疾病动物模型

合集下载

病毒性疾病的动物模型研究

病毒性疾病的动物模型研究

病毒性疾病的动物模型研究
病毒性疾病是指由病毒引起的传染性疾病,其病原体可通过空气、水、食物、接触等途径传播。

病毒性疾病对人类和动物的健康造成了极大的威胁,因此对其进行动物模型研究非常重要。

动物模型是指利用动物作为研究对象,通过对其进行实验观察来模拟人类或动物体内的生理和病理过程。

在病毒性疾病的研究中,动物模型可以用来评估疫苗和药物的有效性和安全性,以及了解病毒的传播和致病机理等。

目前,常用的动物模型包括小鼠、大鼠、豚鼠、兔子、猴子等。

不同的动物模型适用于不同类型的病毒性疾病研究。

例如,小鼠可以用于乙型肝炎、乙型脑炎等疾病的研究,而猴子则可以用于艾滋病、乙型肝炎等人类重要传染病的研究。

在动物模型研究中,需要注意以下几个方面:
1. 动物保护:在进行动物实验时,需要遵守相关法律法规和伦理规范,保护动物的权益和福利。

2. 动物选择:选择适合的动物模型非常重要。

需要考虑其解剖结构、生理功能、免疫系统等因素。

3. 实验设计:实验设计需要严密合理,控制好实验变量,保证实验结果的可靠性和可重复性。

4. 数据分析:对实验结果进行统计分析和解释,得出科学结论。

总之,动物模型是病毒性疾病研究中不可或缺的一部分。

通过严谨的实验设计和数据分析,我们可以更好地了解各种病毒性疾病的致病机理和传播途径,为预防和治疗这些疾病提供科学依据。

同时,在进行动物实验时,我们也需要尽可能地减少对动物的伤害和不必要的实验。

肾疾病研究的常用动物模型

肾疾病研究的常用动物模型

系膜增殖性肾炎模型的制备
将SD大鼠一次性尾静脉注射ATS 2 ml, 于注射后3h, 24h及3天~3个月不等时间取肾脏作病理检查。每 天检测尿肌酐和尿蛋白。
动物模型特点
受试大鼠仅有异体抗体相,而无自体抗体相, 即表现为注射异体抗Thy-1抗体后,产生系膜 细胞溶解及迅速修复过程,病变呈一过性; 系膜损伤过程为补体依赖性,用蛇毒消除补 体不影响抗Thy-1抗体与系膜细胞结合,但可 减轻和阻止系膜细胞损伤和溶解过程; 病变过程有白细胞、血小板积聚的炎症反应; 修复过程迅速,30~45天之内病变已几乎全 部修复,说明肾小球系膜细胞有较强的修复能 力及血管再生能力。
注意事项
根据ARF发病机理正确选择ARF动物模型 的种类; 根据实验观察指标和标本的需要量选择动 物的种类,如需要标本的量大,应选择较大 的动物,如犬、兔; 根据每一种动物模型动态病理生理变化的 规律,安排标本采集和给药的时机,以取得 最佳的实验结果,所以在正式实验之前,一 定要做预实验,明确在当时实验条件下动物 模型动态变化规律;
坏死性肾病动物模型( 阿霉素法) 坏死性肾病动物模型 阿霉素法 制备方法
选用大鼠250~300g,右肾摘除,7天后, 5mg/kg阿霉素尾静脉注射一次;术后第30天 重复注射阿霉素3mg/kg。
机理及应用评价
大鼠24小时内动物肾功能受损。小鼠注 升汞4小时后,即可造成急性中毒性肾病 。
机理及应用评价
肾疾病研究的常用动物模型
分 类
1. 肾炎动物模型 2. 肾病动物模型 3. ARF动物模型 动物模型 4. CRF动物模型 动物模型 5. 坏死性肾病动物模型 6. 转基因动物模型
分 类
1. 肾炎动物模型
1) Heymann肾炎模型(同种免疫复合物 肾炎模型( 肾炎模型 性肾炎) 性肾炎 2) thy-1.1肾小球肾炎模型 肾小球肾炎模型 3) 肾毒性血清肾炎(Masugi肾炎)模型 肾毒性血清肾炎( 肾炎) 肾炎 4) 肾小管间质性肾炎动物模型 5) 局灶性肾炎动物模型 6) 急性肾盂肾炎动物模型

免疫缺陷动物模型

免疫缺陷动物模型

免疫缺陷动物模型一、概述免疫缺陷动物是指由于先天性遗传突变,或用人工的方法,培育一种或多种免疫功能缺陷的动物。

1962年,苏格兰医师Issacson等首先发现无胸腺裸小鼠。

1969年,丹麦学者Rygaard首次成功地将人类恶性肿瘤移植于裸小鼠体内,肿瘤在体内存活并生长。

从此,免疫缺陷动物开创了肿瘤学、免疫学、细胞生物学的新的里程碑。

二、按免疫功能缺陷的种类常分为1、T-淋巴细胞功能缺陷动物:裸小鼠、裸大鼠、裸牛、裸豚鼠等。

2、B-淋巴细胞功能缺陷动物:CBA/N小鼠、Arabin马和Quarter马等马属动物。

3、NK细胞功能缺陷动物:Beige小鼠。

4、联合免疫缺陷动物:Scid小鼠等其他人工定向培育的多种免疫功能缺陷动物。

三、常见的免疫缺陷动物1、裸小鼠是指先天性无胸腺,且无被毛的小鼠,简称为裸小鼠。

其突变基因为裸基因,符号为:nu,是一个隐性突变基因,位于小鼠的第11号染色体上。

目前,此基因已导入到不同品系的小鼠中,常见的有BALB/c-nu、C3H-nu、C57BL/6-nu等。

裸鼠的解剖生理特点:①毛囊发育不良,外观上看几乎没有被毛,故称“裸鼠”;②无胸腺,仅有胸腺残迹或异常的胸腺上皮。

故不能分泌胸腺素,不能使T细胞正常分化,而T细胞室移植排异的主要细胞。

B细胞基本正常但功能欠佳。

有较高的NK细胞数量和活性。

③因为IgG的产生需要T细胞和巨噬细胞的参与,其免疫球蛋白主要是IgM,只有极少量的IgG。

④自发肿瘤现象罕见,可能与NK细胞的活性高有关。

⑤裸鼠易患鼠肝炎和病毒性肺炎。

⑥纯合裸鼠母性极差,且受孕率低,乳房发育不良。

通常以纯合雄鼠与带有nu基因的杂合雌鼠可获1/2裸鼠。

⑦裸鼠需饲养在屏障环境中。

自裸鼠问世以来,已广泛应用于肿瘤学、微生物学、免疫学、寄生虫学、遗传学、毒理学、临床医学等研究中。

2、裸大鼠1953年,英国科学家首次在大鼠中发现一种外观与裸小鼠相似,只是被毛不想裸小鼠那样全无,通过解剖和免疫学检查发现其也是无胸腺、缺乏T细胞功能,B细胞功能正常,细胞活力增强,繁殖方式与裸小鼠相同,且能接受异种组织和细胞移植,且因其体型大,用一只裸大鼠可为常规血液学和血清生物化学分析实验提供足够的血样,同时大鼠易于进行外科手术,为肿瘤移植和肿瘤供血研究提供了方便。

呼吸系统疾病动物模型

呼吸系统疾病动物模型
豚鼠是筛选镇咳药(antitussives)的常用动物。 小鼠和大鼠给予化学刺激虽然能诱发咳嗽,但其 咳嗽与喷嚏动作很难区别,变异较大,特别是反 复刺激时变异更大,故小鼠主要作为初筛镇咳药 时使用。
一、小鼠氨水引咳法
[造模原理] 浓氨水是一种较强的化学刺激物,动物吸入氨 水气雾后,刺激呼吸道感受器,引起咳嗽。 [动物和主要器材] 成年小鼠,性别不拘。500ml玻璃罩; 空气压缩 机(或脚踏风箱)。
一、弹性蛋白酶诱发兔肺气肿模型
[造模原理] 肺组织中参与肺泡壁降解的蛋白酶主要是弹性 蛋白酶(elastase)。弹性蛋白酶和弹性蛋白酶抑 制因子(主要为α1-抗胰蛋白酶)失平衡可能在肺 气肿发生中起一定作用。
在正常情况下,弹性蛋白酶抑制因子可以抑制 此酶的活性,使弹性蛋白酶与弹性蛋白酶抑制因子 之间处于平衡状态,维持肺组织正常结构,避免肺 气肿的发生,但当弹性蛋白酶活性过强时可造成肺 气肿。
慢支的病因和发病机制较复杂,是由多种因素 长期综合作用所致。已确定的致病因素包括细菌 和病毒感染、吸烟、空气污染、过敏和机体内在 因素等。
一、大鼠烟熏模型
[造模原理] 烟雾中含有许多有害物质,如焦油、CO、尼古丁 及氧化物等,它们随烟雾被吸入支气管,抑制粘膜上 皮细胞的纤毛运动,刺激分泌增加,降低巨噬细胞的 吞噬功能而有利于感染。随着烟雾刺激时间的延长, 气管炎症逐渐加重,一般在21d后开始出现呼吸道 慢性炎症,约至第7周可形成慢性支气管炎的典型病 理变化。
咳嗽动物模型 支气管哮喘动物模型
慢性支气管炎模型 肺气肿和肺心病动物模型
肺水肿动物模型 肺纤维化动物模型 肺结核病动物模型 肺硅沉着症动物模型
第一节
咳嗽动物模型
咳嗽是呼吸系统多种疾病的常见症状。确定受试 药物的镇咳作用,可采用小鼠氨水或二氧化硫引咳 法及豚鼠枸橼酸引咳法两种模型加以确定, 并与阳 性药物进行同步观察。

动物医学专业的实验动物疾病模型研究

动物医学专业的实验动物疾病模型研究

动物医学专业的实验动物疾病模型研究动物医学专业的实验动物疾病模型研究是一项重要的科研工作,对于了解动物疾病发生的机制、预防和治疗具有重要意义。

本文将介绍实验动物疾病模型研究的基本概念、研究方法以及应用前景。

一、实验动物疾病模型的概念实验动物疾病模型是通过人为干预和建立动物体内病理过程的一种研究手段。

它可以在实验室环境下模拟动物体内的疾病发展过程,通过对不同疾病模型的建立和研究,可以深入了解疾病的发生机制、病理变化以及药物治疗的效果。

常见的疾病模型包括感染性疾病、代谢性疾病、免疫性疾病等。

二、实验动物疾病模型的建立方法1. 遗传方法:通过遗传改变或突变产生动物模型。

例如,通过转基因技术将人类疾病相关基因导入动物体内,使其表现出与人类相似的病理现象,进而研究疾病发生的机制。

2. 物理方法:通过物理手段诱发动物模型。

例如,通过辐射、创伤等方法导致动物组织损伤,进而研究其修复机制以及病理过程。

3. 化学方法:通过给予动物特定的化学物质诱发疾病模型。

例如,给小鼠注射某些药物,使其出现高血压、糖尿病等疾病表型,从而研究药物治疗效果。

4. 免疫学方法:通过激活或抑制动物体内免疫系统产生某种疾病模型。

例如,通过注射特定的抗体或疫苗,模拟炎症或自身免疫疾病,来研究免疫学机制。

5. 组织工程学方法:通过组织工程技术构建人工组织或器官,模拟某种疾病的生理或病理状态。

例如,构建人工心脏组织,用于研究心脏病的发展机理。

三、实验动物疾病模型的应用前景实验动物疾病模型在科学研究和临床医学中具有广阔的应用前景。

首先,它可以帮助科学家深入了解疾病的发生机制,揭示疾病的本质和病理过程。

其次,通过研究不同疾病模型,可以评估和验证新药物的疗效和安全性,为药物研发提供重要依据。

此外,实验动物疾病模型在临床医学中也有重要作用,可以帮助医生更好地了解疾病的发展规律和治疗策略,为临床诊断和治疗提供借鉴。

总之,动物医学专业的实验动物疾病模型研究对于推动动物医学和临床医学的发展具有重要意义。

白细胞疾病动物模型制作步骤及方法

白细胞疾病动物模型制作步骤及方法

白细胞疾病动物模型制作步骤及方法在医学研究中,为了更好地理解和治疗白细胞疾病,制作合适的动物模型是至关重要的。

这些模型能够帮助科研人员深入探究疾病的发病机制、发展过程以及测试新的治疗方法。

下面将详细介绍白细胞疾病动物模型的制作步骤及方法。

一、模型选择首先,需要根据研究的具体白细胞疾病类型以及实验目的来选择合适的动物模型。

常见的实验动物包括小鼠、大鼠、豚鼠等。

小鼠由于其繁殖快、基因易于操作等优点,在白细胞疾病研究中应用广泛。

二、诱导方法(一)化学诱导化学物质诱导是常见的方法之一。

例如,使用苯、环磷酰胺等化学物质,可以破坏骨髓造血微环境,影响白细胞的生成和发育,从而诱导白细胞疾病的发生。

(二)放射线诱导通过对动物进行一定剂量的放射线照射,损伤骨髓造血干细胞,导致白细胞异常。

这种方法可以模拟由于放射性损伤引起的白细胞疾病。

(三)病毒感染诱导某些病毒,如人类 T 淋巴细胞病毒 1 型(HTLV-1)、EB 病毒等,与特定的白细胞疾病密切相关。

将这些病毒感染动物,有可能诱导出相应的疾病模型。

(四)基因工程诱导利用基因编辑技术,如 CRISPRCas9 系统,对动物的基因组进行特定的修饰,敲除或插入与白细胞相关的基因,从而构建出遗传性白细胞疾病模型。

三、实验动物的准备(一)动物的选择选择健康、遗传背景清晰、年龄和体重适宜的动物。

一般来说,年轻的动物对诱导因素的反应更敏感,但也需要考虑实验周期和动物的成熟程度对实验结果的影响。

(二)动物的饲养环境提供清洁、安静、温度和湿度适宜的饲养环境,保证动物的正常生长和健康状态。

遵循动物伦理和福利原则,给予充足的食物和水。

四、诱导操作(一)化学诱导操作以环磷酰胺诱导为例,根据动物的体重计算合适的给药剂量,通过腹腔注射或静脉注射的方式给药。

给药过程中要严格控制药物浓度和注射速度,避免药物外渗和动物的过激反应。

(二)放射线诱导操作使用专门的放射线设备,对动物进行全身或局部照射。

人类疾病动物模型

人类疾病动物模型

第二节 肿瘤疾病动物模型
分类:
1. 自发性肿瘤(spontaneous
tumor )动物模型:
指实验动物未经任何有意识的人工处置,在自然情况下发生 的肿瘤所形成的模型。
2.
诱发性肿瘤(induced
tumor)动物模型:
是使用致癌因素在实验条件下诱发动物发生肿瘤的动物模型。
3.
移植性肿瘤(transplant
物理因素 :机械损伤、放射线损伤、气压、手术 化学因素 :化学药致癌、化学毒物中毒、强酸强碱烧 伤、某种有机成分的增加或减少导致营养 性疾病等。 生物因素 :细菌、病毒、寄生虫、生物毒素等 。 复合因素 :
2.自发性动物模型 (Spontaneous animal model):
指实验动物未经任何人工处置,在自然条件下动物自然 发生、或由于基因突变的异常表现通过遗传育种保留下来的动物 模型。
第一节 人类疾病动模型评估及分类
人类疾病动物模型(Animal models of human diseases):
是指医学研究中建立的具有人类疾病模拟表现
的动物实验对象和相关材料。
一、复制人类疾病动物模型的评估 1.相似性 复制的动物模型应尽可能近似人类疾病,最好 能找到与人类疾病相同的自发性疾病。 2.重复性 理想的人类疾病动物模型应该是可重复的,应 是可标准化的,不能重复的动物模型是无法进行应用 研究的。
3.可靠性 复制的动物模型应力求可靠地反映人类疾病,即 可特异地反映该种疾病或某种机能、代谢、结构变化, 同时应具备该种疾病的主要症状和体征,并经受一系 列检测(如心电图、临床生理、生化指标检验、病理切 片等)得以证实。
4.适用性和可控性 设计复制人类疾病动物模型,应尽量考虑在今后 临床能应用和便于控制其疾病的发展,以便于开展研 究工作。 5.易行性和经济性 复制动物模型设计,应尽量做到方法容易执行和 合乎经济原则。

动物模型在人类疾病研究中的意义

动物模型在人类疾病研究中的意义

动物模型在人类疾病研究中的意义一、概述近年来,随着科学技术的不断进步和医学研究的深入,动物模型在人类疾病研究中扮演着越来越重要的角色。

在生物医学领域,动物模型被广泛应用于疾病的发病机制研究、药物研发、治疗方法验证等方面。

本文将深入探讨动物模型在人类疾病研究中的意义,以及其在科学研究和临床医学中的价值。

二、动物模型在疾病发病机制研究中的意义1. 提供实验对象动物模型可以作为实验对象,用于模拟人类疾病的发病过程及病理生理变化。

通过对动物模型进行实验观察,可以深入了解疾病的发生发展规律,为人类疾病的预防和治疗提供重要参考依据。

2. 探索疾病发病机制通过动物模型,科研人员可以模拟出多种人类疾病的发病过程,如心血管疾病、肿瘤、糖尿病等。

通过对动物模型的研究,可以深入探讨这些疾病的发病机制,从而为临床治疗提供有效的理论依据。

三、动物模型在药物研发中的意义1. 药物安全性评价在药物研发过程中,动物模型可以用来评估药物的安全性和毒性。

通过动物试验,可以全面了解药物对机体的影响和不良反应,为临床应用提供重要参考。

2. 药效评价动物模型还可以用于评价药物的治疗效果和药效机制。

通过在动物模型上进行药效试验,可以帮助科研人员确定药物的合理用药剂量和治疗时间,为临床用药提供科学依据。

四、动物模型在疾病治疗方法验证中的意义1. 临床治疗效果验证动物模型可以用于验证新的治疗方法在动物体内的疗效,对于一些新的、尚未在人体内验证的治疗方法,可以通过动物模型进行实验研究,为其在临床上的应用提供有效的科学依据。

2. 新疗法验证对于一些新的疾病治疗方法,特别是基因治疗、干细胞治疗等先进技术,动物模型可以用于验证其疗效和安全性。

通过动物实验,可以全面评估新治疗方法的实际效果和潜在风险,为临床应用提供理论依据。

五、动物模型在科学研究和临床医学中的价值1. 提高疾病研究效率动物模型可以帮助科研人员更快速地了解疾病的发病机制、药物效果和治疗方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

疾病动物模型 1 复制方法和应用 动物疾病模型的复制,是用人为的方法,使动物在一定的致病因素(物理的、化学的、生物的)作用下,造成动物组织、器官或全身一定损害,出现某些类似人类疾病的功能、代谢、形态结构方面的变化或各种疾病,通过这种手段来研究人类疾病的发生、发展规律,为研究人类疾病的预防、治疗(包括新药物试用)提供理论依据。所以动物疾病模型的复制,在医学科学研究中占有十分重要的地位。 目前我国生物医学科学研究中,动物疾病模型主要用于三个方面:即实验生物学、实验病理学和实验治疗学(新药筛选亦属于实验治疗学范畴)。由于研究目的不同,对于疾病模型的要求也有所区别。如实验病理学,它着重于研究用某种特定方法复制出某些疾病。整个疾病复制过程,就是它的研究内容,目的是通过疾病的复制去探讨疾病的病因学和发病原。而实验治疗学则完全不同,疾病的复制仅是它研究的开始,因为它的主要目的是为了阐明在该病的发生发展过程中,某些治疗措施或药物的疗效如何。 诱发性动物模型的复制方法不外是用生物的、物理的、化学的和各种环境因子作用于动物而产生。 生物学因素包括细菌、病毒、寄生虫、细胞、生物毒素、激素等各种致病原,通过接种而使正常动物发生疾病。如接种细菌、病毒于敏感动物使其产生各种传染病。目前已知的150余种人畜共患病提供了极有意义的传染病材料。从流行病学、病理学或并发症等不同角度研究,首先要充分了解动物与人在疾病易感性和临床表现等方面的同异处。例如轮状病毒可引起婴儿急性坏死性肠类,犬感染轮状病毒后的表现只是亚临床的。然而严重威胁幼犬的肠道病毒是细小病毒,而人对细小病毒则并不易感。 物理因素是多方面的。例如在机械力作用下产生各种外伤性脑损伤、骨折等模型,气压变动复制高空病、潜水病;温度改变产生各种烧伤和冻伤;放射线照射可复制各型放射病,引起免疫功能抑制或诱发Spragae-Dawley系大鼠乳腺癌;闪光刺激诱发癫痫模型;噪音刺激引起听源性高血压及改变行为记忆功能等。复制各种模型时必须严格考虑不同对象应采用的不同的刺激强度、频率和作用时间,即按设计要求摸索有关实验条件。例如用扩张的气囊在颅内加压制作急性颅内压增高症动物模型时,应该按不同压力梯度通过几小时逐步加压,待脑的顺应性发生改变后才出现临床“脑缺血-脑水肿”的恶性循环。盲目加压会急速发生脑疝死亡,不可能复制出脑水肿对机体代偿和失代偿的病理生理过程,这样的模型会丧失或缺乏临床研究的价值。 化学因素可直接或间接(通过代谢产物)对机体产生有害作用。如用各种化学致癌剂诱发各种肿瘤;用各种化学毒物或毒气诱发各种中毒性疾病;用强碱、强酸可致皮肤烧伤等。 不同品种、不同年龄的动物也存在剂量、耐受性和副作用等差异。实验者需要通过广泛收集有关信息,在预实验中摸索稳定而有效的实验条件。研究者可根据研究目的需要,选择相应的实验方法,在健康的动物身上复制出所需要的疾病模型。诱发性疾病模型已知有数千种,复制的方法也是多种多样的,这里仅对一些常用的、经典的人类疾病的动物模型复制方法加以简介。

2 肿瘤模型的复制方法 复制动物肿瘤的方法很多,如将实验动物用放射线照射或静脉、局部注射放射性同位素;使用各种化学致癌剂(烷化剂、多环芳香烃类、芳香胺类、氨基偶氮染料、亚硝胺类);使用植物毒素(如苏铁素、黄樟素等);使用金属(如铬、镍、砷、镉等);使用RNA和DNA肿瘤病毒;使用多种致癌性霉菌毒素(其中致癌作用最强者为黄曲霉素)等,均可诱发成各种肿瘤。 诱发性肿瘤模型其数量在诱发性动物模型中占首位。一般是利用致癌物质通过口服、注入、埋藏和涂抹等方式使动物发生肿瘤。能诱发动物肿瘤的病毒也有不少报导,例如小鼠白血病病毒(MLV)、鸡白血病病毒(ALV)和猫白血病病毒(FLV)分别能引起大小鼠,鸡和猫白血病。Rous鸡肉瘤病毒可使田鼠、鸡、鸭、鹌鹑、猴、蛇等多种动物发生肉瘤。猫肉瘤肉毒(FSV)可使大鼠、猫、犬和猴发生肉瘤。人类腺病毒能诱发小鼠、田鼠肉瘤和淋巴瘤。 2.1 诱发性肿瘤动物模型 2.1.1 肝癌 二乙基亚硝胺(DEN)诱发大白鼠肝癌:取体重250g左右的封闭群大白鼠,雌雄不拘。按性别分笼饲养。除给普通食物外,饲以致癌物,即用0.25%DEN水溶液灌胃,剂量为10mg/kg,每周一次,其余5天用0.025%DEN水溶液放入水瓶中,任其自由饮用。共约4个月可诱发成肝癌。或单用0.005%掺入饮水中口吸服8个月诱发肝癌。4-2甲基氨基氮苯(DBA)诱发大鼠肝癌:用含0.06%DBA的饲料喂养大鼠,饲料中维生素B2不应超过1.5~2mg/kg,4~6月就有大量的肝癌诱发成功。2-乙酰氨基酸(2AAF)诱发小鼠、狗、猫、鸡、兔肝癌:给成年大鼠含0.03%2AAF标准饲料。每日每平均2~3mg2AAF(也可将2AAF混于油中灌喂),3~4月后有80~90%动物产生肝肿瘤。二乙基亚硝胺诱发大鼠肝癌:用剂量为每日0.3~14mg/kg体重,混于饲料或饮水中给予,6~9个月后255/300大鼠发生了肝癌。亚胺基偶氮甲苯(OAAT)诱发小鼠肝癌:用1%OAAF苯溶液(约0.1ml含1mg)涂在动物的两肩胛间皮肤上,隔日一次,每次2~3滴,一般涂100次。实验后7~8周即而出现第一个肝肿瘤,7个月以上可诱发小鼠肝肿瘤约55%。或用2.5mgOAAT溶于葵瓜子油中,给C3H小鼠皮下注射4次,每日间隔10天,也可诱发成肝癌。黄曲霉素诱发大鼠肝癌:每日饲料中含0.001~0.015ppm,混入饲料中喂6个月后,肝癌诱发率达80%。 2.1.2 胃癌 甲基胆蒽诱发小鼠胃癌:取20g左右的小鼠,无菌手术下,在腺胃粘膜面穿挂含甲基胆蒽(MC)线结。含MC的线结是用普通细线,在一端打结后,将线结置于盛 有MC小玻璃试管内,在酒精灯上微微加温,使MC液化渗入线结。MC浓度为0.05~0.1g20-甲基胆蒽内浸入10~20根线。手术埋线后4~8个月可诱发成功胃癌。用不对称亚硝胺,剂量为0.25ml/kg体重,3个月后全部动物发生前胃乳头状癌,7~8个月后有85~100%发生前胃癌。昆明种最敏感。A系次之,615系小鼠敏感性最差。此外还可用甲基亚硝基醋酸尿素给BD大鼠饮水中加2mg/kg体重,每周5次饮用,520天后全部大鼠均发生了腺胃癌。 2.1.3 食管癌 甲基苄基亚硝胺(MBNA)诱发大鼠食管癌:取体重100g以上的Wistar大鼠,任其食用含甲基苄基亚硝胺的饮水,并将MBNA掺入饲料中使每日摄入量达0.75~1.5mg/kg体重。80~100天可诱发成食管癌。也可用二烃黄樟素(Dihydrosafrole),它是一种制备啤酒的调味品,在大鼠饲料中加入百万分之二千五百至一万(2500~10000ppm)黄樟素,就能引起20~75%的食管癌。用0.2%或0.005%的甲基苄基亚硝胺水溶液,给动物经口灌喂,每天一次,大鼠灌注剂量为1mg/kg体重,至第27天即发现一例食管乳头状瘤,154天发现第一例食管癌,11个月食管癌的发生率为53%。 2.1.4 肺癌 二乙基亚硝胺(DEN)诱发小鼠肺癌:小白鼠每周皮下注射1%DEN水溶液一次,每次剂量56mg/kg,DEN总剂量达到868mg,观察时间为100天左右时,发癌率可达40%。而DEN总剂量达到1176mg,观察时间为半年左右时;发癌率可达94%。乌拉坦诱发肺腺癌:小鼠(A系,1~11/2月龄)较大鼠敏感,每次每只腹腔注入10%乌拉坦生理盐水液0.1~0.3ml,间隔3~5日再注,共注2~3个月,每只小鼠用量约为100mg,注后3个月肺腺癌发生率为100%,而且多数为多发性,这种诱发瘤为良性。此外还可用气管内注入苯并芘、硫酸铵气溶胶、甲基胆蒽等诱发肺癌。如猴气管内注入3,4苯并芘(苯并花为3~15mg与等量之Fe2O3混合液),每周一次,共10次,6只猴中有2只诱发肺的鳞状上皮癌。亦有人用硫酸胺气溶剂给100只大鼠吸入,13个月后所有大鼠都发生了肺腺癌。用0.2%明胶作悬浮剂将甲基胆蒽混合后给金地鼠气管内注入,每次0.1ml(含甲基胆蒽5mg)每周一次,共6次,53周后有62.5%动物发生了肺癌。 2.1.5 鼻咽癌 二甲基胆蒽(MC)诱发大鼠鼻咽癌:取直径2~3mm的硬质塑米管,在酒精灯上小火拉成锥形,每段长约3.5cm,管内填以结晶体MC。小管一端用火封闭,以防药物外溢,尖端用针刺数孔,使MC能从小妃溢出。取体重120g左右的大白鼠,雌雄均可,乙醚麻醉后,由前鼻孔将上述含MC的塑料小管插入鼻腔,利用前鼻孔较小管粗端为小的特点,稍加用力,迫使小管全部进入鼻腔内,其尖部可达鼻咽腔。不需另加固定,即可使小管长期留于鼻腔内。待到预定时间(半年以上),或动物自行死亡时,到其鼻咽部,10%福尔马林固定,脱钙后,石蜡包埋,进行连续切片。发癌率可达60%以上。二乙基亚硝胺滴鼻法诱发鼻咽癌:取120g左右大白鼠,雌雄均可,乙醚麻醉后,用磨平针尖的8号针头,从前鼻孔轻轻插入,针尖可达鼻咽腔。经注射器灌注用1%吐温-80新配的33.3%DEN混悬液0.02ml(含DEN6.7mg)每周1次,共15~20次,可诱发成鼻咽癌。 2.1.6 宫颈癌 取雌性小白鼠,以附有0.1mgMC的棉纱线结在动物不麻醉的状态下,借助于阴道扩张器及磨纯的弯针,将线穿入宫颈。经右宫角背部穿出,使线结固定于宫颈口。线的另一端则固定于背部肌肉,缝合皮肤,挂线以后,同日开始连续注射青霉素2~3天。以防术后感染。至一定时间(半年左右)处死动物,宫颈组织用10%福尔马林固定,石蜡包埋,连续切片。 2.1.7 结肠癌 给四周龄的雄性大白鼠,皮下注射二甲基苄肼(Dimethlhydrazine,DMH)每周一次,连续21周,每次DMH21mg/kg。最后一次给药后1~4周,处死动物。降结肠部位用Bouin液固定,脱水,石蜡包埋,切片。所用之DMH先配成每100ml含400mg的母液,并加EDTA37mg,用氢氧化纳(0.1N)液将pH调至6.5备用。 2.2 移植性肿瘤动物模型 目前临床所用的抗肿瘤药中,大多数是经动物移植性肿瘤试验筛选而发现的。应用动物移植性肿瘤筛选药物的优点是:使一群动物同时接种同样量的瘤细胞,生长速率比较一致,个体差异较小,接种成活率近100%,对宿主的影响相类似,易于客观判断疗效,可在同种或同品系动物中连续移植,长期保留供试验用,试验周期一般均较短,试验条件易于控制等。因此目前抗肿瘤药筛选大多数采用动物移植瘤作为筛选模型。目前世界上保存的动物移植肿瘤约有400株,但筛选试验常用者仅20~30种。据1984年统计,我国在同系、同种动物中已建立各种动物和人的常见的瘤株64个。例如小鼠肺腺瘤(HP615)、小鼠子宫颈瘤27号(U27)、小鼠脑瘤22(B22)、小鼠淋巴细胞性血病(L615)、裸鼠人肝瘤移植瘤和人脑恶性胶质细胞瘤(NCS—1)等。 动物肿瘤可通过移植传代而培养出所需要的肿瘤细胞株。瘤株是一种组织学类型和生长特性已趋稳定,并能在同系或同种动物中连续传代的肿瘤细胞模型。肿瘤移植于健康动物,相当于活体组织培养,可长期保存瘤种,供实验所用。 实验中常用腹水瘤和实体瘤两种方式进行移植。对于会产生腹水的肿瘤,可将其一定数量的细胞注入受体动物腹腔形成腹水瘤或产生腹水。实体瘤移植也是在无菌条件下,把实体瘤切成2~3mm小块,植于受体动物皮下。 自体式同系动物肿瘤植不产生排导现象。同种动物移植时可结合注射肾上腺皮质激素、抗肿瘤药物和适当量的放射等方法,降低宿主免疫排斥反应。异种动物肿瘤移植始于Leidy(1834年),难度较大。近50年来异体移植常用下列方法:①

相关文档
最新文档