直流伺服电机的驱动方式和正反转控制方式

合集下载

电动执行器正反转原理

电动执行器正反转原理

电动执行器正反转原理
电动执行器正反转原理是指,通过改变电机驱动器的电源正反极性,来实现电动执行器的正反转控制。

具体来说,电动执行器由电机、减速器和控制器等组成,其中电机是核心部件,其工作原理为利用电磁感应的原理将电能转化为机械能,从而实现执行器的运动。

在电动执行器的正转状态下,电源正极连接电机正极,电源负极连接电机负极,电流由电子流动方向可知,电流从正极进入电机,从负极流出,形成一个闭合回路,驱动电机旋转。

而在电动执行器的反转状态下,电源正极连接电机负极,电源负极连接电机正极,此时电流的流向与正转时相反,电流从正极进入电机负极,从电机正极流出,同样形成一个闭合回路,从而实现反转状态的运动。

通过控制电源正负极的连接方式,控制电流流向的方向,从而实现电动执行器的正反转控制。

一般来说,电动执行器正反转控制可通过步进电机控制器、伺服电机驱动器等实现,这些设备内部会有相关的电路板,通过控制电路板实现电源正负极的交替切换,从而实现电动执行器的正反转控制。

总体来说,电动执行器正反转原理就是通过改变电源正负极连接方式实现电动执行器的正反转控制。

在实际应用中,不同种类的电动执行器电机和控制器有着不同的工作原理和控制方式,需要根据具体情况选择合适的电机驱动和控制器才能达到最佳控制效果。

《电机控制》PPT课件(2024版)

《电机控制》PPT课件(2024版)

整理ppt
18
4.实验参考程序
/**************************************************************************
* 控制步进电机快速前进200步,降低速度再前进50步,再次降低速度前进5步,然后停止。
* 停止一段时间后,控制步进电机以相反的步调退回原地。
int
main (void)
{
uint32 i;
uint8 Direction=0,Speed=3;
PINSEL1 = PINSEL1 & 0x0FFFFFFF;
// 设置P0.30为GPIO功能,输入
IO0DIR = IO0DIR & 0xBFFFFFFF;
// 设置P0.21为PWM功能,通过控制PWM的占空比从而控制直流电机的速度
U
U
效t
t
8
1.PWM(Pulse Width Modulation)脉冲调宽式
一个PWM周期
20%占空比 一个PWM周期
50%占空比
2.PFM(Pulse Frequency Modulation)脉冲调频式
1个脉冲
25%占空比 2个脉冲
50%占空比
整理ppt
9
1.2 控制电路--驱动部分
PINSEL1 = PINSEL1 | 0x00000400;
//设置P1.21为GPIO,输出。通过控制P1.21的电平从而控制直流电机的方向
IO1DIR = IO1DIR | (1<<21);
ZLDJ_SET(Direction,Speed);
//电机以最快速度正转
while(1)

伺服电动机

伺服电动机

伺服电动机认知1.永磁交流伺服系统概述现代高性能的伺服系统,大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。

(1)交流伺服电动机的工作原理伺服电机内部的转子是永久磁铁,驱动器控制的u/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电动机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。

伺服电动机的精度决定于编码器的精度(线数)。

伺服驱动器控制交流永磁伺服电动机(PMSM)时,可分别工作在电流(转矩)、速度、位置控制方式下。

系统的控制结构框图如图7-17所示。

系统基于测量电机的两相电流反馈(Ia、Ib)和电机位置。

将测得的相电流(Ia、Ib)结合位置信息,经坐标变化(从a,b,c坐标系转换到转子d,q坐标系),得到Ia、Ib分量,分别进入各自的电流调节器。

电流调节器的输出经过反向坐标变化(从d,q坐标系转换到a,b,c坐标系),得到三相电压指令。

控制芯片通过这三相电压指令,经过反向、延时后,得到6路PWM波输出到功率器件,控制电机运行。

伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,实现数字化、网络化和智能化。

功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。

智能功率模块(IPM)的主要拓扑结构是采用了三相桥式电路,原理图如图7-18所示。

利用了脉宽调制技术(Pulse width Modulation,PWM),通过改变功率晶体管交替导通的时间来改变逆变器输出波形的频率,改变每半周期内晶体管的通断时问比,即通过改变脉冲宽度来改变逆变器输出电压幅值的大小以达到调节功率的目的。

关于图7-17中的矢量控制原理,此处不予讨论。

第三章 伺服系统

第三章 伺服系统
Position Regulation Unit 位置调节单元 Velocity Regulation Unit 速度调节单元 Electric Current Regulation Unit 电流调节单元 Detection device 检测装置
In general ,the Closed-loop system includes Position Loop、 Speed Loop 、 Electric Current Loop. 一般闭环系统为三环结构:位置环、速度环、电流环
• 数控机床伺服系统又称为位置随动系统、驱动系统、伺服机构或伺 服单元。
Servo system is a main subsystem of the numerical control system . If the CNC device is the numerical control system ‘s“brains”, then the servo system is a
计算方法。学习中,应特别注意各种伺服驱动元件的调速
方法和调速原理,了解各种驱动元件之间的性能比较及其 应用场合
• 3.1 Overview 概述
3.1.1 the function of the system 系统功能
The automatic control system which uses position and velocity as control
G
Position Loop、 Speed Loop and Electric Current Loop are made of Regulation control, testing and feedback modules. 位置、速度和电流环均由:调节控制模 块、检测和反馈部分组成。电力电子驱动装置由驱动信号产生电路和功率放大 器组成。 Position control includes position, speed and current control ;Speed control includes the speed and current control.位置控制包括位置、速度和电流控制;速度控制包 括速度和电流控制。

交流伺服电机正反转的原理

交流伺服电机正反转的原理

交流伺服电机正反转的原理伺服电机是一种能够根据外部输入信号实现精确运动控制的电机,可用于机器人、机械手、CNC等领域。

伺服电机的正反转原理主要由控制系统、电机驱动器和编码器组成。

首先,我们来详细介绍一下伺服电机的控制系统。

伺服电机的控制系统是由微处理器、反馈传感器和电机驱动器组成的。

微处理器负责接收外部输入的指令信号,并控制电机驱动器输出相应的控制信号。

反馈传感器用于实时检测电机的运动状态,并将反馈的位置或速度信号传输给微处理器。

微处理器根据这些反馈信号进行计算和判断,从而实现电机的正反转控制。

其次,我们看一下电机驱动器在伺服电机正反转过程中的作用。

电机驱动器是连接控制系统和电机的媒介。

它接收来自微处理器的控制信号,并将信号转换为适合电机驱动的电流、电压或功率。

驱动器还能根据控制系统的指令,对电机进行精确的电流或电压控制,使电机能够按照预定的动作要求进行正反转。

最后,我们来探讨一下反馈传感器在伺服电机正反转过程中的作用。

反馈传感器通常使用编码器来实现。

编码器会将电机转动的角度或位置变化转换为脉冲信号,然后将信号传递给微处理器。

微处理器通过对编码器的脉冲信号的计数和分析,能够准确地计算电机的位置或速度,并与预设的目标位置或速度进行比较。

通过不断地监测电机运动状态并与目标进行比较,微处理器能够根据差值进行控制信号的调整,从而实现电机的精确正反转。

在实际操作中,当我们输入指令信号使得伺服电机进行正转时,微处理器会根据编码器传来的实际位置信号与目标位置信号进行比较,并计算出控制信号的调整量。

微处理器将调整后的控制信号传输给电机驱动器,驱动器通过对电流或电压进行控制,使电机按照预设的速度、加速度和位置进行正转。

同理,当我们输入指令信号使得伺服电机进行反转时,整个过程也是类似的。

总结来说,伺服电机的正反转原理基于控制系统、电机驱动器和反馈传感器的协作。

控制系统负责指令信号的接收和控制信号的计算,电机驱动器负责将控制信号转换成适合电机驱动的电流或电压,反馈传感器则用于实时检测电机的运动状态,并将反馈信号传递给控制系统进行计算和判断。

现代控制理论:直流电机模型

现代控制理论:直流电机模型

现代控制理论:直流电机模型⽬录1.直流电机 (3)2.状态空间表达式 (6)3.对⾓标准型及相关分析 (7)4.系统状态空间表达式求解 (8)5.系统能控性和能观性 (8)6.系统输⼊输出传递函数 (9)7.两种⽅法判断开环稳定性 (9)8.闭环极点配置 (10)9.全维状态观测器设计 (13)10.带状态观测器的状态反馈控制系统的相关跟踪图 (17)10.带状态观测器的闭环状态反馈系统相关分析 (21)11.结束语 (22)现代控制理论基础结课作业选题:直流电机模型姓名:班级:测控1003学号:201002030313第 I 条1直流电动机的介绍节1.011.1研究的意义直流电机是现今⼯业上应⽤最⼴的电机之⼀,直流电机具有良好的调速特性、较⼤的启动转矩、功率⼤及响应快等优点。

在伺服系统中应⽤的直流电机称为直流伺服电机,⼩功率的直流伺服电机往往应⽤在磁盘驱动器的驱动及打印机等计算机相关的设备中,⼤功率的伺服电机则往往应⽤在⼯业机器⼈系统和CNC铣床等⼤型⼯具上。

[1]节 1.021.2直流电动机的基本结构直流电动机具有良好的启动、制动和调速特性,可以⽅便地在宽范围内实现⽆级调速,故多采⽤在对电动机的调速性能要求较⾼的⽣产设备中。

直流伺服电机的电枢控制:直流伺服电机⼀般包含3个组成部分:-图1.1①磁极:电机的定⼦部分,由磁极N—S级组成,可以是永久磁铁(此类称为永磁式直流伺服电机),也可以是绕在磁极上的激励线圈构成。

②电枢:电机的转⼦部分,为表⾯上绕有线圈的圆形铁芯,线圈与换向⽚焊接在⼀起。

③电刷:电机定⼦的⼀部分,当电枢转动时,电刷交替地与换向⽚接触在⼀起。

直流电动机的启动电动机从静⽌状态过渡到稳速的过程叫启动过程。

电机的启动性能有以下⼏点要求:1)启动时电磁转矩要⼤,以利于克服启动时的阻转矩。

2)启动时电枢电流要尽可能的⼩。

3)电动机有较⼩的转动惯量和在加速过程中保持⾜够⼤的电磁转矩,以利于缩短启动时间。

伺服驱动技术

系统精度
伺服系统精度指的是输出量复现输入信号要求的精确程度,以误差的形式 表现,可概括为动态误差、稳态误差和静态误差三个方面组成。
稳定性 伺服系统的稳定性是指当作用在系统上的干扰消失以后,系统能够 恢复到原来稳定状态的能力;或者当给系统一个新的输入指令后,系统 达到新的稳定运行状态的能力。
响应特性
响应特性指的是输出量跟随输入指令变化的反应速度,决定了系 统的工作效率。响应速度与许多因素有关,如计算机的运行速度、 运动系统的阻尼和质量等。
Ra CeC 2
T
由上式知,直流伺服电机的控制方式如下:
(1)调压调速(变电枢电压)
(2)调磁调速(变励磁电流)
(3)改变电枢回路电阻调速
转向取决于电磁转矩 T 的方向,而 T 的方向 取决于 Φ 和 Ia 的方向。
+ Ia
Ua
M
If + Uf
+ Ia
Ua
M

-磁

Uf

If +




If +
360° zN
=
360° 40×3
= 3°
②采用三相六拍时: θ=
360° zN
=
360° 40×6
= 1.5°
3.步进电动机驱动电源
(1)作用 : 发出一定功率的电脉冲信号,使定子励 磁绕组 顺序通电。
与一般交流和直流电动机所不同的是,步进电动机定子绕 组所加的电源形式为脉冲电压,而不是正弦电压或者恒定 直流电压。
U2
3
U1
V2
W2
V2
W2
V2
W2
W1
V1
W1

无刷直流电机的工作原理

无刷直流电机原理无刷直流电动机的工作原理普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。

为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。

为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

无刷直流电动机的原理简图如图一所示:主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。

永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。

直流电机的制动与控制

一、引言从广义上讲,电机是电能的变换装置,包括旋转电机和静止电机。

旋转电机是根据电磁感应原理实现电能与机械能之间相互转换的一种能量转换装置;静止电机是根据电磁感应定律和磁势平衡原理实现电压变化的一种电磁装置,也称其为变压器。

这里我们主要讨论旋转电机,旋转电机的种类很多,在现代工业领域中应用极其广泛,可以说,有电能应用的场合都会有旋转电机的身影。

与内燃机和蒸汽机相比,旋转电机的运行效率要高的多;并且电能比其它能源传输更方便、费用更廉价,此外电能还具有清洁无污、容易控制等特点,所以在实际生活中和工程实践中,旋转电机的应用日益广泛。

不同的电机有不同的应用场合,随着电机制造技术的不断发展和对电机工作原理研究的不断深入,目前还出现了许多新型的电机,例如,美国EAD公司研制的无槽无刷直流电动机,日本SERVO公司研制的小功率混合式步进电机,我国自行研制适用于工业机床和电动自行车上的大力矩低转速电机等。

1 旋转电机分类在旋转电机中,由于发电机是电能的生产机器,所以和电动机相比,它的种类要少的多;而电动机是工业中的应用机器,所以和发电机相比,人们对电动机的研究要多的多,对其分类也要详细的多。

实际上,我们通常所说的旋转电机都是狭义的,也就是电动机——俗称“马达”。

众所周知,电动机是传动以及控制系统中的重要组成部分,随着现代科学技术的发展,电动机在实际应用中的重点已经开始从过去简单的传动向复杂的控制转移;尤其是对电动机的速度、位置、转矩的精确控制。

由此可见,对于一个电气工程技术人员来说,熟悉各种电机的类型及其性能是很重要的一件事情。

通常人们根据旋转电机的用途进行基本分类。

下面我们就从控制电动机开始,逐步介绍电机中最有代表性、最常用、最基本的电动机——控制电动机和功率电动机以及信号电机。

2 控制电动机2.1 伺服电动机伺服电动机广泛应用于各种控制系统中,能将输入的电压信号转换为电机轴上的机械输出量,拖动被控制元件,从而达到控制目的。

常用电机控制电路图


THANKS FOR WATCHING
感谢您的观看
单相电机的正反转控制电路
总结词
通过改变电机绕组的电流方向实现正反 转。
VS
ቤተ መጻሕፍቲ ባይዱ
详细描述
在单相电机控制电路中,可以通过改变电 机绕组的电流方向来实现正反转控制。通 常使用两个开关来控制电机绕组的电流方 向,当开关接通时,电机向一个方向转动 ,当开关断开时,电机向另一个方向转动 。
04 直流电机控制电路
常用电机控制电路图
contents
目录
• 电机控制电路基础知识 • 三相异步电机控制电路 • 单相电机控制电路 • 直流电机控制电路 • 电机保护电路
01 电机控制电路基础知识
电机控制电路的基本组成
电源
为整个电路提供电能,通常为 直流或交流电源。
控制元件
如继电器、接触器、光耦合器 等,用于控制电机的启动、停 止和调速。
直接启动控制电路
通过开关或接触器直接将电机接入电 源,实现电机的启动。这种方式电路 简单,但启动电流大,只适用于小容 量电机。
三相异步电机的正反转控制电路
正反转控制方式总结
三相异步电机的正反转控制主要采用倒顺开关和交流接触器两 种方式。倒顺开关操作简单,但只适用于小容量电机;交流接
触器则适用于各种容量的电机。
倒顺开关正反转控制电路
通过改变电源相序,实现电机的正反转。这种方式操作简 单,但只适用于小容量电机,且不能实现自动化控制。
交流接触器正反转控制电路
通过两个交流接触器分别控制电机的正转和反转,实现电机的 正反转控制。这种方式可以实现自动化控制,适用于各种容量
的电机。
三相异步电机的调速控制电路
调速方式总结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流伺服电机的驱动方式和正反转控制方式
直流伺服电机是一种常用的电动机驱动装置,可通过调节电源电压和电流来实现运动的精确控制。

直流伺服电机的驱动方式有两种:模拟驱动方式和数字驱动方式。

模拟驱动方式是通过模拟电路来控制直流伺服电机的速度和方向。

这种方式中使用的控制电路包括电压比例放大器和电流比例放大器。

电压比例放大器将输入的电压信号放大到与电机转速成正比的电压输出信号,而电流比例放大器则通过放大输入的电流信号来控制电机的转矩大小。

通过调节输入的电压和电流信号,可以实现直流伺服电机的精确控制。

数字驱动方式是通过数字信号处理器(DSP)或者微处理器来控制直流伺服电机的速度和方向。

数字驱动方式具有更高的控制精度和可编程性。

它通过将输入的数字信号转换为模拟电平,然后传输给模拟电路控制电机。

数字驱动方式还可以通过改变输入信号的频率和占空比来调节电机的转速和转矩。

直流伺服电机的正反转控制方式也有两种:四象限控制方式和双H桥控制方式。

四象限控制方式是最常用的正反转控制方式之一。

它通过调节电压的极性和电流的方向来实现电机的正反转。

具体来说,在四象限控制方式下,当电机处于停止状态时,不加电压或电流;当需要正转时,给电机加上正极性电压和正方向电流;当需要反转时,给电机加上负极性电压和反方向电流。

四象限控制方式简单可靠,广泛应用于各种工业领域。

双H桥控制方式是另一种常见的正反转控制方式。

它通过控制四个开关管的状态来实现电机
的正反转。

具体来说,当需要正转时,关闭S1和S4,打开S2和S3;当需要反转时,关闭S2
和S3,打开S1和S4。

这种控制方式具有较高的控制精度和灵活性,适用于一些对电机控制要求更高的应用场景。

总结来说,直流伺服电机的驱动方式有模拟驱动方式和数字驱动方式,正反转控制方式有四象限控制方式和双H桥控制方式。

根据具体的应用需求和性能要求,选择合适的驱动方式和控
制方式,可以实现对直流伺服电机运动的精确控制。

相关文档
最新文档