jlhapAAA通信电子线路实验报告

合集下载

东南大学信息学院通信电子线路实验实验报告

东南大学信息学院通信电子线路实验实验报告

3.1 常用仪器的使用04012540 印友进一、实验内容1、说明频谱仪的主要工作原理,示波器测量精度与示波器带宽、与被测信号频率之间关系。

答:(1)频谱仪结构框图为:频谱仪的主要工作原理:①对信号进行时域的采集,对其进行傅里叶变换,将其转换成频域信号。

这种方法对于AD 要求很高,但还是难以分析高频信号。

②通过直接接收,称为超外差接收直接扫描调谐分析仪。

即:信号通过混频器与本振混频后得到中频,采用固定中频的办法,并使本振在信号可能的频谱范围内变化。

得到中频后进行滤波和检波,就可以获取信号中某一频率分量的大小(帕斯瓦尔定理)。

(2)示波器的测量精度与示波器带宽、被测信号频率之间的关系:示波器的带宽越宽,在通带内的衰减就越缓慢;示波器带宽越宽,被测信号频率离示波器通带截止频率点就越远,则测得的数据精度约高。

2、画出示波器测量电源上电时间示意图,说明示波器可以捕获电源上电上升时间的工作原理。

答:上电时间示意图:工作原理:捕获这个过程需要示波器采样周期小于过渡时间。

示波器探头与电源相连,使示波器工作于“正常”触发方式,接通电源后,便有电信号进入示波器,由于示波器为“正常”触发方式,所以在屏幕上会显示出电势波形;并且当上电完成后,由于没有触发信号,示波器将不再显示此信号。

这样,就可以利用游标读出电源上电的上升时间。

3、简要说明在FM 调制过程中,调制信号的幅度与频率信息是如何加到FM 波中的?答:载波的瞬时角频率为()()c f t k u t ωωΩ=+,(其中f k 为与电路有关的调频比例常数)已调的瞬时相角为000t ()()t t c f t dt t k u t dt θωωθΩ=++⎰⎰()=所以FM 已调波的表达式为:000()cos[()]t om c f u t U t k u t dt ωθΩ=++⎰当()cos m u t U t ΩΩ=Ω时,00()cos[sin ]om c f u t U t M t ωθ=+Ω+其中f M 为调制指数其值与调制信号的幅度m U Ω成正比,与调制信号的角频率Ω反比,即m f fU M k Ω=Ω。

通信电子线路实验报告 浙江工业大学

通信电子线路实验报告 浙江工业大学

通信电子线路实验报告金艳霞通信1202 201203110210 实验一高频谐振功率放大器一、实验目的1、进一步理解谐振功率放大器的工作原理及负载阻抗和激励信号电压变化对其工作状态的影响。

2、掌握谐振功率放大器的调谐特性和负载特性。

二、实验内容1、调试谐振功放电路特性,观察各点输出波形。

2、改变输入信号大小,观察谐振功率放大器的放大特性。

3、改变负载电阻值,观察谐振功率放大器的负载特性三、实验仪器1、BT-3频率特性测试仪(选项)一台2、高频电压表(选项)一台3、20MHz双踪模拟示波器一台4、万用表一块5、调试工具一套四、实验原理1、电路的基本原理利用选频网络作为负载回路的功率放大器称为谐振功率放大器,这是无线电发射机中的重要组成部分。

根据放大器电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型的功率放大器。

电流导通角θ愈小,放大器的效率η愈高。

如甲类功放的θ=180,效率η最高也只能达到50%,而丙类功放的θ< 90º,效率η可达到80%,甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。

丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。

图3-1为由两级功率放大器组成的高频功率放大器电路,其中晶体管Q1组成甲类功率放大器,晶体管Q2组成丙类谐振功率放大器,这两种功率放大器的应用十分广泛。

五、实验步骤1、按下开关KE1,调节WE1,使QE1的发射极电压VE=2.2V (即使ICQ=7mA,通过测量P5与G两焊点之间的电压,见图0-2所示)。

2、连接JE2、JE3、JE4、JE5。

3、使用BT—3型频率特性测试仪,调整TE1、TE2,使得TE1初级与CE7,TE2初级与CE4谐振均在10.7MHz,同时测试整个功放单元的幅频特性曲线,使峰值在10.7MHz处(如果没有BT-3型频率特性测试仪,则这一步不作要求)。

4、从INE1处输入10.7MHz的载波信号(此信号由高频信号源提供,参考高频信号源的使用),信号大小为VP-P=250mV左右。

通信电子线路实验报告解析

通信电子线路实验报告解析

LC与晶体振荡器实验报告班别:信息xxx班组员:指导老师:xxx一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。

2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。

3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。

4)、比较LC 与晶体振荡器的频率稳定度。

二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。

三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。

1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导, F U ——反馈系数, A U ——放大器的增益,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。

2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。

L1L1(a)考毕兹振荡器(b)交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。

C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

(a)克拉泼振荡器(b)交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L1两端并联一个小电容C4,调节C4可改变振荡频率。

通信电子线路实验报告

通信电子线路实验报告

实验报告课程名称通信电子电路专业班级通信工程姓名学号指导教师2011 年月日实验一 OrCAD系统基本实验1、实验目的掌握OrCAD电子设计自动化(EDA)软件的应用。

掌握基本的电子电路仿真实验方法。

2、实验环境PC微机;OrCAD 10.5工具包。

3、实验内容(1)实验相关的基本知识掌握认真阅读本实验指导书的第一部分;掌握OrCAD 10.5电子设计自动化(EDA)软件系统中的电子电路原理图设计包——Capture CIS的使用方法和基本操作,为今后的实验和研究作技术上的准备。

(2)给定实验内容A. 按本实验指导书的第一部分中介绍的方法,使用OrCAD 10.5完成二极管限幅电路的计算机仿真实验。

B. 利用Capture CIS为本实验建立一个新的PSpice项目,项目名可以自行选取。

C. 绘制出如右图所示的给定仿真电子电路原理图,包括放置电子元器件、放置导线、放置断页连接器、修改各元器件的参数等操作。

仿真电路中各元器件的参数如下表:行该偏置点分析,将其仿真结果(图)拷贝作为实验结果;E. 完成本电路的DC扫描分析参数设置(参见本指导书的6.2.2节), 运行该DC扫描分析,将其仿真结果(图)拷贝作为实验结果;F. 完成本电路的瞬时分析参数设置(参见本指导书的6.2.3节), 运行该瞬时分析,将其仿真结果(图)拷贝作为实验结果;G. 完成本电路的AC扫描分析参数设置(参见本指导书的6.2.4节), 运行该AC扫描分析,将其仿真结果(图)拷贝作为实验结果。

4、实验报告内容A. 你所绘制的仿真电子电路原理图B. 你所完成的偏置点分析结果图C. 你所完成的DC扫描分析结果图D. 你所完成的瞬时分析结果图E. 你所完成的AC扫描分析结果图F. 写出本次实验结果分析及及实验心得通过本次实验,我对ORCAD的特性和使用有了初步了解,也体会到了这个软件的强大。

利用ORCAD进行电路的设计和仿真非常方便,一般步骤是首先在元件库中调用电路中使用到的元件,并设置元件的各个参数,再分别进行电路偏置点分析,DC扫描分析,瞬时分析AC扫描分析。

通信电子线路实验指导书(8个实验)

通信电子线路实验指导书(8个实验)

目录第一章高频IV型实验系统介绍 (1)一、高频IV型实验系统概述 (1)二、实验箱箱体结构 (1)三、箱体各组成部分说明 (2)四、高频模块介绍及实验说明 (4)五、高频电路实验要求 (4)第二章高频电路实验部分 (6)实验一单调谐回路谐振放大器 (6)实验二高频功率放大器 (10)实验三正弦波振荡器 (15)实验四振幅调制器 (21)实验五变容二极管调频器与相位鉴频器实验 (26)实验六混频器实验 (35)实验七检波器实验 (40)实验八调频发射、接收系统实验 (46)第一章 高频IV 型实验系统介绍一、高频IV 型实验系统概述本系统由实验箱体和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。

箱体上带有一个最高频率1MHz 的低频信号源、最高频率10MHz 的高频信号源、语音与麦克风模块和电源引出端,可进行部分数字电路和模拟电路实验。

而插上选配的高频模块,则可进行相应的高频实验。

二、实验箱箱体结构箱体平面结构如图1所示,主要由以下几部分组成:● 扬声器● 高频信号源、低频信号源区 ● 电源输出区扬声器 麦克风电源输出低频信号源外接实验模块高频信号源模块电源座图1 GP-IV 实验箱平面布局图●外接实验模块区●实验模块电源座区三、箱体各组成部分说明1.电源输出区电源接通时,电源输出区电源指示灯亮2.扬声器和麦克风其输入输出为汉字标示3.直流电压输出区:系统的电源为220V交流输入,5路直流输出:±5V/2A,±12V/0.5A,-8V/0.5A。

在本区内设有这5组直流电压的输出接口,以方便使用。

4.高频信号源、低频信号源高低频信号源均采用DDS芯片输出正弦波、三角波、方波三种波形的信号,峰峰值最大可达6V,同时幅值、偏移可调。

1).操作:●频率设置键“MENU”:第一次按下此键,数码管第一位开始闪烁,即进入了“频率设置”状态,此时功能键“NEXT”、“ADD”有效;第二次按下此键,退出“频率设置”状态,功能键“NEXT”“ADD”无效。

通信电子线路实验指导

通信电子线路实验指导

高频电子线路实验指导书孙思梅改编电子与通信实验中心2008年8月实验要求1. 实验之前必须充分预习,认真阅读实验指导书,掌握好实验所必需的有关原理和理论知识;2. 对实验中所用到的仪器使用之前必须了解其性能、使用方法和注意事项,并在实验时严格遵守;3. 动手实验之前应仔细检查电路,确保无误后方能接通电源;4. 由于高频电路的特点,要求每次实验时连线要尽可能地短且整齐,不要有多余的线;5. 调节可变电容或可变电阻时应使用无感起子;6. 需要改接连线时,应先关断电源,再改接线;7. 实验中应细心操作,仔细观察实验现象;8. 实验中如发现异常现象,应立即关断电源,并报告指导老师;9. 实验结束后,必须关断电源,整理好仪器、设备、工具和实验导线。

实验报告要求:1.写明实验名称;2.写出实验目的;3.绘制实验电路图;4.列出实验所需仪器的型号和数量;5.写出实验内容及步骤;6.分析试验数据;7.写出实验体会。

目录实验一单调谐回路谐振放大器(实验板G1) (1)实验二双调谐回路及通频带展宽实验(实验板G1) (4)实验三正弦波振荡器(实验板G1) (6)实验四低电平振幅调制器(利用乘法器)(实验板G3) (9)实验五丙类高频功率放大器(实验板G2F) (12)实验六高电平振幅调制器(实验板G2F) (17)实验七调幅波信号的解调(实验板G3) (19)实验八变容二极管调频振荡器(实验板G4) (22)实验九相位鉴频器(实验板G4) (24)实验十集成电路(压控振荡器)构成的频率调制器(实验板G5) (27)实验十一集成电路(锁相环)构成的频率解调器(实验板G5) (30)实验十二利用二极管函数电路实现波形转换(主机面板) (32)实验十三晶体管混频电路(实验板G7) (33)附录1:TPE—GP2型高频电路实验学习机 (36)附录2:XPD1252-BT3C RF宽带扫描仪 (37)附录3:SP-1500型频率计 (44)附录4:DA22B型超高频毫伏表 (47)附录5:F40型数字合成函数信号发生器 (50)实验一单调谐回路谐振放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。

电子线路实验报告

电子线路实验报告电子线路实验报告一、实验目的:1.了解运放的基本性质和工作原理,掌握运放的电路连接及其参数的测量方法。

2.认识电位器的基本原理和用途,了解电位器的电路应用,掌握电位器的电流、电压特性和回路等效变换。

二、实验器材:1. DC电源2. 示波器3. 函数信号发生器4. 运放IC5. 电阻、电容、电位器等被测器件三、实验原理:1.运放的基本性质和工作原理运放是电子电路中功能强大、应用广泛的一种电子器件。

它可以将低电平的输入信号变换成高电平的输出信号,并且具有放大、对称、稳定的特点。

2.电位器的基本原理和用途电位器是一种可以调节电阻值的电子元件,通过旋转滑动电荷的位置,改变电阻值。

它在电路中可以用来调节电流、电压等参数。

四、实验步骤:1.运放的基本连接电路及测量运放参数(1)连接运放为非反馈式电路,输入端分别接地。

(2)将函数信号发生器的信号接到运放的正输入端。

(3)连接示波器到运放的输出端,以观察输出波形。

2.电位器的基本测量(1)连接电位器的两端电压表,测量两端电压。

(2)通过旋转电位器的滑动电阻,观察电压变化。

五、实验结果与分析:1.运放的基本性质和工作原理根据实验结果和示波器上的输出波形,可以验证运放具有放大、对称、稳定的特点。

2.电位器的基本测量通过测量电位器的两端电压,可以发现当电位器滑动电阻位置改变时,电压也会随之变化,验证了电位器调节电压的原理。

六、实验总结:通过本次实验,我们深入了解了运放和电位器的基本原理和应用。

通过实际操作,我们掌握了运放的电路连接和参数测量方法,并能正确使用电位器来调节电流、电压等参数。

实验结果也验证了运放具有放大、对称、稳定的特点以及电位器调节电压的原理。

这些知识和技能对我们今后的学习和实践都具有重要意义。

通信电路实验报告

实验十一包络检波及同步检波实验一、实验目的1、进一步了解调幅波的原理,掌握调幅波的解调方法。

2、掌握二极管峰值包络检波的原理。

3、掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,分析产生的原因并思考克服的方法。

4、掌握用集成电路实现同步检波的方法。

二、实验内容1、完成普通调幅波的解调。

2、观察抑制载波的双边带调幅波的解调。

3、观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波时的现象。

三、实验仪器1、信号源模块 1 块2、频率计模块 1 块3、 4 号板 1 块4、双踪示波器 1 台5、万用表 1 块三、实验原理检波过程就是一个解调过程,它与调制过程正好相反。

检波器的作用就是从振幅受调制的高频信号中还原出原调制的信号。

还原所得的信号,与高频调幅信号的包络变化规律一致,故又称为包络检波器。

假如输入信号就是高频等幅信号,则输出就就是直流电压。

这就是检波器的一种特殊情况,在测量仪器中应用比较多。

例如某些高频伏特计的探头,就就是采用这种检波原理。

若输入信号就是调幅波,则输出就就是原调制信号。

这种情况应用最广泛,如各种连续波工作的调幅接收机的检波器即属此类。

从频谱来瞧,检波就就是将调幅信号频谱由高频搬移到低频。

检波过程也就是应用非线性器件进行频率变换,首先产生许多新频率,然后通过滤波器,滤除无用频率分量,取出所需要的原调制信号。

常用的检波方法有包络检波与同步检波两种。

全载波振幅调制信号的包络直接反映了调制信号的变化规律,可以用二极管包络检波的方法进行解调。

而抑制载波的双边带或单边带振幅调制信号的包络不能直接反映调制信号的变化规律,无法用包络检波进行解调,所以采用同步检波方法。

1、二极管包络检波的工作原理当输入信号较大(大于0、5伏)时,利用二极管单向导电特性对振幅调制信号的解调,称为大信号检波。

检波的物理过程如下:在高频信号电压的正半周时,二极管正向导通并对电容器 C 充电,由于二极管的正向导通电阻很小,所以充电电流iD 很大,使电容器上的电压VC 很快就接近高频电压的峰值。

通信电子线路实验报告

实验报告课程名称通信电子电路专业班级通信工程***姓名***学号***************指导教师 ** *** *** 2011 年 * 月 ** 日实验一 OrCAD系统基本实验1、实验目的掌握OrCAD电子设计自动化(EDA)软件的应用。

掌握基本的电子电路仿真实验方法。

2、实验环境P4微机;OrCAD 10.5工具包。

3、实验内容(1)实验相关的基本知识掌握认真阅读本实验指导书的第一部分;掌握OrCAD 10.5电子设计自动化(EDA)软件系统中的电子电路原理图设计包——Capture CIS的使用方法和基本操作,为今后的实验和研究作技术上的准备。

(2)给定实验内容A. 按本实验指导书的第一部分中介绍的方法,使用OrCAD 10.5完成二极管限幅电路的计算机仿真实验。

B. 利用Capture CIS为本实验建立一个新的PSpice项目,项目名可以自行选取。

C. 绘制出如右图所示的给定仿真电子电路原理图,包括放置电子元器件、放置导线、放置断页连接器、修改各元器件的参数等操作。

仿真电路中各元器行该偏置点分析,将其仿真结果(图)拷贝作为实验结果;E. 完成本电路的DC扫描分析参数设置(参见本指导书的6.2.2节), 运行该DC扫描分析,将其仿真结果(图)拷贝作为实验结果;F. 完成本电路的瞬时分析参数设置(参见本指导书的6.2.3节), 运行该瞬时分析,将其仿真结果(图)拷贝作为实验结果;G. 完成本电路的AC扫描分析参数设置(参见本指导书的6.2.4节), 运行该AC扫描分析,将其仿真结果(图)拷贝作为实验结果。

4、实验报告内容A. 你所绘制的仿真电子电路原理B. 你所完成的偏置点分析结果图C.你所完成的DC扫描分析结果图(请在此处粘贴你所完成的DC扫描分析结果图)D.你所完成的瞬时分析结果图E. 你所完成的AC扫描分析结果图F. 写出本次实验结果分析及及实验心得第一次接触CAD这个软件,发现原来还有一个这么好用的软件能够方便地实现绘制电路原理图和可编程的逻辑设计提供连续性的仿真信息。

大连理工大学通信电子线路高频实验报告

大连理工大学实验预习报告学院(系):电子信息与电气工程学部专业:电子信息工程班级:姓名:学号:组:___实验时间:2015.9.24实验室:C224 实验台:指导教师签字:成绩:实验一高频小信号调谐放大器一、实验目的和要求实验目的:1. 学习高频小信号谐振放大器的工程设计方法。

2. 掌握谐振回路的调谐方法和放大器的某些技术指标的测试方法。

3. 了解部分接入电路的形式和作用。

4. 学会通过实验对电路性能进行研究。

实验要求:利用实验室提供的元器件设计一个高频小信号谐振放大器。

设计要求如下:1.工作频率f=16.455MHz。

2.输入信号V i ≤ 200μVEMF(为便于示波器观察,调试时输入电压可用10mVEMF。

)3.1kΩ 负载时,谐振点的电压放大倍数A V0≥20dB,不要超过35dB。

4.1kΩ 负载时,通频带BW≈1MHz。

5.1kΩ 负载时,矩形系数k r0.1<10。

6.电源电压V cc=12V。

7.放大器工作点连续可调(工作电流I EQ=1~8mA)。

二、实验原理和内容对于小信号谐振放大器来说,并联谐振回路的输入端与管子的输出阻抗相连,而回路负载通常是后级管子的输入阻抗。

因此高频晶体管的输入、输出阻抗中的电阻部分,会降低回路的有载Q 值,它们的输入、输出电容、跨接电容的Miller效应及其他寄生电容等会影响谐振频率,而且管子参数和分布参数是不稳定的,会随着温度、工作点的变化而变化。

为减小这些不良影响,晶体管、负载与并联谐振回路的连接宜采用部分接入方式,降低对LC回路的影响。

三、设计的图纸及对图纸的分析图1.1.1 高频小信号调谐放大器参数选择如图所示为变压器耦合的小信号谐振放大器,变压器是中周形式的,变压器初级线圈L1为谐振回路电感,C2为回路的调谐电容,变压器次级接负载电阻。

N、N1分别为初级线圈的总匝数和抽头1、2之间的匝数,N2为变压器次级线圈的匝数。

晶体管集电极接在回路电感的抽头上,晶体管输出阻抗只与电感的一部分并联,接入系数P1=N1N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

j l h a p A A A通信电子线路实验报告-CAL-FENGHAI.-(YICAI)-Company One1实验名称通信电子线路课设指导教师杨振宇学院信息科学与工程学院专业班级通信1402班姓名姜俊宏学号目录一.实验内容及要求 (2)二.正弦波振荡器 (2)2.1反馈型振荡器的工作原理 (2)2.2起振条件 (3)2.3平衡条件 (3)2.4稳定条件 (4)2.5失真分析 (4)三.电路设计 (7)3.1振荡电路模块 (7)(1)晶体管的选择 (8)(2)直流馈电线路的选择 (8)3.2缓冲级模块 (9)3.3放大级模块 (10)四.仿真与调试 (11)4.1仿真 (11)4.2分析调试 (13)五.心得体会 (15)一.实验内容及要求实验内容: 正弦波振荡器的设计实验要求:采用晶体三极管构成一个正弦波振荡器;(2)额定电源电压5.0V ,电流1~3mA;(3)输出频率 10 MHz;(4)有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P)二.正弦波振荡器振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。

与放大器的区别:无需外加激励信号,就能产生具有一定频率、波形和振幅的交流信号。

由晶体管等有源器件和具有某种选频能力的无源网络组成。

正弦波振荡器按工作方式不同可分为反馈式振荡器与负阻式振荡器两大类。

反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。

所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。

负阻式振荡器则是将一个呈现负阻特性的有源器件直接与谐振电路相接,产生振荡。

2.1反馈型振荡器的工作原理反馈型振荡器是通过正反馈联接方式实现等幅正弦振荡的电路。

这种电路由两部分组成,一是放大电路,二是反馈网络。

图2.1所示为反馈振荡器构成方框图及相应电路。

由图可知,当开关S在 1 的位置,放大器的输入端外加一定频率和幅度的正弦波信号Ui,这一信号经放大器放大后,在输出端产生输出信号UO,若UO经反馈网络并在反馈网络输出端得到的反馈信号Uf与Ui不仅大小相等,而且相位也相同,即实现了正反馈。

若此时除去外加信号,将开关由 1 端转接到 2 端,使放大器和反馈网络构成一个闭环系统,那么,在没有外加信号的情况下,输出端仍可维持一定幅度的电压UO输出,从而实现了自激振荡的目的。

图2.1 反馈振荡器的结构网络图为了使振荡器的输出U O 为一个固定频率的正弦波,图 2.1 所示的闭合环路内必须含有选频网络,使得只有选频网络中心频率的信号满足U f 与U i 相同的条件而产生自激振荡,对其他频率的信号不满足U f 与U i 相同的条件而不产生振荡。

选频网络可与放大器相结合构成选频放大器,也可与选频网络相结合构成选频反馈网络。

2.2起振条件振荡器在实际应用时不应有外加信号,而应是一加上电后即产生输出;振荡的最初来源是振荡器在接通电源时不可避免地存在的电冲击及各种热噪声。

振荡开始时激励信号很弱,为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡。

由()()()1i i T j U j U j ωωω'>>,可知,1)(>ωj T 称为自激振荡的起振条件,也可写为()1f L T j Y R F ω'=>20,1,2,T f L F n n φφφφπ'=++==⋅⋅⋅分别称为起振的振幅条件和相位条件,其中起振的相位条件即为正反馈条件。

2.3平衡条件振荡器的平衡条件即为1)()()(==ωωωj F j K j T也可以表示为()1T j KF ω==20,1,2T K F n n φφφπ=+==⋅⋅⋅即为振幅平衡条件和相位平衡条件。

平衡状态下,电源供给的能量正好抵消整个环路损耗的能量,平衡时输出幅度将不在变化:振幅平衡条件决定了振荡器输出信号振幅的大小;环路只有在某一特定的频率上才能满足相位平衡条件:相位平衡条件决定了振荡器输出信号频率的大小。

2.4稳定条件振荡器的稳定条件分为振幅稳定条件和相位稳定条件。

(1)振幅稳定条件要使振幅稳定,振荡器在其平衡点必须具有阻止振幅变化的能力。

具体来说,0i iA U U i KU =∂<∂就是在平衡点附近,当不稳定因素使振幅增大时,环路增益将减小,从而使振幅减小。

(2)相位稳定条件振荡器的相位平衡条件是φT (ω0)=2nπ。

在振荡器工作时, 某些不稳定因素可能破坏这一平衡条件。

如电源电压的波动或工作点的变化可能使晶体管内部电容参数发生变化, 从而造成相位的变化, 产生一个偏移量Δφ。

由于瞬时角频率是瞬时相位的导数, 所以瞬时角频率也将随着发生变化。

为了保证相位稳定, 要求振荡器的相频特性φT (ω)在振荡频率点应具有阻止相位变化的能力。

具体来说, 在平衡点ω=ω0附近, 当不稳定因素使瞬时角频率ω增大时, 相频特性φT (ω0)应产生一个-Δφ, 从而产生一个-Δω, 使瞬时角频率ω减小。

2.5失真分析2.5.1 三极管的非线形失真当我们用三极管对信号进行放大的时候,目的是对信号有一定比例地放大,如果不能按比例放大,放大后的信号与原信号相比就改变了性质,这种现象我们称之为信号失真,而这种失真是由于对原信号进行非线形放大而产生的,我们称为非线形失真。

2.5.2 非线形失真产生的原因及分类2.5.2.1 截止失真现在以NPN型三极管为例说明晶体三极管的工作原理及失真原因的分析,三极管的结构和符号三极管的发射节相当于一个二极管,而二极管具有单向导电性,其所加电压与通过电流与二极管的伏安特性相同。

只有加到发射节上的电压高于Uon(开启电压)时,发射节才有电流通过,而当发射节被加反向电压时(只要不超过其反向击穿电压),只有很小的反向电流通过,我们认为这种情况下三极管处于截止状态,而在实际应用中,我们会遇到各种各样的信号需要放大,有较强的信号,有较弱的信号,也有反向的信号,根据PN结的特性,当加到发射结上的信号为较弱的信号(小于开启电压),或者是反向信号时,发射结是截止的,三极管是不能起到放大的作用,输出的信号,也出现严重的失真,此时的失真,称为截止失真。

2.5.2.2 饱和失真在了解三极管的饱失真前,我们先了解一下三极管的饱和导通,我们知道,当三极管的的发射结被加正向电压且UBE>Uon,三极管的发射结有电流通过,以NPN三极管为例,三极管的工作过程是这样的:当发射结加正向电压时,发射区通过扩散运动向基区发射电子,形成发射极电流IE;其中一小部分与基区的空穴复合,形成基极电流IB,又由于集电极加反向电压,所以从发射极出来的大部分电子在集电极电压作用下通过漂移运动到达集电极,形成集电极电流IC。

当集电结上加不同电压时,有三种情况:2.5.2.2.1 集电结加反向电压,集电结反偏,此时,集电极有能力收集从发射极发射出的电子,三极管处于稳定的放大状态。

如电路图3,三极管工作在如图2所示的放大区。

2.5.2.2.2 当集电结加正向电压,集电极正偏,此时,发射极发射电子由于而集电极收集电子不足,即使基极电流增大,发射极发射电子电流增大,由于集电极收集电子不足,集电极电流也不会增大,这种情况称为三极管的饱和导通,如图2所示的饱和区。

饱和导通时,三极管对信号也失去了发放大作用,此时的三极管的失真称为饱和失真2.5.2.2.3 当集电结所加电压为零,即UCB=0时,三极管出处于饱和放大的临界状态。

2.5.3 非线形失真的解决办法2.5.3.1 截止失真的解决办法当输入信号Ui<Uon时,如果没有附加电源,发射结是截止的,三极管不能进行放大作用,如果要是三极管导通,就要增加基极电位,使输入的信号同时增加某相同的电位,使要放大的输入信号都能满足大于Uon,为此在基极增加一个静态电源VBB,使VBB+Ui>Uon,保证三极管导通。

如图所示3.2 饱和失真的解决办法2.5.3.2.1 增加VCC 由于三极管饱和的根本原因是集电结收集电子的能力不足,所以增加VCC能够增强集电极收集电子的能力,但必须保证VCC在三极管的能承受范围内,在RC和管子不变的情况下,能够消除饱和失真2.5.3.2.2 增加基极电阻RB以减小基极电流,从而集电极电流IC=βIB,在集电极电阻RC和集电极电源VCC不变的情况下,由VCE=VCC-βIBRC得集电极电压变大,从而使集电极收集电子能力增强,消除饱和失2.5.3.2.3 减小集电极电阻,在电路中其他参数不变的情况下,减小集电极电阻RC就减小了在RC上的压降由UCE=VCC-βIBRC知加在集电结的电压增大,也增强了集电极收集电子的能力,从而消除饱和失真2.5.3.2.4 更换一只β较小的管子.在其他参数不变的情况下,换一只放大倍数较小的管子,由UCE=VCC-βIBRC知:在集电极电阻上的压降减小,也即增大了加在集电结的电位,增强了集电结收集电子的能力,从而消除饱和失真,同理由Ⅰ式得β应满足结论以上是从晶体管三极管的放大原理来分析其放大失真的原因,并给出了在其他参数不变的情况下,改变电路中的某一个参数的几种消除非线形时针失真的解决办法,而在实际应用中,有时候某个参数必须满足实际情况,也既是某些参数必须在一定范围内来改变,而且有时候需要改变几个参数才能达到实际的需要,但其基本的分析方法是相同的,以上是我的一点体会,难免会有错误之处,希望批评指正。

三.电路设计3.1振荡电路模块振荡电路模块我选用了电感反馈三端式振荡器。

X1和X2为感性,X3为容性,满足三端式振荡器的组成原则,因为反馈网络是由电感元件完成的,称为电感反馈三端式振荡器,也称为哈特莱振荡器。

(a )电感反馈振荡器 (b )实际电路电感反馈振荡器中,电感通常是绕在同一带磁芯的骨架上,它们之间存在互感,用M 表示。

同电容反馈振荡器的分析一样,振荡器的振荡频率可以用回路的谐振频率近似表示LC w w o i /1=≈,即式中的L 为回路的总电感,122L L L M =++,由相位平衡条件分析,振荡器的振荡频率表达式为电感反馈式三端振荡器优点(1)容易起振 (2)调整频率方便,变电容而不影响反馈系数。

缺点(1) 振荡波形不够好,高次谐波反馈较强,波形失真较大。

(2) 不适于很高频率工作。

如图3.1所示即为设计的第一个模块,也是此次设计的主要模块——振荡电路模块。

LC o 1·21f π≈图3.1振荡电路模块图与前面的对振荡器电路的分析一样,图3.1中的R2和R3均为电路的偏置电阻,C3、C1分别为旁路电容和隔直流电容,而C5、L1和L2的连接方式也符合电感三点式振荡器的原则,因此整个电路就构成了设计所需要的振荡电路。

相关文档
最新文档