风荷载标准值

合集下载

最新风荷载标准值

最新风荷载标准值

风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。

脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。

脉动风的作用就是引起高层建筑的振动(简称风振)。

以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。

平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。

阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。

注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。

从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。

平均风相当于静力,不引起振动。

阵风相当于动力,引起振动但是引起的是一种随机振动。

也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。

换句话说就是既有周期性风力又有脉动风。

反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。

有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。

由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。

垂直于建筑物表面上的风荷载标准值

垂直于建筑物表面上的风荷载标准值

垂直于建筑物表面上的风荷载标准值,应按下列公式计算:1、当计算主要承重结构时:Wk =βz·μs·μz·W0式中:Wk ----风荷载标准值(KN/m2)βz ---高度Z 处的风振系数;μs---风荷载体型系数:μz ---风压高度变化系数;W0----基本风压(KN/m2)风压高度变化系数μZA 类指近海面、海岛、海岸、湖岸以及沙漠B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区C 类指密集建筑裙的城市市区D 类指有密集建筑物裙且房屋较高的城市市中心βz ---高度Z 处的风振系数高度大于30米且高宽比大于1.5考虑。

否则βz =1与结构的自振特性有关,(包括自振周期、振型等,也与结构的高度有关)。

结构在 z 高度处的风振系数βz 可按下式:式中:ξ ----脉动增大系数;ν ----脉动影响系数;φz-- 振型系数;μz---风压高度变化系数。

重要说明: 风振系数:不满足 “ 高度大于30m 且高宽比大于1.5的高柔房屋 ” =1.0.“三水准”抗震设防目标当遭受低于本地区抗震设防烈度的多遇地震影响时,一般不受损坏或不需修理可继续使用。

当遭受相当于本地区抗震设防烈度的地震影响时,可能损坏,经一般修理或不需修理仍可继续使用。

当遭受高于本地区抗震设防烈度的预估的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。

第一阶段:对绝大多数结构进行小震作用下的结构和构件承载力验算;在此基础上对各类结构按规定要求采取抗震措施。

第二阶段:对一些规范规定的结构进行大震作用下的弹塑性变形验算。

有特殊要求的建筑、地震易倒塌的建筑、有明显薄弱层的建筑,不规则的建筑等Z。

风荷载计算

风荷载计算

风荷载计算参考规范:《建筑结构荷载设计规范》gb50009-2022《高层建筑混凝土结构技术规程》jgj3-2021一般情况下的风荷载:风荷载的标准值为荷载规范8.1.1和4.2.1wk??ZsZw0(1)风荷载标准值计算公式适用于主要承重(主)结构的风荷载计算;(2)风荷载的标准值为沿风向的风荷载;(3)风荷载垂直于建筑物表面;(4)风荷载的作用面积应为垂直于风向的最大投影面积;(5)适用于高层建筑任意高度的风荷载计算。

对于荷载规范3.2.5第2条中的雪荷载和风荷载,重现期应视为设计使用寿命。

8.1.2在荷载规范中,基本风压应为根据本规范规定的方法确定的重现期为50年的风压,但不得小于0.3kn/o。

荷载规范的E.5和高度规范的4.2.2。

对风荷载敏感的高层建筑,其承载力按基本风压的1.1倍设计。

(文章描述)。

一般情况下,对于高度超过60m的高层建筑,在承载力设计中可按基本风压的1.1倍计算风荷载。

吸烟守则第5.2.1条。

基本风压不应小于0.35kn/o。

对于安全等级为I级的烟囱,应根据每100年一次的风压采用基本风压。

8.2.1地面粗糙度a类近海海面和岛屿、海岸、湖岸和沙漠地区B类田地、村庄、丛林、丘陵和城镇,房屋稀疏,城市地区C类密集建筑,城市地区D类密集建筑,房屋高大。

荷载规范表8.2.1显示了墙和柱的风压高度随墙顶的变化系数。

柱顶与地面之间的距离被视为计算高度Z,通过查表插入法确定。

荷载规范中的风压体型系数8.3.1围护结构:根据第32项,高度规范中取1.3 4.2.31,圆形平面建筑取0.8;2正多边形和截断三角形平面建筑的计算公式如下:?s0.8? 1.2/n3对于高宽比H/b不大于4的矩形、方形和交叉平面建筑,取1.3;4.以下建筑采用1.4:1)V形、Y形、弧形、双十字形和井形平面建筑;2)高宽比H/b大于4的L形、槽形和十字形平面建筑;风压高度变异系数3)高宽比H/b大于4,长宽比L/b小于1.5的矩形和鼓形平面建筑。

荷载标准值计算

荷载标准值计算

荷载标准值计算荷载标准值是指在正常使用情况下,结构或构件所能承受的最大荷载值。

它是进行结构设计和评估的重要依据,需要根据相关规范和实际使用情况进行计算。

下面将对荷载标准值的计算方法进行详细介绍。

一、恒载标准值计算恒载是指长期作用在结构或构件上的不变荷载,如结构自重、土压力、水压力等。

恒载标准值的计算方法如下:1.自重标准值计算自重标准值是指结构或构件自身的重量所产生的荷载标准值。

其计算方法可根据材料的重度(单位体积的质量)和构件的体积进行计算。

例如,对于混凝土构件,自重标准值可按下式计算:GK = γc * Vc式中:GK——自重标准值(N);γc——混凝土的重度(N/m³);Vc——混凝土构件的体积(m³)。

2.土压力标准值计算土压力标准值是指由于土壤自重和侧压力作用在结构或构件上的荷载标准值。

其计算方法可根据土壤的重度和侧压力系数进行计算。

例如,对于地下连续墙,土压力标准值可按下式计算:EK = γs * Ka * H式中:EK——土压力标准值(N/m²);γs——土壤的重度(N/m³);Ka——侧压力系数;H——地下连续墙的深度(m)。

二、活载标准值计算活载是指作用在结构或构件上的可变荷载,如人群荷载、车辆荷载、风荷载等。

活载标准值的计算方法如下:1.人群荷载标准值计算人群荷载标准值是指每平方米面积上所能承受的最大人群重量所产生的荷载标准值。

其计算方法可根据《建筑结构荷载规范》中的规定进行计算。

例如,对于商场、医院等公共场所,人群荷载标准值可取为3.5 kN/m²。

2.车辆荷载标准值计算车辆荷载标准值是指每平方米面积上所能承受的最大车辆重量所产生的荷载标准值。

其计算方法可根据《公路桥涵设计通用规范》中的规定进行计算。

例如,对于高速公路和一级公路,汽车荷载标准值可取为100 kN/m²。

3.风荷载标准值计算风荷载标准值是指每平方米面积上所能承受的最大风力所产生的荷载标准值。

风荷载取值

风荷载取值

3、1、3 风荷载建筑物受到得风荷载作用大小,与建筑物所处得地理位置、建筑物得形状与高度等多种因素有关,具体计算按照《荷载规范》第7章执行。

1、风荷载标准值计算垂直于建筑物主体结构表面上得风荷载标准值W K ,按照公式(3、1-2)计算:βz ——高度Z 处得风振系数,主要就是考虑风作用得不规则性,按照《荷载规范》7、4要求取值。

多层建筑,建筑物高度<30m,风振系数近似取1。

(1)风荷载体型系数µS风荷载体型系数,不但与建筑物得平面外形、高宽比、风向与受风墙面所成得角度有关,而且还与建筑物得立面处理、周围建筑物得密集程度与高低等因素有关,一般按照《荷载规表3、1、10 建筑物体型系数取值表注1:当计算重要且复杂得建筑物、及需要更细致地进行风荷载作用计算得建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。

注4:当多栋或群集得建筑物相互间距离较近时,宜考虑风力相互干扰得群体作用效应。

一般可将单体建筑得体型系数乘以相互干扰增大系数,该系数可参考类似条件得试验资料确定,必要时宜通过风洞试验确定。

注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2、0。

注4:验算表面围护结构及其连接得强度时,应按照《荷载规范》7、3、3规定,采用局部W W z s z k μμβ=)21.3(-风压力体型系数。

(2)风压高度变化系数µz设置风压高度变化系数,主要就是考虑建筑物随着高度得增加风荷载得增大作用。

对于位于平坦或稍有起伏地形上得建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7、2要求选用,表3、1、11中列出了常用风压高度变化系数得取值要求。

表3、1、11 风压高度变化系数A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏得乡镇与城市郊区;C类:有密集建筑群得城市市区;D类:有密集建筑群与且房屋较高得城市市区。

风荷载标准值49738

风荷载标准值49738

For personal use only in study and research; not forcommercial useFor personal use only in study and research; not forcommercial use风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。

脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。

脉动风的作用就是引起高层建筑的振动(简称风振)。

以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。

平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。

阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。

注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。

从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。

平均风相当于静力,不引起振动。

阵风相当于动力,引起振动但是引起的是一种随机振动。

也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。

换句话说就是既有周期性风力又有脉动风。

反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。

有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。

风荷载标准值

风荷载标准值关于风荷载计算风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计计算的重要因素。

脉动风和稳定风风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。

脉动风的作用就是引起高层建筑的振动(简称风振)。

以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。

平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。

阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。

注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。

从风振的性质看顺风向和横风向风力顺风向风力分为平均风和阵风。

平均风相当于静力,不引起振动。

阵风相当于动力,引起振动但是引起的是一种随机振动。

也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。

换句话说就是既有周期性风力又有脉动风。

反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。

有的计算方法根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:(1)对于顺风向的平均风,采用静力计算方法(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。

由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。

混凝土设计时考虑的各种荷载标准值

混凝土设计时考虑的各种荷载标准值一、引言混凝土设计时,需要考虑各种荷载标准值,以确保混凝土结构安全可靠。

荷载标准值是指在设计混凝土结构时所考虑的荷载大小和荷载作用方式的标准值。

本文将从静荷载、动荷载、风荷载、温度荷载和地震荷载等方面,详细介绍混凝土设计时考虑的各种荷载标准值。

二、静荷载静荷载是指混凝土结构在静止状态下所受的荷载,包括自重、外部荷载和内力。

在混凝土设计时,需要根据静荷载的标准值来确定混凝土结构的尺寸和强度。

静荷载标准值的计算公式如下:静荷载标准值 = 自重标准值 + 外荷载标准值 + 内力标准值其中,自重标准值是指混凝土结构自身的重量,需要根据结构材料的密度和尺寸来计算;外荷载标准值是指外部荷载对混凝土结构的作用力,包括建筑荷载、人员荷载、机器设备荷载等;内力标准值是指混凝土结构内部的力的大小和作用方式,包括弯矩、剪力、轴力等。

三、动荷载动荷载是指混凝土结构在运动状态下所受的荷载,包括车辆荷载、列车荷载、飞机荷载等。

动荷载标准值的计算需要考虑荷载的速度、重量、作用时间等因素。

动荷载标准值的计算公式如下:动荷载标准值 = 荷载重量标准值× 荷载速度标准值× 荷载作用时间标准值其中,荷载重量标准值是指荷载的重量大小,需要根据实际情况和荷载类型来确定;荷载速度标准值是指荷载的速度大小,需要考虑荷载类型和运动状态;荷载作用时间标准值是指荷载作用的时间长度,需要根据实际情况和荷载类型来确定。

四、风荷载风荷载是指风对混凝土结构的作用力,包括风压力和风吸力。

风荷载标准值的计算需要考虑风速、风向、结构形状、结构高度等因素。

风荷载标准值的计算公式如下:风荷载标准值 = 风压力标准值× 风吸力标准值其中,风压力标准值是指风对结构正面的压力大小,需要根据结构形状和高度来确定;风吸力标准值是指风对结构背面的吸力大小,需要根据结构形状和高度来确定。

五、温度荷载温度荷载是指温度变化对混凝土结构的作用力,包括温度伸缩和温度应力。

风荷载取值

3.1。

3 风荷载建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。

1、风荷载标准值计算垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3。

1—2)计算:βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值.多层建筑,建筑物高度<30m ,风振系数近似取1.(1)风荷载体型系数µS风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规表3.1.10 建筑物体型系数取值表注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。

注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。

一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。

注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。

W W z s z k μμβ=)21.3(-注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3。

3规定,采用局部风压力体型系数.(2)风压高度变化系数µz设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。

对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3。

1。

11中列出了常用风压高度变化系数的取值要求.表3。

1.11 风压高度变化系数关于地面粗糙程度的分类:A类:近海海面、海岛、海岸、湖岸及沙漠地区;B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区;C类:有密集建筑群的城市市区;D类:有密集建筑群和且房屋较高的城市市区。

常用荷载取值

1.1 风荷载:1.2 正常使用活荷载标准值(KN/m2):(1)住宅、宿舍取2.0;其走廊、楼梯、门厅取2.0;(2)办公、教室取2.0;其走廊、楼梯、门厅取2.5;(3)食堂、餐厅取2.5;其走廊、楼梯、门厅取2.5;(4)一般阳台取2.5;(5)人流可能密集的走廊/楼梯/门厅/阳台、群间连廊/平台取3.5;(6)卫生间取2.0~2.5(按荷载规范);设浴缸、座厕的卫生间取4.0;(7)住宅厨房取2.0,中小型厨房取4.0,大型厨房取8.0(超重设备另行计算);(8)多功能厅、有固定坐位取3.0;无固定坐位取3.5;(9)商店、展览厅、娱乐室取3.5;其走廊、楼梯、门厅取3.5;(10)大型餐厅、宴会厅、酒吧、舞厅、健身房、舞台取4.0;(11)礼堂、剧场、影院、有固定坐位的看台、公共洗衣房取3.0;(12)小汽车通道及停车库取4.0;(13)消防车通道:取35.0;双向板楼盖、无梁楼盖取20.0;注:消防车超过300KN时,应按等效原则,换算为等效均布荷载。

结构荷载输入:无覆土的双向板(板跨≥2.7m):板、次梁取28,主梁取20;覆土厚度≥0.5m 的双向板(板跨≥2.7m):板取≤28, 梁参考院部《消防车等效荷载取值计算表》;(14)书库、档案库取5.0;(15)密集柜书库取12.0;(16)大型宾馆洗衣房取7.5;(17)微机房取3.0;大中型电子计算机房取≥5.0,或按实际;(18)电梯机房、通风机房取7.0;通风机平台取6(≤5号风机)或8(8号风机);(19)?机房、宾馆储藏室、布草间、公共卫生间(包括填料隔墙)取8.0;(20)水泵房、变配电房、发电机房、银行金库及票据仓库取10.0;(21)管道转换层取4.0;(22)电梯井道下有人到达房间的顶板取5.0。

1.3 屋面活荷载标准值(KN/m2):(1)上人屋面取2.0;(2)不上人屋面取0.5;(3)?取3.0(不包括花圃土石材料);注:或维修荷载较大时,屋面活荷载应按实际情况采用;因不畅、堵塞等,应加强构造措施或按积水深度采用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风荷载标准值(共5页) -本页仅作为预览文档封面,使用时请删除本页-
风荷载标准值
关于风荷载计算
风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。

脉动风和稳定风
风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。

脉动风的作用就是引起高层建筑的振动(简称风振)。

以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。

平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。

阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。

注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。

从风振的性质看顺风向和横风向风力
顺风向风力分为平均风和阵风。

平均风相当于静力,不引起振动。

阵风相当于动力,引起振动但是引起的是一种随机振动。

也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。

换句话说就是既有周期性风力又有脉动风。

反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。

有的计算方法
根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面:
(1)对于顺风向的平均风,采用静力计算方法
(2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算
(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算
风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。

由于在结构的风振计算中,一般往往是第1振型起主
要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。

WK=βzμsμZ W0
W0基本风压
WK 风荷载标准值
βz z高度处的风振系数
μs风荷载体型系数
μZ风压高度变化系数
基本风压值与风速大小有关。

基本风压W0确定的标准条件务必记牢:空旷平坦平面,离地10m高,统计所得重现期为50年一遇和10min的平均最大风速V 为标准,并以W0=V2/1600来确定的。

新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇且不得小于m2,新高规条规定:对于B 级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。

μZ风压高度变化系数
很明显在μZ表中可以看出高度10米以下的μZ基本小于一,10米以上的基本大于一。

这是因为基本风压是按十米高度给出的,所以不同高度上的风压应将W0乘以高度系数得出。

谈到μZ个人认为只要记住其和结构高度以及地面粗糙程度有关并弄明白为什么有关即可。

A类:近海湖以及沙漠地区
B类:田野乡村及中小城镇和大城市郊区
C类:有密集建筑群的城市市区
D类:有密集建筑群且房屋较高的城市市区
一般的建筑都选B类,道理简单的很:这样μZ取值偏高,风荷载标准值偏高,计算偏安全。

μs风荷载体型系数
个人认为一级结构在这里考的多且很到位。

以规则矩形结构平面为例
风荷载体型系数分为三类μs1迎风面体形系数μs2 背风面体形系数μs3 和μs4为侧风面体型系数μs1=
μs2=-(+L)
μs3=μs4=
平常计算风荷载主要是以顺风方向进行计算,则μs=μs1-μs2=+(+L)
为什么上式是减号是因为迎风面的压力还是背风面的吸力其实都在一个方向上,所以要调整两者的符号,要他们绝对值加,其实上式完全可以写成:
μs=/μs1/+/μs2/=+(+L)
另外工作中经常会发现一种现象对于基本矩形的建筑,有的设计院不经计算直接在正压区取的体型系数,经验取值也只能进行经验的解释:多年来这个系数是这样来的,一般建筑正风压系数为+,侧面,背面。

假定风来袭时正面门窗开启或者时被风损坏,那么正面的风压将会作用到室内各个部分,故其侧面的风压将会是。

但是现代建筑功能复杂,房屋众多,一般不会容易出现这种最不利的情况。

所以新版规范进行了修改,改为了内压,正压提高到。

原规范大面风压体型系数取值。

注意:对于一些超高层,在需要更细致的进行风荷载计算的情况下,需要进行风洞试验,以此来确定风荷载体型系数。

βz z高度处的风振系数
风振系数主要是为了考虑风载波动中的动力作用(脉动风力)对建筑产生的振动效应。

进一步说,风振系数加大了风荷载,把原来风荷载中的脉动部分加强后算在了静力荷载上,作用就可以按照静力作用计算风荷载效应了。

这是一种近似的把动力问题化为静力计算的方法,可以大大简化设计工作。

但是,如果建筑物的高度很大(例如超过200m),特别是对于周期较长比较柔的结构,最好进行风洞试验。

用通过实验得到的风对建筑物的作用作为设计依据较为安全可靠。

风振系数牵连的东西最多,包括脉动增大系数,脉动影响系数,风压高度变化系数和振型系数\其中脉动增大系数又和周期,基本风载和粗糙程度有关而脉动影响系数又与H/B和粗糙程度有关。

相关文档
最新文档