝是混凝土结构设计中 常见的问题,会导致结构承载能
力下降和耐久性降低。
原因分析
混凝土裂缝产生的原因包括施工过 程控制不当、结构设计不合理、材 料质量不合格等。
解决措施
针对不同原因采取相应的解决措施, 如加强施工过程控制、优化结构设 计、选用优质材料等。
混凝土结构发展历程
19世纪中叶
20世纪初
随着水泥和混凝土技术的发展,混凝土开 始被应用于建筑和桥梁工程中。
钢筋混凝土的发明和应用,使得混凝土结 构的强度和稳定性得到了显著提高。
20世纪50年代
21世纪初
预应力混凝土的出现,进一步提高了混凝 土结构的承载能力和耐久性,为现代大型 混凝土结构的建造奠定了基础。
混凝土结构基本原理第二章
2)材料强度设计值是材料强度标准值除以对应的 材料分项系数。
HPB235级、HRB335级、HRB400级和RRB400级 钢筋的材料分项系数γS=1.1; 预应力钢丝、钢绞线和热处理钢筋的材料分项系数 γS=1.2, 混凝土的材料分项系数γC=1.4。
33
普通钢筋的抗拉强度设计值f’y及抗压强度设计 值fy‘按附表6采用; 预应力钢筋的抗拉强度设计值fpy及抗压强度设计 值fpy'按附表7采用。 混凝土的轴心抗压强度设计值 fc 和轴心抗拉强度 设计值 ft 按附表2采用。 3)结构构件抗力设计值R的一般表达式为
11
fcu,k=fcu,m(1-1.645δf)
式中 fcu,m——混凝土立方体抗压强度平均值;
δf ——混凝土立方体抗压强度变异系数,对
C40级以下的混凝土δf =0.12;对
C60级,δf =0.10;对C80级,δf =0.08。 《规范》给出各级混凝土轴心抗压强度标准值fck 和轴心抗拉强度标准值ftk见表2-3。
1 2 C l0 8
结构抗力是指结构或构件承受作用效应的能力, 用 R 表示。例如,构件的承载力、刚度等。
9
影响结构抗力的因素:结构的材料性能、几何尺 寸、配筋情况和抗力的计算假定、计算公式等。通 常,结构抗力主要取决于材料性能。 材料强度标准值是材料性能的基本代表值。一般 取符合规定质量的具有不小于95%保证率的材料强 度下分位值作为材料强度标准值,即 fk=fm(1-1.645δf) 式中 fk——材料强度标准值; fm——材料强度平均值;
4
(3)偶然荷载是指在设计基准期内不一定出现, 而一旦出现,则其量值很大,且持续时间很短的荷载。 例如,地震荷载、爆炸力、撞击力等。 二、荷载的代表值 荷载代表值是在结构设计中采用的荷载数值,包 括:标准值、组合值、频遇值和准永久值 1.荷载标准值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章混凝土结构材料的物理力学性能2.1混凝土的物理力学性能2.1.1单轴向应力状态下的混凝土强度虽然实际工程中的混凝土结构和构件一般处于复合应力状态,但是单轴向受力状态下混凝土的强度是复合应力状态下强度的基础和重要参数。
混凝土试件的大小和形状、试验方法和加载速率都影响混凝土强度的试验结果,因此各国对各种单轴向受力下的混凝土强度都规定了统一的标准试验方法。
1混凝土的抗压强度(1)混凝土的立方体抗压强度f cu,k和强度等级我国《混凝土结构设计规范》规定以边长为150mm的立方体为标准试件,标准立方体试件在(20 ±)C的温度和相对湿度90%以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为“ N/mm2”。
用上述标准试验方法测得的具有95%保证率的立方体抗压强度作为混凝土的强度等级。
《混凝土结构设计规范》规定的混凝土强度等级有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。
例如,C30表示立方体抗压强度标准值为30N/mm2。
其中,C50〜C80属高强度混凝土范畴。
图2-1混凝土立方体试块的破坏情况(a)不涂润滑剂;(b)涂润滑剂(2)混凝土的轴心抗压强度混凝土的抗压强度与试件的形状有关,采用棱柱体比立方体能更好地反映混凝土结构的实际抗压能力。
用混凝土棱柱体试件测得的抗压强度称为轴心抗压强度。
图2-2混凝土棱柱体抗压试验和破坏情况我国《普通混凝土力学性能试验方法标准》(GB/T 50081 —2002)规定以150mm< 150mm< 300mm的棱柱体作为混凝土轴心抗压强度试验的标准试件。
《混凝土结构设计规范》规定以上述棱柱体试件试验测得的具有95%保证率的抗压强度为混凝土轴心抗压强度标准值,用符号f ck表示,下标c表示受压,k表示标准值。
0 10 20 30 ^0 50 60 70 SO 90 10ft,/Ti.k (N/iniir)图2-3混凝土轴心抗压强度与立方体抗压强度的关系考虑到实际结构构件制作、养护和受力情况等方面与试件的差别,实际构件强度与试件强度之间将存在差异,《混凝土结构设计规范》基于安全取偏低值,轴心抗压强度标准值与立方体抗压强度标准值的关系按下式确定:f ck 0.88 cl c2 f cu,kci为棱柱体抗压强度与立方体抗压强度之比,对混凝土强度等级为C50及以下的取0.76,对C80取0.82,两者之间按直线规律变化取值。
c2为高强度混凝土的脆性折减系数,对C40及以下取1.00,对C80取0.87,中间按直线规律变化取值。
0.88为考虑实际构件与试件混凝土强度之间的差异而取用的折减系数。
国外常采用混凝土圆柱体试件来确定混凝土轴心抗压强度。
例如美国、日本和欧洲混凝0.79 f cu,k土协会(CEB)都采用直径6英寸(152mm)、高12英寸(305mm)的圆柱体标准试件的抗压强度 作为轴心抗压强度的指标,记作f'°c对C60以下的混凝土,圆柱体抗压强度f'和立方体抗压强度标准值fcu,k 之间的关系 可按下式计算。
当f cu,k 超过60N/mm 2后随着抗压强度的提高,f '与f cu,k 的比值(即公式中 的系数)也提高。
CEB-FIP 和MC-90给出:对C60的混凝土,比值为0.833;对C70的混 凝土,比值为0.857;对C80的混凝土,比值为0.875。
2混凝土的轴心抗拉强度0.45c2根据弹性理论,轴心抗拉强度的试验值可按下式计算:2Fdl压拉抗拉强度是混凝土的基本力学指标之一,其标准值用 f tk 表示,下标t 表示受拉,k 表示标准值。
混凝土的 轴心抗拉强度 可以采用直接轴心受拉的试验方法来测定。
f tk 0.88 0.395f c:55(1 1.645 )国外采用劈裂试验F ――破坏荷载;d ――圆柱体直径或立方体边长; I —— 圆柱体长度或立方体边长。
图2-4混凝土轴心抗拉强度和立方体抗压强度的关系5(«) (b)图2-5混凝土劈裂试验示意图(a)用圆柱体进行劈裂试验;(b)用立方体进行劈裂试验;(c)劈裂面中水平应力分布1—压力机上压板;2—弧形垫条及垫层各一条;3—试件;4—浇模顶面;5—浇模底面;6 —压力机下压板;7—试件破裂线2.1.2复合应力状态下混凝土的强度混凝土结构构件实际上大多处于复合应力状态,例如框架梁要承受弯矩和剪力的作用;框架柱除了承受弯矩和剪力外还要承受轴向力;框架节点区混凝土的受力状态就更复杂。
同时,研究复合应力状态下混凝土的强度,对于认识混凝土的强度理论也有重要的意义。
图2-6双向应力状态下混凝土的破坏包络图2-7法向应力和剪应力组合的破坏曲线A —轴心受拉;B —纯剪;C —剪压;D —轴心受压2三向受压状态三向受压下混凝土圆柱体的轴向应力-应变曲线可以由周围用液体压力加以约束的圆柱体进行加压试验得到,在加压过程中保持液压为常值,逐渐增加轴向压力直至破坏,并量测其轴向应变的变化。
102■0307€0,变Ob 应0' 5 O■.(M卜图2-8混凝土圆柱体三向受压试验时轴向应力 -应变曲线f ccf c (4.5 7.0) f L2.1.3混凝土的变形混凝土在一次短期加载、长期加载和多次重复荷载作用下都会产生变形,这类变形称为 受力变形。
另外,混凝土的收缩以及温度和湿度变化也会产生变形,这类变形称为 体积变形。
混凝土的变形是其重要物理力学性能之一。
1 一次短期加载下混凝土的变形性能 (1)混凝土受压时的应力-应变关系混凝土应力-应变曲线的形状和特征是混凝土内部结构发生变化的力学标志。
随着混凝土强度的提高,尽管上升段和峰值应变的变化不很显著, 但是下降段的形状有 较大的差异,混凝土强度越高,下降段的坡度越陡,即应力下降相同幅度时变形越小,延性越差。
402000创6()4020" 11 U图2-10不同强度的混凝土的应力-应变曲线比较(2)混凝土单轴向受压应力-应变本构关系曲线1)美国E.Hognestad建议的模型(1NCL —2tanccctanE CE cE c eE c tan i⑶混凝土轴向受拉时的应力-应变关系0 0X)3 0.06 0.09 0.12 0,15 0.18 0.21 0.24 0.27 A(mni)图2-13不同强度的混凝土拉伸应力 -应变全曲线(4)混凝土的变形模量原点切线1)混凝土的弹性模量(即原点模量)2)混凝土的变形模量3)混凝土的切线模量可以看出,混凝土的切线模量是一个变值,它随着混凝土应力的增大而减小。
需要注意的是,混凝土不是弹性材料,所以不能用已知的混凝土应变乘以规范中所给NC1—2 / —20,3N/mm 2 NC2—1 /—24.4N/mn? NC3一2 f c —35,58N/nmi 2标距-100mmE”cE c1022.2也(KN / mm2)cu,k2荷载长期作用下混凝土的变形性能lOniin .100min 1000min 7 d 70 d 700 d加载时间{对数坐标)图2-17不同应力/强度比值的徐变时间曲线的弹性模量值去求混凝土的应力。
只有当混凝土应力很低时,它的弹性模量与变形模量值才近似相等。
混凝土的弹性模量可按下式计算:5I.I V匸Dc^tl!^住甘体[KE:工斗IjOtriTH0 5 10 15 2d0 5 10 IS 2<»25 M3混凝土的收缩与膨胀影响混凝土收缩的因素有:(1) 水泥的品种:水泥强度等级越高制成的混凝土收缩越大。
⑵水泥的用量:水泥越多,收缩越大;水灰比越大,收缩也越大。
(3)骨料的性质:骨料的弹性模量大,收缩小。
⑷养护条件:在结硬过程中周围温、湿度越大,收缩越小。
(5) 混凝土制作方法:混凝土越密实,收缩越小。
(6) 使用环境:使用环境温度、湿度大时,收缩小。
(7) 构件的体积与表面积比值:比值大时,收缩小。
2.1.4混凝土的疲劳混凝土的疲劳是在荷载重复作用下产生的。
疲劳现象大量存在于工程结构中,钢筋混凝土吊车梁、钢筋混凝土桥以及港口海岸的混凝土结构等都要受到吊车荷载、车辆荷载以及波浪冲击等几百万次的作用。
混凝土在重复荷载作用下的破坏称为疲劳破坏。
图2-19混凝土在重复荷载作用下的受压应力-应变曲线混凝土的疲劳强度用疲劳试验测定。
疲劳试验采用100m M 100m M 300mm或150mm< 150mm< 450mm的棱柱体,把能使棱柱体试件承受200万次或其以上循环荷载而发生破坏的压应力值称为混凝土的疲劳抗压强度。
混凝土的疲劳强度与重复作用时应力变化的幅度有关。
在相同的重复次数下,疲劳强度随着疲劳应力比值的减小而增大。
2.2钢筋的物理力学性能2.2.1钢筋的种类混凝土结构中采用的钢筋有柔性钢筋和劲性钢筋两种。
1柔性钢筋线形的普通钢筋统称为柔性钢筋,其外形有光圆和带肋两类。
(<T)(川(C)W图2-20钢筋的外形(a)光圆钢筋;(b)螺旋纹钢筋;(c)人字纹钢筋;(d)月牙纹钢筋2劲性钢筋劲性钢筋是指配置在混凝土中的各种型钢、钢轨或者用钢板焊成的钢骨架。
劲性钢筋本身刚度很大,施工时模板及混凝土的重力可以由劲性钢筋本身来承担,因此能加速并简化支模工作。
配置了劲性钢筋的混凝土结构具有较大的承载能力和变形能力,常用于高层建筑的框架梁、柱以及剪力墙和筒体结构中。
2.2.2国产普通钢筋《混凝土结构设计规范》规定,用于钢筋混凝土结构的国产普通钢筋为热轧钢筋。
热轧钢筋是低碳钢、普通低合金钢在高温状态下轧制而成的软钢,其应力-应变曲线有明显的屈服点和流幅,断裂时有颈缩现象,伸长率比较大。
1强度等级和牌号国产普通钢筋按其屈服强度标准值的高低,分为4个强度等级:300MPa、335MPa、400MPa 和500MPa。
2工程应用《混凝土结构设计规范》提出了推广高强度、高性能钢筋HRB400和HRB500的要求。
因此,本教材的例题中,对梁、柱的纵向受力钢筋将主要采用这两种钢筋,特别是HRB400。
箍筋宜采用HRB400、HRBF400、HRB335 和HPB300。
光圆钢筋HPB300虽然也可用作纵向受力钢筋,因其强度较低,故主要用作箍筋。
当HRB500和HRBF500用作箍筋时,只能用于约束混凝土的间接钢筋,即螺旋箍筋或焊接环筋,见5.2.2节。
细晶粒系列HRBF钢筋、HRB500和热处理钢筋RRB400都不能用作承受疲劳作用的钢筋,这时宜采用HRB400钢筋。
工地上常把上述4个强度等级的钢筋俗称为I级、U级、川级和W级钢筋,但在施工图和正式文件中,都不应米用此俗称。