焦炉煤气制LNG工程方案

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

50000 Nm3/h焦炉煤气制LNG工程方案

1 工程概况

1.1 原料气供给量及组成

焦炉煤气供给量为50000Nm3/h,压力为0.02MPa,温度为40度,组成如下:

焦炉煤气组成表

1.2 设计内容

本项目新建循环水站、冷水站、配电室、控制室、消防水站、动力站(仪表空气和制氮装置)等辅助设备。

本项目不考虑办公楼、食堂等福利设备。

本项目不考虑锅炉房,蒸汽、脱盐水外购。

2生产规模和产品方案

2.1 生产规模和产品方案

根据原料气组成,组合甲方要求,确定本项目生产规模和产品方案。

本项目年生产约1.57亿Nm3液化天然气(简称LNG)(19635N m3/h)和0.63亿Nm3氢气(7882Nm3/h),年处理4亿Nm3焦炉煤气(50000Nm3/h)。LNG甲烷含量大于98% vol,产品质量符合《车用压缩天然气》要求;氢气纯度大于99.9% vol。

2.2 生产班制和年运行时间

装置为连续运行,年操作时间为8000 h。

工作班制为四班三运转。

3 工艺技术方案比选

根据焦炉煤气组成、杂质含量,结合产品方案,遵循工艺技术先进性、可靠性、安全性、经济型等原则,确定本装置的工艺技术方案。

焦炉煤气是焦炭生产过程的副产物,其主要成分为H2、CH4、CO、CO2、N2等,其杂质有焦油、萘、苯、硫化氢、有机硫等。焦炉煤气中H2、CO和O2在一定条件下可以合成甲烷,但焦炉煤气中的杂质对甲烷合成催化剂有很大的影响,故本项目要先对焦炉煤气进行净化处理,以满足甲烷合成的需要。焦炉煤气甲烷合成后,氢还有约30%的富裕量,故本项目提纯氢气,以提高项目附加值。本项目生产工艺装置包括原料气储存、压缩工段、脱

硫工段、合成工段、提氢工段、合成工段、液化工段、LNG储罐及装车站。工艺技术方案比选如下:

3.1原料气储存

气柜在燃气工程中主要起调峰作用,在化工生产中有稳压、缓冲、调压、混合作用,同时还可以起到事故、检修时的储备。储气柜分高压储气柜和低压储气柜,低压储气柜又分为湿式气柜和干式气柜。

高压储气柜具有占地少、耗材少,在加压制气时可以直接输送的特点。但属于压力容器,制作精度高,施工难度大,运行管理费用高的特点。

湿式气柜制作容易,操作维护方便,气柜本身安全,造价和运行费用低。但占地面积大,使用寿命短,寒冷地区要有防冻措施等缺点。

干式气柜的高径比较湿式大,占地面积小,荷重轻,基础小,土建费用相对节省,使用寿命为湿式的二倍以上,无需防冻等优点,适用于大型储量的气柜。但一次投资大,制作精度高,操作管理严格。

本项目拟选用一台湿式储气柜,公称容积为50000m3,储存时间为60分钟。

3.2 压缩工段

压缩工段是将原料焦炉煤气加压,以满足焦炉煤气净化、合成、液化等工段的工艺要求。本项目拟采用螺杆压缩机和往复压缩机相结合,原料焦炉煤气含杂质较多,首先经螺杆压缩机加压至0.41MPaG进行脱油脱、脱粗硫;然后经往复压缩机加压至2.8MPaG送至脱硫工段。提氢后的气体,压力降低,经压缩机增压后送至液化工段。

3.3 脱硫工段

脱硫采用干法脱硫工艺,首先进过粗脱硫,将焦炉煤气中的大部分无机硫脱除;其次经预加氢、一加氢转化器将焦炉煤气中大部分有机硫转化为无机硫,并经中温铁锰脱硫剂将无机硫脱除;再次经过二加氢转化器将焦炉煤气中残余的有机硫转化为无机硫,并经中温氧化锌脱硫剂将焦炉煤气中的无机硫脱除,最终使焦炉煤气中总硫含量低于0.1ppm。

3.4 合成工段

甲烷合成工艺采用多段反应器串并联优化组合形式,以及冷凝液循环的甲烷合成工艺,即能高效利用合成反应放出的热量产生高品位的蒸汽,又使焦炉煤气中CO和CO2合成甲烷反应更完全,可以直接进入液化工段,实现最小的循环和无循环操作。甲烷合成催化剂采用新奥集团自主研发的中温和高温甲烷合成催化剂。

3.5 提氢工段

甲烷合成后的气体组成为甲烷、氢气、氮气等。分离甲烷、氢气的方法主要有:变压吸附分离、膜分离、深冷液化分离等。

变压吸附法是利用气体混合物各组分在固体吸附剂上吸附能力的不同来进行的。其原理是基于压力和循环条件在加压时完成气体混合物的分离,在低压时完成吸附剂的再生,用部分产品气为脱附冲洗气。吸附过程是在压力下进行的,再生冲洗一般在常压下进行。通常是两个塔切换运行。变压吸附具有设备简单、脱附时间短、操作方便、纯度高等优点。缺点是甲烷气一侧压力为常压,进入下一工段还要增压;氢气侧带压,作为燃料燃烧还需减压,因此增加动力消耗。

膜分离法工作原理是两种或两种以上的气体混合物通过高分子膜时,由于各种气体在膜中的溶解度和扩散系数的不同,导致不同气体在膜中相对渗透速率有差异。在驱动力——膜两侧压力差作用下,渗透速率相对快的气体,如水蒸汽、氢气、二氧化碳等优先透过膜而被富集;而渗透速率相对慢的气体,如甲烷、氮气、一氧化碳等气体则在膜的滞留侧被富集,从而达到混合气体分离之目的。优点是设备简单、操作方便、氢气侧为常压、甲烷气一侧压降小,从而节省动力。缺点是氢气纯度能达到90—95%,如果纯度到99%以上,成本高。

混合气直接深冷液化法是将甲烷合成生成气直接进入LNG装置,使甲烷直接液化与氢气、氮气分离,这种方法省去了甲烷与氢初步分离装置,投资略少,甲烷分离的纯度较高,但甲烷气损失量高、氢气纯度低。

结合本项目产品方案,综合考虑工艺要求、一次性投资、运行费用等因素,你选PSA 提氢装置,以得到高纯度氢气,然后送至液化工段获得LNG。

3.6 液化工段

液化工段拟采用混合制冷液化工艺和低温精馏分离工艺,将合成天然气中氢气和氮气分离,以满足LNG中甲烷含量的要求。

3.7 产品储运

LNG储运有以下几种形式:小型真空粉末绝热储罐、粉末堆积绝热子母罐、粉末堆积绝热常压罐、低温双层球罐。

考虑设备制造和生产维护,本项目拟选用低温双层粉末堆积绝热常压罐。选用公称容积为4500m3常压低温双层粉末堆积绝热常压罐,储运时间约为9天。

储罐采用地上式单容罐结构(内、外罐结构)。内罐为储存LNG的立式罐,外罐为用低合金压力容器钢板制造的自支撑拱顶结构的立式圆筒形储罐。外罐与内罐之间的夹层空间为绝热层,绝热层采用普通堆积绝热的方式,填充膨胀珠光砂加氮气,使储罐达到低温绝热

相关文档
最新文档