线性代数复习

合集下载

线性代数复习要点

线性代数复习要点

2
2、初等变换的性质 (1) 对调变换使得行列式的值反号; (2) 倍乘变换只是放大或缩小行列式的值; (3) 倍加变换不改变行列式的值. 3、加法原理:若行列式的某一行(或列)的元都是两数之和,则此行列式等于两个行列式的和. 4、乘积法则:对任何 n 阶矩阵 A 和 B ,均有 | AB | | Α | | B | . 5、转置运算不改变行列式的值. 三、行列式的计算 1、典型方法:三角化方法、降阶法、归纳法、递推法、分拆法、升阶法. 2、设 A 为 n 阶矩阵, k 为任意数,则 kA k A .
1 * * 1 * T T *
4、 ( A ) ( A ) , ( A ) ( A ) , ( A ) ( A ) .
T 1
AT A 5、 B
T
, T B B
1
A T A
T
BT ;
A1 A 当 A, B 可逆时,有 B
一、行列式的概念
n 阶行列式 A 或 det A 是 n 阶矩阵 A [aij ] 按下述运算法则得到的一个算式: 当 n 1 时, A a11 a11 ; 当 n 2 时,
A a11 A11 a12 A12
这里 A1 j (1)
三、分块矩阵的求逆公式 当 A, B 可逆时,有
, 1 B B
A 1 A
1
B 1 .
A 1 A C 0 B 0
四、重要结论
1
A1 A1CB 1 A 0 , 1 1 B 1 C B B CA
(5) rank
A 0 0 rankA rankB , rank 0 B B

《线性代数》复习题B

《线性代数》复习题B

厦门大学网络教育2012-2013学年第一学期《线性代数》课程复习题( B )一、选择题1.设行列式 111222333a b c a b c d a b c =,则111111222222333333223223223c b c a b c c b c a b c c b c a b c ++++++=+++( )。

A .2d -; B .d -; C .d ; D .2d 。

1.B 。

解:由行列式的性质可知111111111111222222222222333333333333223223223c b c a b c c b a a b c c b c a b c c b a a b c d c b c a b c c b a a b c ++++++==-=-+++。

2.已知A 为n 阶非零方阵,E 为n 阶单位矩阵,若3A O =,则( )。

A .A E +不可逆,E A -不可逆;B .A E -不可逆,A E +可逆;C .A E +可逆,E A -可逆;D .AE +不可逆,E A -可逆。

2.C 。

解:由于23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+=,因此E A +,E A -均可逆,故选C 。

3.向量1α,2α,3α线性无关,则下列向量组线性相关的是( )。

A .12αα+,23αα+,31αα+; B .1α,12αα+,123ααα++; C .12αα-,23αα-,31αα-; D .12αα+,232αα+,313αα+。

3.C .解:显然有1223311()1()1()0αααααα-+-+-=,所以12αα-,23αα-,31αα-线性相关,故选C 。

4.若3阶方阵2E A -及E A +,3A E -都不可逆,则A 的特征多项式中常数项为( )。

A .23; B .2 ; C .23-; D .43。

线性代数总复习PPT 很全!.ppt

线性代数总复习PPT  很全!.ppt
m
x11 x22 xmm 0有非零解
线性方程组1,2 ,
,m
x1
0非零解
xm
R1,2, ,m m m是向量个数
判别法 1
n个n元1,2 ,
,
线性
n
相关
1,2 ,
,n
0
r1,2 , ,n n
n个n元1,2 ,
,
线性无关
n
1,2 ,
,n
0
r1,2 , ,n n
判别法 2
n阶方阵A可逆 A 0 A E
存在方阵B,使AB E,或BA E 秩 Ann n
A的行(列)向量组线性无关。 齐次线性方程组Ann X 0仅有零解 A的特征值全部 0
可逆矩阵的性质
设A,B都是n阶可逆矩阵,k是非零数,则
1
A1 1 A,
3 AB 1 B 1 A1
线性相关,则必可由1,2 ,
,
线性
m
表示,
并且表法惟一。
3、秩(A)= 列向量组的秩 = 行向量组的秩
定理
向量
可由1,2 ,
,
线性表示
m
x11 x22 xmm 有解
线性方程组1,2 ,
,m
x1
有解
xm
R1,2 , ,m R1,2 , ,m,
定理
向量组1,2 ,
,
线性相关
证明 设 x11 x22 x33 0
1.

x11 2 3 x21 2 x32 3 0
x1 x2 1 x1 x2 x3 2 x1 x3 3 0
因为1
,2
,3
线性无关,所以
x1 x1
x2 x2
x3

《线性代数》复习要点及练习

《线性代数》复习要点及练习

第一章 行列式复习要点:1. 会计算逆序数,余子式,代数余子式2. 熟练掌握行列式的性质,并能利用性质计算行列式3. 掌握克莱姆法则练习题:1. 排列1 6 5 3 4 2的逆序数是( ).A. 8 B .9 C .7 D . 62122.431235-的代数余子式12A 是( ).A 2143-- B2143- C 4125--D4125-3. 排列32514的逆序数是( ).A. 3B. 4C. 5D. 64.关于行列式,下列命题错误的是( ).A. 行列式第一行乘以2,同时第二列除以2,行列式的值不变 B .互换行列式的第一行和第三行,行列式的值不变 C .互换行列式的任意两列,行列式仅仅改变符号 D . 行列式可以按任意一行展开 5. 关于行列式,下列命题正确的是( ).A. 任何一个行列式都与它的转置行列式相等B .互换行列式的任意两行所得到的行列式一定与原行列式相等C .如果行列式有一行的所有元素都是1,则这个行列式等于零D . 以上命题都不对6. 关于行列式,下列正确的是( ).A. 如果行列式有一行的所有元素都是1,则这个行列式等于零.B. 互换行列式的任意两行所得到的行列式一定与原行列式相等.C. 行列式中有两行对应成比例,则此行列式为零.D. 行列式与它的转置行列式互为相反数.7. 下列命题错误的是( ).A. 如果线性方程组的系数行列式不等于零,则该方程组有唯一解 B .如果线性方程组的系数行列式不等于零,则该方程组无解 C .如果齐次线性方程组的系数行列式等于零,则该方程组有非零解 D .如果齐次线性方程组的系数行列式不等于零,则该方程组只有零解8212431235-的余子式32M =————,代数余子式32A =—————— 9. 已知k341k 000k 1-=,则k =__________.10. 若52k 74356=,则k =__________.11. 计算行列式|12345006|=_________ 12. 计算行列式|1111123413610141020| 13.计算行列式53-120172520-23100-4-14002350D =14. 计算行列式1234248737124088D =15.计算行列式x yyxx x y y yx x y+++第二章 矩阵复习要点:1. 掌握矩阵的线性运算,矩阵乘法运算律,转置矩阵的运算律,2. 掌握矩阵的初等变换3. 掌握方阵行列式的性质,转置矩阵的性质,逆矩阵的性质4. 会求逆矩阵.了解待定系数法和伴随矩阵法,掌握用初等变换求解逆矩阵相关问题.能够证明矩阵的可逆性.5. 会用初等行变换求矩阵的秩6. 会求解矩阵方程练习题:1. 设A ,B 均为n 阶可逆阵,则下列公式成立的是( ). A T T T B A AB =)( B T T T B A B A +=+)( C 111)(---=B A AB D 111)(---+=+B A B A2. A,B 均为n 阶方阵,若要22(A B)(A B)A B +-=-不成立,需满足( ).A. A=E B .B=O C .A=B D . AB ≠BA 3. 若方阵2A A,=A 不是单位方阵,则( ).A. A 0= B . A 0≠ C .A O = D .A O ≠4.若矩阵111A 121231⎛⎫ ⎪= ⎪ ⎪λ+⎝⎭的秩为2,则λ=( ). A. 0 B . 2 C .1 D . -15.矩阵⎪⎪⎭⎫⎝⎛=32015431A 的秩是( ) 6. 110201211344⎛⎫⎪-- ⎪ ⎪-⎝⎭ 的秩是( )7. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=321212113A ,⎪⎪⎪⎭⎫ ⎝⎛---=111012111B 求AB 和BA8. 设矩阵,⎪⎪⎭⎫ ⎝⎛=1021A 求32A A ,. 9. 设矩阵521320A ,B 341201--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭,求T T T(1)AB ;(2)B A;(3)A A.10.⎪⎪⎪⎭⎫⎝⎛--=210111121A ,求逆矩阵11. 223110121⎛⎫ ⎪- ⎪ ⎪-⎝⎭.,求逆矩阵 12. 求矩阵X , 使B AX =, 其中.341352,343122321⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A13. 求解矩阵方程,X A AX += 其中.010312022⎪⎪⎪⎭⎫⎝⎛=A.B AX X ,B ,A . 132231 11312221414=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛--=使求设15. 已知n 阶方阵A 满足矩阵方程2A 3A 2E O --=,其中A 给定,E 为n 阶单位矩阵,证明A 可逆,并求1A -. 16. 设A 、B 为n 阶矩阵,2A B AB E --=,2A A =,其中E 为n 阶单位矩阵.证明:A B -为可逆矩阵,并求()1A B --.17. 设方阵A 满足22A A E O --=,证明A 及2A E +都可逆.第三章 线性方程组复习要点:1. 熟练掌握方程组解无解/有解/有唯一解/有无穷多解的充要条件2. 会求向量组的秩;能够验证向量组的线性相关性;会求向量组的极大线性无关组,并可以将其他向量用极大无关组线性表示.3. 熟练掌握基础解系的求解3. 会求解齐次线性方程组的通解,会求非齐次线性方程组的通解和特解练习题:1. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 22. 已知n 元线性方程组b Ax =,其增广矩阵为B ,当( )时,线性方程组有解.A. ()n B r =B. ()n B r ≠C. ()()B r A r =D. ()()B r A r ≠3. 若线性方程组Ax b =的增广矩阵为B 23124010012⎛⎫ ⎪→λλ ⎪ ⎪λ-λ-⎝⎭,当常数λ=( )时,此线性方程组有唯一解.A. -1 B .0 C .1 D . 24. 设A 为m×n 矩阵,齐次线性方程组Ax =0仅有零解的充分必要条件是 系数矩阵的秩r (A )( )A. 小于mB. 小于nC. 等于mD. 等于n5. 已知向量组1,,m αα线性相关,则( ).A 、该向量组的任何部分组必线性相关.B 、该向量组的任何部分组必线性无关.C 、该向量组的秩小于m .D 、该向量组的最大线性无关组是唯一的.6. 如果齐次线性方程组有非零解,则它的系数行列式D _____0. ( = 或 ≠)7. 已知线性方程组Ax b =有解,若系数矩阵A 的秩r(A)=4,则增广矩阵B 的r(B)=__________.8. 若线性方程组Ax b =的增广矩阵为B 312400120012⎛⎫⎪→ ⎪ ⎪λ⎝⎭,则当常数λ=__________时,此线性方程组有无穷多解.9. 若线性方程组Ax b =的增广矩阵为B 300200a 11⎛⎫→ ⎪+⎝⎭,则当常数a =__________时,此线性方程组无解.10.λ取何值时,非齐次线性方程组 1231232123+1++x x x x x x x x x λλλλλ⎧+=⎪+=⎨⎪+=⎩(1)有唯一解(2)无解(3)有无穷多解? 取何值时,线性方程组当 11..λ ()()()()⎪⎩⎪⎨⎧=++++=+-+=+++3313123321321321x λλx x λλx x λλx λx x x λ 有唯一解、无解、无穷多解?当方程组有无穷多解时求出它的解.12.求下列方程组的通解.236222323754325432154321⎪⎩⎪⎨⎧=+++-=-+++=++++x x x x x x x x x x x x x x13. 判断下列向量组的线性相关性:(1)1234=-1,3,2,5=3-1,0-4=2,2,2,2=1,5,4,6αααα(),(,,),(),()(2)1234=1,1,3,1=10,00=2,2,7,-1=3,-1,2,4αααα(),(,,),(),() 14. 已知向量组()()()()T4T3T2T13 2 10 0 10 1 11 1 1α-====,,α,,,α,,,α,,,,求向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.15. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---140113*********12211的列向量组()54321α,α,α,α,α的一个极大无关组,并把不属于极大无关组的列向量用极大无关组线性表示.16. 试证若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 17. 已知向量321ααα,,线性无关,证明向量11232βααα=+-,2123312βαααβαα=--=+,也是线性无关的。

线性代数复习题3

线性代数复习题3

第三章 向量【基本要求】1.理解n 维向量的概念。

2.理解向量组线性相关与线性无关的定义,并了解有关的重要结论。

3.理解向量组的极大线性无关组与向量组的秩的概念.4.知道矩阵的秩与向量组的秩的关系。

5.知道n 维向量空间、基、维数、坐标、基变换与坐标变换、过渡矩阵等概念。

6.掌握线性无关的向量组正交单位化的方法。

了解正交矩阵的概念与性质。

【主要内容】一、n 维向量的概念与运算:),,,(,),,(2121n n b b b a a a ==βα由加法及数乘运算可引出线性组合、线性相关等概念,由内积可引出单位化、正交化等问题。

二、极大线性无关组与等价:① 等价是向量组之间的一种关系,具有传递性、对称性及反身性; ② 任一向量组和它的极大无关组等价。

③ 同一向量组的任意两个极大无关组等价。

④ 两个等价的线性无关的向量组所含向量的个数相同。

⑤ 向量组s ααα,,,21 的任意两个极大无关组所含向量的个数相同。

三、极大线性无关组与等价:① n 个n 维向量线性相关⇔以这n 个n 维向量以行或列构成的n 阶行列式等于零;1+n 个n 维向量一定线性相关。

②s ααα,,,21 线性无关⇔向量方程0x x x s s 2211=α++α+α 只有零解⇔向量组的秩s r s =),,,(21ααα ⇔每一个向量i a 都不能用其余1-s 个向量线性表出。

③ 设A 为n 阶矩阵,则⇔≠0A A 的行(列)向量线性无关n )A (R =⇔,⇔=0A A 的行(列)向量相关.四、向量组线性相关性的一系列结论:① 如果向量组(Ⅰ)可由向量组(Ⅱ)线性表出,则r(Ⅰ)≤r(Ⅱ);特别的,等价的向量 组有相同的秩。

② 秩相同的向量组不一定等价。

如)2,0(),1,0()0,2(),1,0(2121====ββαα与有相同的秩,但是这两个向量组并不等价。

但如果)I (可以由)II (线性表示,且)II (R )I (R =,则)I (与)II (等价。

线性代数期末复习题

线性代数期末复习题

线性代数期末复习题《线性代数》综合复习题⼀、单项选择题:1、若三阶⾏列式D 的第三⾏的元素依次为1、2、3,它们的余⼦式分别为4、2、1,则D =()(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶⽅阵A 的列向量组,且齐次线性⽅程组AX =O 仅有零解,则()(A) 1α可由23,αα线性表⽰ (B) 2α可由13,αα线性表⽰ (C) 3α可由12,αα线性表⽰ (D) 以上说法都不对3、设A 为n(n ≥2)阶⽅阵,且A 的⾏列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于()(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =333231232221131211a a aa a a a a a , B =????? ??+++133311311232232122131112a a a a a a a a a a a a ,????? ??=1000010101P ,????=1010100012P ,则有()(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是() (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的⾏向量组是正交单位向量组 6、设A 是n 阶⽅阵,且O E A A =+-232,则()(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ??=,矩阵B 满⾜2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13;(B )19;(C )14;(D )13。

线性代数知识点总结复习整理


2
定理
a11 a12 a1n
n 阶行列式
D
a21
a22
a2 n
等于它的任意一行(列)的各
an1 an2 ann
元素与其对应的代数余子式的乘积之和,即 D ai1Ai1 ai2 Ai2 ain Ain ,
(i 1, 2,, n) 或D a1 j A1 j a2 j A2 j anj Anj , ( j 1, 2,, n) 。
k个
Am Ak Amk , Am k Amk m, k为正整数 。规定:A0=E
(只有方阵
才有幂运算)
注意 矩阵不满足交换律,即 AB BA , ABk Ak Bk (但也有例外)
转置矩阵 把矩阵 A 的行换成同序数的列得到的新矩阵,叫做 A 的转 置矩阵,记作 A ,
1 AT T A ; 2 A BT AT BT ; 3 AT AT ; 4 ABT BT AT 。
称为一个 n 维向量,记为
a1 a2 ...
(列向量形式)或
初等列变换:把初等行变换中的行变为列,即为初等列变换,所用记 号是把“r”换成“c”。 矩阵等价 如果矩阵 A 经有限次初等变换变成矩阵 B,就称矩阵 A 与 B 等价。
7
行阶梯形矩阵:可画出一条阶梯线,线的下方全为零,每个台阶只有
一行,台阶数即是非零行的行数阶梯线的竖线(每段竖线的长度为一
行)后面的第一个元素为非零元,也是非零行的第一个非零元。(非
推论 2 D 中某一行(列)所有元素为零,则 D=0。
性质 4 若行列式的某一列(行)的元素都是两数之和,则
a11 a12 (a1i a1i ) a1n a11 a12 a1i a1n a11 a12 a1i a1n

(完整版)线性代数复习——选择题.doc

《线性代数》复习一:选择题a11 a12 a13 2a11 2a12 2a131.如果a21 a22 a23 = M,则2a21 2a22 2a23 = ()a31 a32 a33 2a31 2a32 2a33A. 8MB. 2MC. MD.6M2. 若 A,B 都是方阵,且 |A|=2, |B|=-1,则 |A -1B|= ()A. -2B.2C. 1/2D. –1/23. 已知可逆方阵 A 1 3 7则 A ()1 2A. 2 7B.2 7C.3 7D.3 7 1 3 1 3 1 2 1 24. 如果 n 阶方阵 A 的行列式 |A| 0 则下列正确的是()A.AOB. r(A)> 0C. r(A)< nD. r( A) 05. 设 A B 均为 n 阶矩阵 A O 且 AB O 则下列结论必成立的是()A. BA OB. B OC. (A B)( A B) A2 B2D. (A B)2 A2 BA B26. 下列各向量组线性相关的是()A. 1 (1 0 0) 2 (0 1 0) 3 (0 0 1)B. 1 (1 2 3) 2 (4 5 6) 3 (2 1 0)C. 1 (1 2 3) 2 (2 4 5)D. 1 (1 2 2) 2 (2 1 2) 3 (2 2 1)7. 设 AX b 是一非齐次线性方程组 1 2 是其任意 2 个解则下列结论错误的是()A. 1 2是 AX O 的一个解 B. 1 12是 AX b 的一个解+ 2 1 2C. 1 2是AX O 的一个解D.2 1 2是AX b 的一个解8. 设 A为 3阶方阵 A的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 3 6 9C.12 3D. 1 1/2 1/39. 设 A 是 n 阶方阵且 |A| 2 A*是 A 的伴随矩阵则 |A*| ()A. 1B. 2nC. 1D. 2n 12 2 n 11 y 210. 若 x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案 :1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设30 ,则取值为()2 1A. λ=0 或λ=-1/3B. λ=3C. λ≠0 且λ≠ -3D. λ≠02. 若 A 是 3 阶方阵,且 |A|=2, A* 是 A 的伴随矩阵,则 |A A* |=()A. -8B.2C.8D. 1/23. 在下列矩阵中可逆的是()0 0 01 1 0 1 1 0 1 0 0 A. 0 1 0B.2 2 0 C. 0 1 1D. 1 1 10 0 10 0 1 1 2 11 0 14. 设 n 阶矩阵 A 满足 A 2 2A+3E O 则 A 1 ( )A. EB. 1C. 2A 3ED. A(2E A)31 a a a5. 设 Aa 1 a aa a 1 a ,若 r(A) 1, 则 a ( )aaa 1A.1B.3C.2D.46.x 1 x 2 x 3 0,若齐次线性方程组x 1 x 2x 3 0, 有非零解则常数( )x 1 x 2 x 3 0A.1B.4C.2D.1 7. 设 A B 均为 n 阶矩阵则下列结论正确的是( )A. BA ABB.(A B)2 A 2BA ABB 2C. (A B)(A B) A 2B 2D. (A B)2A 22 AB B 28. 已知 1(10 0) 2(200)3 (0 0 3) 则下列向量中可以由123 线性表示的是()A. (1 2 3)B.(12 0)C. (0 2 3)D. (3 0 5)9. n 阶方阵 A 可对角化的充分条件是()A. A 有 n 个不同的特征值B.A 的不同特征值的个数小于 nC. A 有 n 个不同的特征向量D. A 有 n 个线性相关的特征向量10. 设二次型的标准形为fy 12y 223 y 32 ,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案 : 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4 阶方阵,且 |A|=2,则 |-2A |=( )A. 16B. -4C. -32D. 32 2. 3 4 6行列式 k 5 7 中元素 k 的余子式和代数余子式值分别为()1 2 8A. 20, -20B.20,20C. -20,20D. -20,-203. 已知可逆方阵 A2 7则 A1)1 3 (A.2 7B.2 7C.3 7 D.371 31 31 2 124. 如果 n 阶方阵 A 的行列式 |A | 0则下列正确的是()A.AOB. r (A )> 0C. r(A)< nD. r(A ) 05. 设 A B 均为 n 阶矩阵 则下列结论中正确的是()A. (A B)(A B) A2 B 2B. (AB )k A k B kC. |kAB | k|A | |B |D. |(AB )k| |A |k |B|k6. 设矩阵 A n n的秩 r(A ) n 则非齐次线性方程组 AX b()A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解7. 设 A 为 n 阶方阵 A 的秩 r(A) r n 那么在 A 的 n 个列向量中()A.必有 r 个列向量线性无关B.任意 r 个列向量线性无关C. 任意 r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出8.已知矩阵 A4 4的四个特征值为 4, 2, 3, 1,则 A =()A.2B.3C.4D.249. n 阶方阵 A 可对角化的充分必要条件是()A. A 有 n 个不同的特征值B. A 为实对称矩阵C. A 有 n 个不同的特征向量D. A 有 n 个线性无关的特征向量10. n 阶对称矩阵 A 为正定矩阵的充要条件是()A. A 的秩为 nB. |A| 0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案 : 1.D 2. A 3. D 4.C 5.D 6.C 7.A 8.D 9.D 10.D3 4 61. 行列式 2 5 7 中元素y的余子式和代数余子式值分别为()y x 8A. 2,-2B. –2, 2C. 2,2D. -2, -22. 设 A B 均为 n(n 2)阶方阵则下列成立是()A. |A+B| |A |+|B|B. AB BAC. |AB | |BA |D. (A+B) 1 B 1+A 13. 设 n 阶矩阵 A 满足 A2 2A E 则(A-2E ) 1 ()A. AB. 2 AC. A+2ED. A-2E4. 矩阵A 1 1 1 12 2 2 2 的秩为()3 3 3 3A.1B.3C.2D.45. 设 n 元齐次线性方程组AX O 的系数矩阵 A 的秩为 r 则方程组 AX 0 的基础解系中向量个数为()A. rB. n- rC. nD. 不确定6. 若线性方程组x1 x2 2x3 1无解则等于()x1 x2 x3 2A.2B.1C.0D. 17. n 阶实方阵 A 的 n 个行向量构成一组标准正交向量组,则 A 是()A. 对称矩阵B. 正交矩阵C. 反对称矩阵D.| A |= n8. n 阶矩阵 A 是可逆矩阵的充要条件是()A. A 的秩小于 nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设 1 2 是非齐次线性方程组Ax=b 的任意 2 个解则下列结论错误的是()A.1+ 2 是 Ax =0 的一个解 B. 1 η1η2 1 2 2是 Ax =b 的一个解C.12 是 Ax =0 的一个解D. 2 1 2 是Ax=b的一个解10.设二次型的标准形为f y12y223y32,则二次型的秩为()A.2B.-1C.1D.3参考答案 : 1. D 2.C 3.A 4.A 5.B 6.A 7.B 8.D 9.A10.D1.a b 0设 D b a 0 0 ,则 a, b 取值为()1 0 1A. a=0, b≠ 0B. a=b=0C. a≠ 0, b=0D. a≠0, b≠ 02. 若 A 、B 为 n 阶方阵且AB=O 则下列正确的是()A. BA OB. |B | 0 或|A| 0C.B O或A OD. (A B)2 A2 B23. 设A是3 阶方阵,且 | A | 2,则|A 1|等于()A. 2B. 1C.2D.1 2 24. 设矩阵 A B C满足AB AC 则 B C 成立的一个充分条件是()A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵5. 如果 n 阶方阵 A O 且行列式 |A| 0 则下列正确的是()A. 0<r( A) < nB. 0 r(A) nC. r(A )= nD. r(A) 07 x1 8x2 9x3 06. 若方程组x2 2 x3 0 存在非零解则常数 b ()2 x2 bx3 0A.2B.4C.-2D.-47. 设 A 为 n 阶方阵且 |A| 0 则()A.A 中必有两行 (列 )的元素对应成比例B.A 中任意一行 (列 )向量是其余各行 (列) 向量的线性组合C.A 中必有一行 (列 )向量是其余各行 (列 )向量的线性组合D.A 中至少有一行 (列 ) 的元素全为零8. 设A为 3阶方阵 A 的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 369C.123D. 1 1/2 1/39. 如果 3阶矩阵 A 的特征值为 -1,1,2 ,则下列命题正确的是()A. A 不能对角化B. A 0C. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为 f y12 y22 3 y32,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案:1.B 2.B 3. B 4. C 5.A 6.D 7.C 8.B 9.D10.Ca11 a12a13 4a a a a11 11 12 131. 如果 a21 a22a23 =M,则 4a21 a21 a22 a23 =()a31 a32a33 4a31a31a32a33A. -4MB. 0C. -2 MD. M2. 设 A ij 是 n 阶行列式 D |a ij |中元素 a ij的代数余子式则下列各式中正确的是()nB. n nD.nA. a ij A ij 0 a ij A ij 0 C. a ij A ij D a i1A i 2 Di 1 j 1 j 1 i 11 0 02 0 03. 已知A 0 1 0 ,B 2 2 1 ,则 |AB |=()3 0 1 3 3 3A.18B.12C.6D.364. 方阵 A 可逆的充要条件是()A.AOB. |A| 0C. A* OD. |A| 15. 若 A 、B 为 n 阶方阵 A 为可逆矩阵且 AB O 则()A. B O 但 r( B) nB. B O 但 r(A) n, r (B ) nC. B OD. B O 但 r(A) n, r(B) n6. 设 1 2 是非齐次线性方程组AX b 的两个解则下列向量中仍为方程组解的是()A. 1 2B. 1 2C. 1D.+2(β1 2β2)7. n 维向量组 1 2 s线性无关为一 n 维向量则()A. 12 s 线性相关B. 一定能被12C. 一定不能被12 s 线性表出D. 当 s n 时一定能被8. 设 A 为三阶矩阵 A 的特征值为 2 1 2 则A 2E 的特征值为(3β2β1 25s线性表出12s 线性表出)A. 212B.-4-10C.124D.41-49.若向量α=( 1, -2,1)与β=( 2, 3, t)正交,则 t=()A.-2B.0C.2D.41 y 210. 若x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案:1.A 2.C 3.C 4.B 5.C 6.D 7.D 8.B 9.D 10.C3 4 6中元素 x 的余子式和代数余子式值分别为(1. 行列式 2 5 7 )y x 8A. –9, -9B. –9,9C. 9, -9D. 9,91 1 1 12.2 3 4 53 3 3 3 =( )4 3 4 4A.2B.4C.0D.1 3. 设A 为4 阶矩阵 |A | 3 则其伴随矩阵A *的行列式 |A *| ()A.3B.81C.27D.9 4. 设 A B 均为 n 阶可逆矩阵则下列各式中不正确的是()A. (A+B)T A T +B TB.(A +B) 1 A 1+B 1C.(AB)1B 1A 1D. (AB )T B T A T 5. 设 n 阶矩阵 A 满足 A 2 +A +EO 则(A+E ) 1( )A. AB. -(A+E )C. –AD. -(A 2+A )6. 设 n 阶方阵 A B 则下列不正确的是( )A. r(AB )r(A)B. r(AB )r(B)C. r( AB ) min{ r(A ), r(B )}D. r(AB )>r (A )7. 已知方程组 AX b 对应的齐次方程组为 AX O , 则下列命题正确的是()A. 若AX O 只有零解 则 AX b 有无穷多个解B. 若AX O 有非零解 则 AX b 一定有无穷多个解C. 若AX b 有无穷解 则 AX O 一定有非零解D. 若AXb 有无穷解 则 AXO 一定只有零解8.10 1已知矩阵 A 02 0 的一个特征值是 0 则 x ( )1 0 xA.1B.2C.0D.31 09.与A02 1 相似的对角阵是()0 1 21111A.Λ1B.Λ2C. Λ1 D. Λ 1 333 410. 设 A 为 3 阶方阵 A 的特征值为 1 0 3则A 是()A. 正定B.半正定C.负定D. 半负定参考答案 : 1. C 2. C3. C4. B5. C6. D7. C8.A 9.A 10.B1. 设 A B 都是 n 阶方阵A. 若|A| 0 则A Ok 是一个数 B. |kA|则下列(|k| |A |)是正确的。

【《线性代数》复习提纲】只需1天就能高分过了线代

【《线性代数》复习提纲】只需1天就能高分过了线代——没听课的孩纸果断了!《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。

第二部分:基本知识一、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。

(1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和;(2)展开式共有n!项,其中符号正负各半;2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则;N阶(n>=3)行列式的计算:降阶法定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;(2)行列式值为0的几种情况:Ⅰ行列式某行(列)元素全为0;Ⅱ行列式某行(列)的对应元素相同;Ⅲ行列式某行(列)的元素对应成比例;Ⅳ奇数阶的反对称行列式。

二.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。

《线性代数》考试复习题及解答

《线性代数》考试复习题一. 判断题(正确打√,错误打×)1.若112⨯⨯⨯=n n n n x x A ,则2是n n A ⨯的一个特征值. (×) 解答:因为没有说明01≠⨯n x ,所以错误.2.实对称矩阵A 的非零特征值的个数等于它的秩. (√)解答:因为实对称矩阵与对角矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n λλλ21相似(n λλλ,,,21 是A 的特征值),而⎪⎪⎪⎪⎪⎭⎫⎝⎛n λλλ21的秩等于n λλλ,,,21 中非零数的个数, 又因为相似矩阵秩相同, 所以结论正确.3.二次型Ax x T的标准形的系数是A 的特征值(×)解答:正确结论是: 用正交变换化二次型Ax x T为标准形的系数是A 的特征值. 4. 若k ααα,,, 21线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. (×)解答:虽然k ααα,,, 21都是A 的特征向量,但他们不一定属于A 的同一个特征值,所以他们正交化后不一定是特征向量.5.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则 Ax x T不是二次型. (×)解答:对于任意的n 阶矩阵A ,Ax x T都是二次型,只是若不要求A对称,二次型Ax x T中的A 不唯一. 例如取⎪⎪⎭⎫⎝⎛=4421A ,那么21222164x x x x Ax x T ++=,但取⎪⎪⎭⎫⎝⎛=4331A ,仍得到此二次型.二.单项选择题1. 若n 阶非奇异矩阵A 的各行元素之和均为常数a ,则矩阵12)21(-A 有一个特征值为(C ).(A) 22a ; (B)22a - ; (C)22-a ; (D)22--a . 解答:因为n 阶非奇异矩阵A 的各行元素之和均为常数a ,所以⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛111111 a A ,从而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-11111111 a A ,所以a 1是1-A 的一个特征值,所以22-a 是12)21(-A 的一个特征值. 2. 若λ为四阶矩阵A 的特征多项式的三重根,则A 对应于λ的 特征向量最多有(A )个线性无关.(A) 3个; (B) 1个; (C) 2个; (D) 4个. 解答:A 对应于特征值λ的线性无关特征向量的个数≤λ的重数. 3. 设A 为n 阶非零矩阵,并且O A =3,那么(C ) .(A) A E -不可逆,A E +不可逆; (B) A E -不可逆,A E +可逆; (C) A E -可逆,A E +可逆; (D) A E -可逆,A E +不可逆. 解答:设λ为A 的任意一个特征值,那么3λ是3A 的特征值,但O A =3, 所以0=λ,所以1±=λ不是A 的特征值,所以A E -、A E +都可逆. 5. 设⎪⎪⎭⎫⎝⎛=1221A ,则在实数域上与A 合同的矩阵为(D ).(A) ⎪⎪⎭⎫⎝⎛--2112;(B) ⎪⎪⎭⎫ ⎝⎛--2112; (C) ⎪⎪⎭⎫⎝⎛2112;(D) ⎪⎪⎭⎫⎝⎛--1221 . 解答:方法1 合同矩阵的行列式符号相同(BC C A T=,那么B C A 2=),所以选(D) .方法2 2122214x x x x Ax x T ++=, 令⎩⎨⎧=-=2211y x y x , 那么2122214y y y y Ax x T -+=,而2122214y y y y Ax x T -+=的矩阵就是⎪⎪⎭⎫ ⎝⎛--1221, 所以选(D) .方法3 ⎪⎪⎭⎫⎝⎛=1221A 的特征值是3,1-, 而⎪⎪⎭⎫⎝⎛--1221的特征值也是3,1-, 所以两个二次型可化为同一个标准型, 所以⎪⎪⎭⎫ ⎝⎛=1221A 与⎪⎪⎭⎫⎝⎛--1221合同, 所以选(D) . 三. 填空题1. 若A 为正定矩阵,且E A A T=,则=A E .解答:因为A 为正定矩阵, 所以A A T =, 并且E A +可逆,从而E A =2,即O E A E A =-+))((, 所以E A =.2.设A 为2阶矩阵,21,αα为线性无关的2维列向量,01=αA ,2122ααα+=A ,则A 的非零特征值为=λ 1 .解答:方法1 ⎪⎪⎭⎫⎝⎛=+==1020),()2,0(),(),(21212121ααααααααA A A , 而 21,αα线性无关,所以矩阵),(21αα可逆,所以⎪⎪⎭⎫⎝⎛=-1020),(),(21121ααααA ,即A 与⎪⎪⎭⎫⎝⎛1020相似,所以A 的非零特征值为1. 方法2 因为01=αA ,01≠α,所以0是A 的一个特征值. 因为02212≠+=αααA ,而22122)(ααααA A A A A =+=,所以1是A 的一个特征值, 而A 为2阶矩阵, 所以A 的非零特征值为1.3. 设3阶方阵A 的特征值互不相同,0=A ,则A 的秩= 2 . 解答:因为A 的特征值互不相同,所以A 与对角矩阵相似,所以)(A R 等于A 的非零特征值的个数, 因为A 为3阶方阵, 0=A , 所以A 的特征值 是01=λ,2λ、03≠λ,所以2)(=A R .4. (2011年考研题)若二次曲面的方程4=2+2+2++3+222yz xz axy z y x 经正交变换化为4=4+2121z y ,则=a 1 .解答:由题知二次型的系数矩阵的特征值为4=1=0=321λλλ,, ,于是有0==1111311=321λλλaa A ||,解得1=a .5. (2011年考研题)设二次型Ax x x x x f T =321),,(的秩为1,A 的各行元素之和为3,则f 在正交变换Qy x =下的标准型为213y解答:因为二次型Ax x x x x f T =321),,(的秩为1,所以非零特征值只有一个,由A 的各行元素之和为3,知3是A 的特征值,故f 在正交变换Qy x =下的标准型为213y . 6. (2011年考研题)二次型3231212322213212+2+2++3+=x x x x x x x x x x x x f ),,(,则f 的正惯性指数为 2 .解答:方法1 配方得2223213212+++=x x x x x x x f )(),,(,故正惯性指数为2.方法2 求⎪⎪⎪⎭⎫ ⎝⎛111131111=A 的特征值也可得正惯性指数为2.7. 设3阶矩阵A 的特征值为2,2,1,则=--E A 14 3 .解答:因为A 的特征值为2,2,1, 所以-1A 的特征值为2121,1,, 所以E A --14的特征值为11,3,, 所以341=--E A四. 计算题1.求矩阵⎪⎪⎪⎭⎫ ⎝⎛---=735946524A 的特征值与特征向量.解答:λλλλλλλλλ--------------=-731941521132735946524||列列加到、E A)1(21420521)1(731941521)1(2λλλλλλλλ-=------=------=,所以特征值为11=λ,=2λ03=λ.对于11=λ,求得特征向量为⎪⎪⎪⎭⎫⎝⎛=1111k x ,对于=2λ03=λ,求得特征向量为⎪⎪⎪⎭⎫ ⎝⎛=2312k x , 其中21,k k 是不为零的任意常数.2.求()n n A ⨯=1的特征值与特征向量.解答:因为1))(---=-n n EA λλλ(行和相等, 所以0121====-n λλλ ,n n =λ.对应于0121====-n λλλ : 方程组0=Ax 即为021=+++n x x x ,所以特征向量为⎪⎪⎪⎪⎪⎭⎫⎝⎛---=--1111n n k k k k x , 其中121,,,-n k k k 不全为零. 对应于n n =λ:因为⎪⎪⎪⎪⎪⎭⎫⎝⎛---−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛---=-n n nn n n nnnE A 00111111111111行 ⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛---−→−101011000101011111行行n , 所以方程组nx Ax =即为⎪⎪⎩⎪⎪⎨⎧===-111312x x xx x x n , 所以⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a a x , 其中0≠a .3.设⎪⎪⎪⎭⎫⎝⎛=0011100y x A 与对角阵相似,求x 和y 应满足的条件.解答:容易求得A 的特征值为11-=λ,132==λλ,因为A 与对角阵相似当且仅当A 有3个线性无关的特征向量,所以对应于132==λλ,应该有两个线性无关的特征向量,所以2)(3=--E A R ,即1)(=-E A R ,而⎪⎪⎪⎭⎫ ⎝⎛+−→−⎪⎪⎪⎭⎫ ⎝⎛--=-00000101-1010101y x y x E A 行, 所以0=+y x .4.(2011年考研题)设A 为3阶实对称矩阵,A 的秩为2,且⎪⎪⎪⎭⎫⎝⎛110011-=⎪⎪⎪⎭⎫ ⎝⎛11-0011A . (1) 求A 的特征值与特征向量;(2) 求矩阵A . 解答:(1)由于A 的秩为2,故0是A 的一个特征值.由题设可得⎪⎪⎪⎭⎫⎝⎛101=⎪⎪⎪⎭⎫ ⎝⎛101⎪⎪⎪⎭⎫⎝⎛1-01-=⎪⎪⎪⎭⎫ ⎝⎛1-01A A ,, 所以,1-是A 的一个特征值,且属于1-的特征向量为⎪⎪⎪⎭⎫ ⎝⎛1-011k ,1k 为任意非零常数;1也是A 的一个特征值,且属于1的特征向量为⎪⎪⎪⎭⎫ ⎝⎛1012k ,2k 为任意非零常数.设⎪⎪⎪⎭⎫ ⎝⎛321x x x 是A 的属于0的特征向量,由于A 为实对称矩阵,则()()0=⎪⎪⎪⎭⎫ ⎝⎛1010=⎪⎪⎪⎭⎫ ⎝⎛1-01321321x x x x x x ,,即 ⎩⎨⎧0=+0=-3131,,x x x x于是属于0的特征向量为⎪⎪⎪⎭⎫ ⎝⎛0103k ,3k 为任意非零常数.(2)令⎪⎪⎪⎭⎫ ⎝⎛011-100011=P ,则⎪⎪⎪⎭⎫ ⎝⎛000010001-=1-AP P ,于是⎪⎪⎪⎭⎫ ⎝⎛001000100=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0102102121-021⎪⎪⎪⎭⎫ ⎝⎛000010001-⎪⎪⎪⎭⎫ ⎝⎛011-100011=⎪⎪⎪⎭⎫⎝⎛000010001-=1-P P A 5.已知二次型32312123222132166255),,(x x x x x x cx x x x x x f -+-++=的秩为2,(1)求参数c 及此二次型对应矩阵的特征值; (2)指出方程1),,(321=x x x f 表示何种曲面. 解答:二次型),,(321x x x f 的矩阵⎪⎪⎪⎭⎫⎝⎛----−→−⎪⎪⎪⎭⎫ ⎝⎛----−→−⎪⎪⎪⎭⎫ ⎝⎛----=91203512c 60091203511224033351315c c c A 行行, 因为2)(=A R ,所以3=c (或者由0=A 得c ). 于是)9)(4(363361001)4(333351011)4(333351044333351315||--=------=------=-------=-------=-λλλλλλλλλλλλλλλλλE A所以A 的特征值为9,4,0, 于是二次型),,(321x x x f 通过正交变换化为232221094y y y ++, 所以1),,(321=x x x f 表示椭圆柱面. 五.证明题1. 若矩阵A 满足O E A A =+-232,证明A 的特征值只能是1或2.证明: 设λ为A 的任意一个特征值,那么232+-λλ是E A A 232+-的特征值, 所以0232=+-λλ, 所以21或=λ.2. 证明⎪⎪⎪⎭⎫ ⎝⎛=010100002A 与⎪⎪⎪⎭⎫⎝⎛--=260010001B 相似.证明: 容易求得A 、B 的特征值都是2,1,1-, 所以A 、B 都与⎪⎪⎪⎭⎫⎝⎛-200010001相似, 所以A与B 相似.3. 已知A 、B 都是n 阶正交矩阵, 且0=+B A , 证明0=+B A .证明 因为TT T T T B A A B B B A A )()(+=+=+, 所以||||||||B A B B A A +=+,而A B -=,12=A , 所以||||B A B A +=+-, 所以0=+B A .4. 若矩阵A 正定,证明A 可逆并且1-A 也正定.证明 因为A 正定,所以A A T=且 ||A >0,于是A 可逆.由1-1-1-==A A A T T )()(知1-A 为对称矩阵,由于A 正定,所以A 的特征值n λλλ ,,21全为正,于是1-A 的特征值nλλλ11121,,,. 也全为正,故1-A 正定.5.设A 为n m ⨯实矩阵,E 为n 阶单位矩阵,已知矩阵A A E B T +=λ,试证:当0>λ时,矩阵B 为正定矩阵.证明 由于B A A E A A E B TT T T =+=+=λλ)(, 所以B 为n 阶实对称矩阵.于是,对于任意的非零列向量x ,有 Ax A x x x x A A E x Bx x TT T T T T +=+=λλ)( )()(Ax Ax x x TT +=λ, 而当0≠x 时,有0>x x T, 0≥)()(Ax Ax T,从而,0>λ时,0>+=)()(Ax Ax x x Bx x T T T λ,即矩阵B 为正定矩阵.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档