风电场自动电压控制系统功能及结构介绍
风电场监控系统

防误主机
操作票打印
电脑 钥匙
人员层
各种锁具
间隔层
2.风电场综合监控系统方案
风 机 监 控 接 入
2.风电场综合监控系统方案
风功率预测系统
Web服务器 数据库服务器 应用服务器 PC工作站
风 电 功 率 预 测 系 统
数据采集 服务器
数值天气 预报数据
交换机 安全II区数Fra bibliotek天 气预报 反向隔离装置 防火墙 纵向加密装置
LCU
……
高压线路、母联测控
主变及公用测控
集电线路保护测控
保护及智能设备
……
箱 变 监 控 光 纤 环 网
LCU
箱 变 监 控 光 纤 环 网
……
……
……
具有串行通讯接口的风机 具有网络通讯接口的风机
LCU LCU
测风塔
气象局
升压站综自系统
箱变监控系统
风机监控系统
2.风电场综合监控系统方案
升压站、箱变和风机统一监视
根据日前计划曲线发电
维护工作站自动实时计划模式
与
根据实时计划曲线发电
维护工作站手动计划模式
与
根据手动计划曲线发电
4.风电场AGC/AVC控制系统
日前发电计划——来自风功率预测系统; 实时发电计划——来自风功率预测系统;
本 地 控 制
手动发电计划——工作人员自行设定。
I区从II区风功率预测工作站以FTP方式接受有功发电计划曲线;
日前每天接收后存入明日日前发电计划曲线中,在每天的
24:00将明日曲线复制到日前的今日曲线; 实时发电计划只有未来四小时,实时刷新,波浪式推进;
手动发电计划由运行人员根据日前发电计划曲线和实时发电
风力发电机整体结构PPT课件

b.桩位偏差合格(1/3D) c.桩头清理(油污,砼碎块)
2021
20
2.2.钢筋检验 a.出厂合格证 b.复检合格证明 c..钢筋机械连接抗 拉试验合格证明 d.表面清理
2021
21
2.3.基础环的检验和固定
a.基础环合格证明,外观检查
b.基本尺寸的现场检验(L法兰)
风力发电机机组对基础的所产生的载荷主要 应考虑机组自重Q和倾覆力矩Mn
2021
14
7.REpower对风机基础的具体要求 混凝土和钢筋用量(如图)
2021
15
8.预埋管
布置保护电缆,但同时对基础结构 不利,施工时布置均匀相互间留有间 距,尽量减少对基础结构的影响。
2021
16
预埋管
2021
2021
8
3.基础设计满足以下两个条件
3.1.要求作用于地基上的载荷不超 过地基的容许应力,保证地基有足够 的安全储备
3.2.控制基础的沉降,使其不超过 地基容许变形值
2021
9
4.风电机组基础的种类
风力发电机基础均为钢筋混凝土独立基础, 根据风电场工程地质条件和地基承载力和风 机载荷的不同分为:天然重力基础和桩基础 (本风场选用桩基础)。
提供必要的锁紧力矩,以保障风 力发电机组的安全运行
2021
41
风机偏航系统的组成
偏航系统由风向标传感器、偏航轴承、 偏航驱动电机、偏航制动器、扭缆保护 装置等几个部分组成。
2021
42
风向标传感器
MM82风机有两个待加热的风速 计安装在气象塔上。气象塔被接 地并具有围绕风速计的雷电捕获 回路。
2021
50
解缆和扭缆保护装置
风电有功功率自动控制技术规范

风电有功功率自动控制技术规范Technical specificati on for automatic generation control of wind power2014-12-20发布2014-12-20实施目次前言 (II)1范围 (1)2规范性引用文件 (1)3术语和定义 (1)4总则 (3)5调度中心侧风电有功功率自动控制技术要求 (3)6风电场侧有功功率自动控制技术要求....................................................5 附录A (8)编制说明 (12)I前言为促进风电接入电网后的安全、优质、经济运行,规范国家电网范围内风电有功功率自动控制工作,提高风电利用率,特制订本标准。
本标准由国家电网公司国家电力调度控制中心提出并解释。
本标准由国家电网公司科技部归口。
本标准起草单位:国网吉林省电力有限公司,清华大学,中国电力科学研究院。
本标准主要起草人:郑太一,董存,孙勇,张小奇,杨国新,王彬,和青,范国英,范高锋,黄越辉,吴文传,李育发,张继国,李振元,李宝聚,曹政,王泽一。
本标准首次发布。
风电有功功率自动控制技术规范1范围本标准规定了风电有功功率自动控制的技术要求,包括控制模式、控制策略、功能要求及性能指标等。
本标准适用于含风电场接入的电网调度控制中心及通过110(66)kV 及以上电压等级线路接入电力系统的风电场。
2规范性引用文件下列文件对于本文件的应用是必不可少的。
凡是注日期的引用文件,仅所注日期的版本适用于本文件。
凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T19963—2011风电场接入电力系统技术规定DL/T516—电力调度自动化系统运行管理规程DL/T634.5101—2002远动设备及系统第5101部分:传输规约基本远动任务配套标准(IE C60870-5-101:2002ID T)DL/T634.5104—2002远动设备及系统第5104部分:传输规约采用标准传输协议子集的IEC60870-5-104网络访问(IEC60870-5-104:2000IDT)国家电监会5号令电力二次系统安全防护规定Q/GDW1907—2013风电场调度运行信息交换规范Q/GDW680.35—2011智能电网调度技术支持系统第3-5部分:基础平台数据采集与交换Q/GDW680.42—2011智能电网调度技术支持系统第4-2部分:实时监控与预警类应用水电及新能源监测分析Q/GDW680.43—2011智能电网调度技术支持系统第4-3部分:实时监控与预警类应用电网自动控制3术语和定义下列术语和定义适用于本文件。
风电场继电保护配置及安全自动装置设计

风电场继电保护配置及安全自动装置设计摘要:根据工程实例阐述了风电场继电保护配置及安全自动装置配置,列举了部分继电保护配置整定计算,灵敏度计算,确保风电场短路故障时继电保护装置可靠动作。
关键词:风电场,继电保护,重合闸,故障录波,灵敏度1、引言继电保护是保证电力系统安全稳定运行的重要组成部分,随着我国的建设风电场项目规模越来越大,风电场对系统稳定的影响越明显,故风电场风电机组的保护及升压站继电保护配置整定尤为重要,应该考虑风电短路电流的影响。
下面通过工程实例说明风电场升压站内主要继电保护配置及整定、安全自动装置的配置方式。
工程实例:此风电场为新建工程,建设规模先建设一台50MV A,容量:50/50/15MV A,终期两台主变。
风电场110kV接线均为单母线接线,本期风电场主变变低35kV为单母线接线,本站主变压器110kV中性点采用隔离开关直接接地方式。
变压器中性点接地方式可以选择不接地或直接接地,以满足系统不同的运行方式。
35kV系统采用经小电阻接地方式。
380/220V站用电系统采用中性点直接接地方式。
2、风电场继电保护配置继电保护配置图如下:(1)母线差动保护配置:高压侧母线差动保护、低压侧母线差动保护母线故障时电气设备最严重的故障之一,他将使连接在故障母线上的所有元件停电。
根据系统稳定的要求及反措的要求,快速切除母线上故障。
本设计110kV,35kV母线各配置一套采用了比率制动母线差动保护装置。
工作原理([1])为:利用母线内外故障时各回路电流与差电流之间明显的变化规律、用各回路电流绝对值中最大值减去与差电流的绝对值成比例的量作为制动量,以与差电流绝对值成比例的量作为动作量。
在内部故障时,差电流的绝对值将大于各回路电流绝对值中的最大值,故制动量为0,具有很高的动作灵敏度,而在外部故障时,差电流绝对值远小于各回路电流绝对值中最大值,故有很大的制动量。
(2)110KV线路保护配置:光纤差动保护适用于电力系统中短线路的主保护。
风电AVC电压无功控制系统及AGC功率控制系统在风电场的有效运用

风电AVC电压无功控制系统及AGC功率控制系统在风电场的有效运用摘要:在各种新能源中,风力发电非常重要,而且已经形成一定的规模。
当前风力发电容量持续增长,电力部门对风力发电提出了更高的电能质量要求,同时对于不足之处采用科学有效的控制措施解决,本论文着重于研究风电AVC电压无功控制系统及AGC功率控制系统在风电场的有效运用。
关键词:风电;AVC电压无功控制系统;AGC功率控制系统;风电场;有效运用引言现在各个国家对各种先进的能源技术进行开发,不断转化能源使用结构模式,将不可再生资源使用量控制在最低。
我国是发展中国家,虽然有丰富的能源,但是不可再生能源依然面临枯竭,而且使用中释放大量污染物,不符合绿色发展要求。
风力发电技术应运而生,因地制宜地将风能合理应用,并且引进先进技术开发使用,不仅创造较高的价值,而且还具有环保价值。
一、系统基本介绍(一) AVC电压无功自动控制技术风电场投入AVC(自动电压控制)之后,可以对电压自动调整,具体的方法就是将母线电压值设定好之后,据此进行调节,开展这项工作中也可以按照中调给定无功功率进行,或者基于电压曲线作为依据调节。
具体的方法是,将电压远程调节目标值输入之后,设定好参数,就可以自动控制无功功率。
AVC电压无功自动控制系统运行的过程中,可以对多个对象进行控制,除了风电机组之外,包括分接头以及SVG都可以得到有效控制。
所有被控制的对象都安装有功能投切软压板,其作为配套软件中所安装的一个功能控制开关,对于远程控制起到支撑作用,同时还能够实时指定是否参与有功控制或者无功控制,可见,AVC电压无功自动控制技术发挥重要的作用。
该技术的应用过程中,就是对母线电压、母线无功等实时产生的数据信息进行收集,将电厂侧的电源内部电阻计算出来,此时,还要观察电源接入点向电源侧所呈现出来的阻抗情况,明确阻碍电流所产生的影响,之后通过系统阻抗以及设定的目标电压值,就可以将目标电压值设定出来,之后从母线向电网无功功率注入,确保电压在短时间内回复,促使直流母线电压维持在稳定状态。
风电场电气与控制系统教学教案

1、并网型风力发电系统主要由风力发电机组和升压变电站组成2、考虑管理、运行、维护以及投资、产权等综合成本因素,在我国风力发电一般采用集中并网远距离传输运行;3、风电场的电气与控制系统主要包括升压站含入网送出线路、场内输变电系统含箱变、风电机组电气系统三部分;4、根据风电场的规模、电力输送距离、接入变电站的系统电压等级等多种因素,风电场升压站一般有330kV升压站、220kV升压站、110kV升压站、66kV升压站4种电压等级;5、根据风电场规模及电网公司的要求,送出线路的杆塔可以是单塔单回、单塔双回;LGJ导线可以是单根或多分裂;送出线路还应包括通讯用的光缆或微波通讯装置等;6、根据风电场设计规范,风电场升压站按用户站设计,其主接线结构简单,一般为线路-变压器组或单母线接线形式,一般为中型布置,而配电装置有开放式和成套组合式电器两种形式;7、配电装置开放式布置的优点是投资省,缺点是占地较大;成套组合电器的有点是占地少,可靠性高,缺点是价格贵;8、线路-变压器组接线的优点是:接线简单清晰,高压侧不设母线,电气设备少,投资少,操作简便,继电保护简化;缺点是:当一组单元中的某个元件故障或检修时,整个单元将停止运行;适用于设置1台主变压器的风电场;9、单母线接线的优点是:接线简单明显,设备少、经济性好,运行时操作方便,便于扩建;缺点是:当母线或者母线侧刀闸发生故障或者进行检修时,各支路都必须停止工作;引出线的开关检修时,该支路要停止供电;10、单母线接线适用范围为多期开发,设置2~4台主变压器、只有1回送出线路的风电场;如取消线路上的断路器,就成为扩大线路-变压器组接线方式;11、风电场升压站低压侧10Kv或35kV电气主接线一般采用单母线或单母分段接线方式;但考虑到调度管理以及减小投资的关系,建议风电场升压站低压侧10Kv或35kV电气主接线采用单母线方式,而不分段,不设计母线联络开关;12、风电场电气主接线35Kv中性点,根据风电场容性电流的大小,一般采用不接地或消弧线圈、小电阻、以及消弧消谐装置接地方式;13、根据实际运行经验,对于风电场的集电线路为全电缆形式,且其容性充电电流大于30A,一般采用小电阻接地方式;而对风电场集电线路为架空线路和电缆组合方式,如电缆容性充电电流小于10A一般采用不接地方式;如容性电流大于10A且小于30A或最大为35A一般采用消弧消谐接地装置接地方式;14、由于风电场升压站按用户站设计,且为保证故障尽快切除,不建议选用消弧线圈接地方式,如带病电网系统运行较长的时间,可能出现两相短路或三相短路故障,可能出现保护越级;15、由于风的随机性和不稳定性,风电场需要无功补偿,并且一般选择为动态无功补偿装置,根据实际风电场运行经验,风电场所需要的总的无功容量在12%~16%之间;16、对于直接接入公共电网的风电场,其配置的容性无功容量能够补偿风电场满发时汇流线路、主变压器的感性无功以及风电场送出线路的一半感性无功之和,其配置的感性无功容量能够补偿风电场送出线路的一半的充电无功功率;17、对于通过220kV风电汇集系统升压到500kV或750kV电压等级接入公共电网的风电场群中的风电场,其配置的容性无功容量能够补偿风电场满发时汇集线路、主变压器的感性无功及风电场送出线路的全部感性无功之和,其配置的感性无功容量能够补偿风电场送出线路的全部充电无功功率;18、无功补偿装置形式为选用静止型动态无功补偿装置SVG或SVC和固定电容滤波支路组成;19、35kV接地形式与中性点设备,现在一般为小电阻接地或消弧消谐装置加精确选线装置接地;20、220kV母线采用LGJ架空导线,35kV采用TMY母线铜排21、风电场升压站内所有电气设备、构架等均采用2根接地引下线与主接地网可靠连接;构架避雷针、氧化锌避雷器等与主接地网连接处设集中接地装置;22、风电场输变电系统包括箱式变压器、场内输电线路、升压站低压侧等部分;23、一般50MW、35kV电压等级的风电场输电线路为2~4回,100MW、35kV电压等级的风电场输电线路为4~8回;24、风电场内输电线路有架空线路和高压电缆两种方式;出于环境保护、森林防火等的需要,应当采用高压电缆的方式;25、35kV架空线路的经济输送距离为10km以内,极限输送距离20km左右;26、风电场35kV电压等级线路进站前1~2km称为进站保护段,需装设避雷线;27、箱式变电站是由高压开关设备、电力变压器、低压开关设备等部分组合在一起,构成的户外变配电成套设备;具有成套性强、占地面积小、投资小、安装维护方便、外形美观、耐候性强特点;28、箱式变电站有欧式变和美式变两种类型,一般风电场常使用美式变;欧式变有一层外壳,有操作空间,便于现场维护;美式变的高压负荷开关和熔断器直接在油箱里,利用油绝缘,有体积小、结构紧凑、价格便宜等优点;29、箱式变电站设置2个直径不小于12mm的铜质螺栓的接地体,接地电阻应满足R≤4Ω,并在定期检查时查验;30、雷电流引起的过电压,取决于引下系统和接地网的电阻和面积;引下系统和接地网的电阻越小,面积越大,雷电流引起电压越小,反之亦然;31、风电场共采用三套计算机监控系统:一套随风力发电机组配套的计算机风电机群SCADA监控系统、一套升压站用的计算机监控系统、一套用于远方监视终端服务器系统;32、风电场升压站的计算机监控系统采用分层、分布、开放式的网络结构,由主控层和现地层组成,分别使用100M和10M以太网;主控层包括监控主站、远动站、打印机和GPS时钟系统等设备;现地层可在现地单机控制、保护、测量和采集信号;33、升压站信号分为电气设备运行状态信号、电气设备和线路事故和故障信号;34、升压站的主要电气设备可现地控制也可在中控室进行集中监控;中控室及现地均可操作断路器、隔离开关等;隔离开关与相应的断路器和接地刀闸之间装设闭锁装置; 35、根据风电场接入系统设计要求,风电场上网电量计量点设在出线处,计量点安装2套电能表和电能量远方终端1套,电能表采用智能式多功能电能表,精度为级;36、220kV主变压器配置2套冗余的差动、后备及非电量保护,保护动作于断开主变压器的各侧断路器;37、35kV无功自动补偿装置的断路器配置电流速断保护和过电压保护;电流速断保护动作于断开断路器;过电压保护带时限动作于断开断路器;38、35kV进线保护配置限时电流速断和过电流保护,以及零序过流保护、过负荷保护及小电流接地选线保护,保护动作于信号或跳闸;39、升压站根据规模配置1套或2套220V直流电源系统;直流电源系统配1组或2组容量为200Ah蓄电池组,采用高频开关电源装置对蓄电池组进行充电和浮充电;40、需要交流电源供电的计算机监控设备由UPS电源供电,一般选用1套或2套5Kva的UPS电源,UPS电源由直流系统的蓄电池供电;41、风电场的通信系统主要包括系统通信、场内通信以及对外通信;42、风力发电机组的现地监控系统主要包括两部分:第一部分为计算机控制单元,控制模块由plc或微计算机构成;第二部分为同步并网及功率控制单元,由变频器组成;43、风力发电机组的机械保护包括:风力发电机组配置的温度升高保护、振动超限保护、转速升高保护、电缆纽绞保护等;44、风电场能量管理平台在对风电机组进行功率调节时,两次限功率指令之间的最小时间间隔为50s;45、电能管理平台在当风速达到功率要求时,可实现单机有功功率在10%~100%额定功率之间调节;46、风电场应配置风电功率预测系统,系统具有0~48h短期风电功率预测以及15min~4h超短期风电功率预测功能;47、风电场每15min自动向电力系统调度部门滚动上报未来15min~4h的风电场发电功率预测曲线,预测值的时间分辨率为15min;48、风电场每天按照电力系统调度部门规定的时间上报次日0~24时风电场发电功率预测曲线,预测值的时间分辨率为15min49、风电场功率预测系统的组成;一般分为4个模块,即中尺度数值模拟系统、微尺度气象模型、发电量计算物理模型和误差统计校正模型;50、风功率预测系统能进行短期预测,提供72h风电功率预测,时间分辨率为15min;也能进行超短期预测,提供未来5h风电功率预测,时间分辨率为15min;51、SCADA系统可以对风电场的运行设备进行监视和控制,以实现数据采集、参数调节、各类信号报警,以及产生统计报表等各项功能;52、风电场中央监控系统通过电缆、光缆等介质将风力发电机组进行物理连接,对于介质的选择依据风电场的地理环境、风力发电机组的数量、风力发电机组之间的距离、风力发电机组与中央监控室的距离、项目的投资以及对通讯速率的要求制定;53、大规模存储电能的作用是:可以解决电力生产中的峰谷差难题;提高电力系统供电的可靠性,避免突然停电带来的麻烦和损失;储能可以提高系统的稳定性,在电力系统遇到大的扰动时,避免系统失稳;储能装置是风力发电、太阳能发电等可再生不稳定能源发电设备中不可缺少的装备;54、风电场电池储能是风电机组发出的电经过双向逆变的整流回路成直流存入电池,以后在需要用电时,电池里的电经过逆变器成交流输出;55、海上风电机组的冷却方式均采用油冷或者水冷,通过热交换器与外界进行热交换来达到散热的目的;56、海上风电机组的结构是密封性结构,设计的空气过滤器可以把水汽、盐分隔绝在外面,减少了这些不利因素对塔筒内部不见的腐蚀和污染,通过水冷系统对塔筒内的变频器、变压器、控制柜进行冷却;57、海上风电有它的特殊性,其场内输变电系统都是海缆,箱变一般在塔筒内;海缆长度比较长,充电电容比较大,风电场场内无功呈现容性,这与陆上风电有突出差别,所以对风电场升压站配置无功补偿有独特要求;58、风电场电能传输一般都经过二次升压,即风力发电机组千伏经机旁安装的箱变升至10千伏或35千伏为一次升压,二次升压为汇集后的10千伏或35千伏经安装在升压站的主变升至66/110/220/330千伏接入公共电网;59、风电场规模在100MW以内,输送距离在30km以内,考虑经济性,在系统接入变电站有110千伏等级的情况下,可建1个110千伏升压站,在系统接入变电站有220千伏等级的情况下,可建1个220千伏升压站;风电场规模较大、输送距离较长的情况下,拟建220千伏升压站为宜;60、风电场升压站低压侧电气主接线之所以采用单母线分段接线方式,其目的是考虑主变检修时,便于其母线段风机发出的电能能送出或在小风月便于某台主变退出运行,以节约一台主变的空载损耗;61、风电场主变压器一般采用三相双绕组油浸风冷有载调压电力变压器,而在风电场场内集电线路为电缆时,部分风电场采用了三相双绕组带平衡绕组的有载调压变压器;62、35千伏开关柜采用手车式或固定式金属铠装开关柜;63、无功补偿系统含电力电容器滤波支路的开关柜,由于容性电流较大,一般选用经老化试验的真空断路器或SF6断路器;断路器的额定电流根据容量选择,而热稳定电流一般取kA;64、220千伏、35千伏母线、220千伏、35千伏进线线路侧、主变压器两侧及主变压器中性点均装设复合外套金属氧化锌避雷器,此外主变压器中性点还装设放电间隙,35千伏并联电容器装设避雷器保护;65、开关柜需要有完善系统的过电压解决方案,35千伏开关柜一般在PT柜装设避雷器,或在每个开关柜安装过电压保护性能更好的过电压保护器,采用大能容和自脱离防爆型两项过电压技术,能有效抑制系统过电压对设备损坏;66、升压站采用复合式接地网;水平接地体采用606热镀锌扁钢;垂直接地极采用长的热镀锌角钢;变压器四周与人行道相邻处,设置与主接地网相连接的均压带67、风电场的控制系统应由两部分组成:一部分为就地计算机控制系统;另一部分为主控室计算机控制系统;主控制室计算机应备有不间断电源68、控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制;69、SCADA中文名称数据采集与监视控制系统;70、风电机控制系统参数及远程监控系统实行分级管理,未经授权不准越级操作;71、为了提高风电场的整体管理水平和自动化水平,保证风电场的安全、可靠运行,升压站应设置计算机监控系统、微机继电保护系统、防误操作闭锁系统、光纤和通信系统;72、蓄电池是一种储能设备,它能把电能转变为化学能储存起来;使用时,又把化学能转变为电能,通过外电路释放出来;73、海上风电的适应性要求包括防盐雾腐蚀措施、防雷措施、防雷接地系统;74、中央监控系统的网络结构支持链形、星形、树形结构;具体的连接方式需要根据风电机组的排布位置,结合现场施工的便捷性确定;75、单母线接线高压只有一组母线,每个出线和变压器都通过断路器和隔离开关接到母线上;76、母线起着汇集和分配电能的作用;扩大线路-变压器组仅仅比单母线少一个出口断路器等相应开关设备;77、为解决220千伏线路长效应现象,就要求在风电场升压站220千伏线路出口处安装能补偿220千伏线路充电功率一半的线路电抗器;78、线路隔离开关采用水平双断口式隔离开关,额定电流根据容量选择,热稳定电流为40kA;79、主变压器、出线回路电流互感器配置6个次级线圈;80、26/35千伏电压等级的电力电缆用于35千伏输电线路;15千伏电缆用于10千伏输电线路;1千伏用于机组至箱变之间的连接电缆;81、在同样的截面下,铝芯电缆载流量比铜芯的小,在选用时,在同样容量下,往往比铜芯大一个截面;82、箱式变压器应具有完整的保护、测量、控制、信号回路;83、应每年对机组的接地电阻进行测试一次,电阻值不宜高于4Ω;每年对轮毂至塔架底部的引雷通道进行检查和测试一次,电阻值不应高于Ω;84、220kV升压站主接地网实测接地电阻应满足R≤Ω,110kV及以下升压站主接地网实测接地电阻应满足R≤4Ω;85、风电场场内输变电系统:包括箱式变压器、场内集电线路两部分;集电线路有架空线路、高压电缆两种方式;86、变频器按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;87、防止直击雷的保护装置有避雷针和避雷线;88、风电机组沿避雷带沿风机基础四周敷设,一般应用50mm×5mm热镀锌扁钢,距离基础约为1m,避雷带将基础周围的接地极相连接,形成完整的接地装置;89、升压站内微机防误闭锁装置对站内全部断路器、隔离开关和接地开关等进行防误闭锁,实现“五防”操作;90、风电场远程监控终端服务器系统通过OPC协议与风电机组SCADA监控系统和升压站监控系统通讯;91、风电场升压变电站通常配置两套监控系统,一套是风电机组SCADA监控系统,另一套是升压变电站设备的监控系统;92、控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制;93、日常监视时,重点关注风电机组状态有故障告警信号、各部件的温度、桨距角、风速和功率的对应等监控数据;94、UPS由电池、整流器和逆变器三部分组成,共有三种工作模式;95、低温、高温、高湿、盐雾腐蚀、高海拔等运行环境以及风沙、雷电、冰雪、台风等灾害性气候会对设备的安全稳定运行带来较大影响;因此,在实际的运行中,风电场应根据不同的气候特点,针对性地加强防尘、防雷、防台、防污闪、防腐蚀等工作,保证风电场的安全稳定运行;96、风电场与电网调度之间应保证有可靠的通信联系;97、风电机组电控系统包含保证机组安全可靠运行、从自然风中获取最大能量、向电网提供质量良好的电力三个方面的职能;98、变频器是双馈式风电机组中非常关键的部件,它将发电机转子侧的电能通过整流、逆变接入电网;99、静止无功发生器和静止无功补偿相比具有更快的响应速度,更宽的运行范围,尤其重要的是,电压较低时仍可以向电网注入较大的无功电流;100、在风力发电中,异步发电机的就地无功补偿可采取以下几种方法:电力电容器等容分组自动补偿、固定补偿与分组自动补偿相结合、SVC静态无功补偿;101、风力发电场将多台大型并网型的风力发电机组安装在风资源好的场地,按照地形和主风向排列,组成机群向电网供电;102、由于风的随机性和不稳定性,风电场需要无功补偿,并且一般选择为动态无功补偿装置,根据实际风电场运行经验,风电场所需要的无功容量在12%-16%之间;103、送出线路较长时特别是对220KV线路,会出现低负载电压翘尾效应; 104、主建筑、继电保护室、各屋内配电室灯采用荧光灯和白炽灯照明; 105、风电场的无功容量应按照分电压层和分电区基本平衡的原则进行配置; 106、风电场总无功消耗为电缆、箱变、主变、线路的综合无功和;107、根据计算得到总无功,参照结合已经投运风电场情况,一般基于欠补偿的原则选择补偿装置容量,而感性无功按其1/3容量或送出线路一半容性无功配置;108、箱式变电站的高压室由高压负荷开关、高压熔断器避雷器等组成,可以进行停送电操作并且设有过负荷和短路保护;109、风电专用浪涌保护器特点如下:可靠的热脱扣保护装置、通流容量大,残压低、可靠的老化告警方式、模块化设计,安装维护方便;110、主变压器装设过负荷保护,带时限动作于信号;111、场用变压器采用熔断器保护,设置用电计量装置1套;112、风电场升压站装设故障滤波装置,对相应的各种模拟量及开关量进行录波,用于系统各种事故情况的记录分析;113、操作电源系统包括直流和交流系统两部分;114、风电场升压站设置火灾自动报警系统1套,区域火灾自动报警器设在中控楼、中控室、35KV配电室、通信室、直流室及中控楼走廊设置火灾报警探头及按钮;115、风电场风电机组中央监控系统可以对风电场的运行设备风力风电机组、测风塔、箱式变电站、升压变压器等进行监视和控制,以实现数据采集、参数调节、各类信号报警以及产生统计报表等各项功能;116、风机监控系统也可以监控变流器、变距系统、齿箱系统、液压系统、偏航系统、发电机、安全链、电网状况等各个数字量,模拟量的输入、输出情况; 117、机组出现故障都会进行记录,内容包括:故障发生时间、事件代号、事件名,存储方式以数据库文件进行储存;。
风电场功率控制系统调度功能技术规范-编制说明
《新能源电站功率控制系统技术规定》编制说明目次1 编制背景 (1)2 编制原则 (1)3 与其他标准的关系 (1)4 主要工作过程 (2)5 标准结构和内容 (2)6 标准有关条款的说明 (2)1 编制背景在我国,大型新能源电站(风电场及光伏电站)的开发及并网运行多具有以下特点:风能及光照的变化有随机性;大多新能源电站距电力主系统和负荷中心较远,所以一般新能源电站与薄弱的地方电力系统相联;新能源电站运行时向电网送有功功率的同时还要吸收无功功率;原有的地方电力系统的线路按常规设计建设,缺乏电压控制设备和措施等;大规模风电及光伏接入将对电网电压水平、频率水平、电能质量、稳定性、调度运行等带来很大影响。
为了应对大规模风电及光伏的接入,确保接入后的电力系统运行的可靠性、安全性与稳定性,除了加强相应的电网建设、增加电网的调控手段,并不断改善整个电力系统的电源结构外,还需要对新能源电站参与电网有功及频率控制、电压及无功控制的技术要求做出相应的规定,以期不断提高新能源发电单元(风力发电机组和光伏逆变器)和新能源电站的运行特性,降低大规模风电及光伏接入对电网带来的不利影响。
目前国内已有国家电网公司和南方电网公司相关企标,尚无相关国家标准对其进行规范;随着新能源电站参与电网有功频率调节、电压无功调节的逐步深入,急需编制国家标准对其统一要求。
2 编制原则标准编制的原则是遵守《中华人民共和国可再生能源法》、《中华人民共和国电力法》、《电网调度管理条例(1993)》(国务院第115号令)等现有相关法律、条例、标准和导则,兼顾电网运行和风电发展的要求。
从系统运行的技术层面考虑,对接入电网的新能源发电单元/新能源电站而言,必须满足电网的技术要求,以确保它们并网运行后不会对输电系统产生不利影响。
这些技术要求都是在广泛调研和认真总结我国各网省公司已有新能源电站功率自动控制系统建设情况、技术方案和实施现状的基础上提出,大致包括有功功率控制、频率控制、有功紧急控制、无功电压控制、关键信息交换等方面,在技术路线和功能体系设计上充分考虑了先进性。
风力发电机基础知识及电气控制.ppt
2021/9/15
48
10、基础
为钢筋混凝土结构,承载整个风力发电机组的重量。基础周围设置有预 防雷击的接地系统。
2021/9/15
49
11、机舱
风力发电机组的机舱承担容纳所有的机械部件,承受所有外力(包括静 负载及动负载)的作用。
2021/9/15
50
风力发电机组简图
转速范围 rpm
11.5-21.2
11-22
9.7-19
9.8-18.3
额定转速 2021/9/15
rpm
20.1
20.1
17.4
17.4 5
并网型风力发电机组由以下部分组成
1、 风轮(叶片和轮毂) 2、 传动系统 3、 偏航系统 4、 变浆系统 5、 液压系统 6、 制动系统 7、 发电机 8、 控制与安全系统 9、 塔筒 10、基础 11、机舱
26
制动系统
使风轮减速和停止运转的系统。 SL1500系列风力发电机所用的制动器是一个液压动作的盘式制动器,用 于锁住转子。例如,在风力发电装置紧急切断时,制动器制动,使系统 停机。它具有自动闸瓦调整功能,也就是说当闸瓦磨损时不需要手动调 整制动器.
2021/9/15
27
制动器在风力发电机组中的安装位置
例如:运行、停机、故障
查看即时的故障信息
例如:故障代码、简单描述
各个设备的即时参数
例如:温度、电压、角度
各个设备所处的状态
例如:启动、停止
信息的记录
例如:发电量、发电时间、 耗电量
2021/9/15
41
Control-控制面板
2021/9/15
42
Control-菜单内容
自动电压控制装置在风电场的应用
自动电压控制装置在风电场的应用X孙庆海1,张 琳2(1.内蒙古呼和浩特白塔国际机场有限责任公司动力能源保障部;2.内蒙古电力勘测设计院,内蒙古呼和浩特 010010) 摘 要:文章主要论述了风电场自动电压控制系统开发的背景、结构组成、方案实施与应用的意义。
关键词:自动电压控制装置;应用 中图分类号:T M761+.12∶TM614 文献标识码:A 文章编号:1006—7981(2012)03—0031—021 风电场自动电压控制装置开发的背景风力发电近年来在国家的大力扶持下获得了巨大的发展,随着风电并网容量的不断增加,由于风能的随机性、间歇性特点以及风机的运行特性,对电网电压稳定性的影响也越来越显著,尤其在大规模风电接入薄弱的末端电网时电压稳定问题更为突出。
风电机组的连接方式、风电的长距离输送以及风电机组无功调节能力差,是风电无功和电压调整困难的主要因素。
当风电小出力运行时,风电场接入系统的线路轻载运行,充电功率较大导致系统电压偏高;当风电大出力运行时,无功损耗增加导致风电场和风电场接入点电压又有较大幅度下降。
风电场有功出力的增加还会导致风电场无功消耗成平方倍的增加。
因此,风电场如果不进行适当的无功补偿,汇集站至风电场升压站的架空线路将会大量传输无功而导致无法满足风电送出要求,同时会增加线路和变压器的损耗。
为解决风电大量入网引起的无功电压问题,电网公司曾多次对风电场的无功动态补偿装置及容量提出要求,但由于目前风电机组和无功动态补偿装置均独立运行,按各自的控制目标和策略进行控制,在调节母线电压方面还未做到协调控制,各自为战,调节效果非常不好,满足不了电网对风电并网点电压波动范围的要求,也会由于无功分布的不合理导致有功损耗的增加。
由于存在上述问题,国家电网公司2009年发布的《风电场接入电网技术规定》明确要求风电场应具备协调控制机组和无功补偿装置的能力,能够自动快速调整无功总功率。
因此在风电场建设自动电压控制系统,对风机、无功补偿装置、有载调压变压器进行统一协调控制,实现风电场并网点电压和无功功率的自动调控,合理协调和优化风电场无功分布,对保证电网安全稳定运行、提高电压质量、减少有功损耗和提高风电场经济效益具有重要意义。
张家口地区风电场无功电压控制
制定 遥 控 传 动 方 案 : P N 0 0系统 侧 将 其 O E 30 他涉 及遥 控 的厂站 除该 风 电场外 全 部 封掉 , 防 以
v
l
A C主站误 控其 他厂 站 ; 风 电场 侧所 有 装 置 的 V 将
远方/ 就地 把 手 均 放 至 就 地 位 置 , 控 出 口压 板 遥 打开; 只将 要 传 动 的 间隔 远 方/ 地 把 手 放 至 在 就
l
I9 环运 l 并 行
类 型 为 C T或 MO B S 形 成 A C 主 站 系 统 一 D D U。 V O E 30 P N 0 0系 统 一 风 电 场 监 控 系 统 一 S C 装 置 的 V
《 电力 系统 电压 和 无 功 电力 管 理 条例 》 1 第 2
条 规定 : 压供 电的 工业 用 户 和高 压 供 电装 有 带 高
立 道 l建 通 l 4
l
嚣 据 互l jI数 交 直 5
需
⑩
I一 . . . . .
6 l 制定
啦
I传动方案
f ————一
. ..... ...
远 方位置 , 进行 遥控 传动试 验 。
控 制 区 间 测 试 : V 系 统 以 2 0 k 母 线 电 A C 2 V
统 ( tmai l g o t lA Auo t Vot eC nr , VC) 实 现 风 电 场 与 变 电站 的协 调 控 制 、 变 分 接 开 关调 节 次 数 最 少 和 电 容 器 c a o , 主
投 切 合理 、 电压 合格 率 最 高和 输 电 网损 率最 小的 综 合 优 化 目标 。
a d s b t t n,h e s o e a i n o a p n wic e fma n ta so me , u t b e s t h n fc p ct r t e h g e t n u sa i o t e l a t p r t ft p i g s t h s o i r n f r r s ia l wic i g o a a i o o h ih s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风电场自动电压控制系统功能及结构介绍风电场自动电压控制(AVC)系统是一种用于风力发电场的电气设备,主要用于监测和控制风电场的电压,以确保风力发电系统的稳定运行。
AVC系统通过实时监测风电场的电压变化,并根据需求进行自动调整,以保持电网稳定,并提供可靠的电力供应。
本文将介绍AVC系统的功能和结构。
AVC系统的主要功能包括:
1.实时监测:AVC系统通过安装在风电场的变电站和风力涡轮发电机上的传感器,实时监测电压的变化。
传感器会将监测到的数据传输到控制中心进行分析和处理。
2.自动调整:AVC系统根据监测到的电压变化,通过控制装置进行自动调整。
控制装置可以根据需要改变所连接的电力设备的发电功率,以调整电压水平。
3.稳定电网:AVC系统的主要目标是维持电网的稳定运行。
通过自动调整电压水平,AVC系统可以避免电网的过压或欠压问题,并确保电力质量的稳定。
4.保护设备:AVC系统还可以监测电力设备的状态,并在检测到故障或异常时进行保护。
它可以通过降低电力设备的负载或断电来防止设备的过载或损坏。
AVC系统的结构通常由以下几个主要组件组成:
1.传感器:AVC系统使用放置在变电站和风力涡轮发电机上的传感器来监测电网的电压变化。
这些传感器可以是电压传感器或电流传感器,用于测量电压和电流的数值。
2.数据采集单元:数据采集单元负责收集传感器传输的数据,并将其传输到控制中心。
数据采集单元通常由一台或多台计算机组成,用于处理和分析数据。
3.控制装置:控制装置是AVC系统的核心部分,负责根据监测数据进行决策和调整。
它可以根据需要改变所连接设备的工作状态,如调整发电功率或控制负载。
4.通信设备:通信设备用于传输数据和指令,以确保各个组件之间的协调和合作。
通信设备通常包括有线和无线通信系统,用于实时传输数据和指令。
5.监控界面:监控界面是AVC系统的用户界面,用于显示系统运行的实时状态和监测数据。
操作员可以通过监控界面监视和控制AVC系统的运行。
总结:风电场自动电压控制(AVC)系统是一种用于监测和控制风电场电压的系统。
它可以实时监测电压变化,并根据需求自动调整电压水平,以确保电网的稳定运行。
AVC系统通常由传感器、数据采集单元、控制装置、通信设备和监控界面等组件组成。
该系统的主要功能是维持电网的稳定运行,并保护设备免受过压或欠压的影响。