基于小波变换的图像边缘检测技术研究
基于小波变换的多尺度图像边缘检测

第24卷第2期 阜阳师范学院学报(自然科学版) V o l.24,N o.2 2007年6月 Journal of Fuyang T eachers Co llege(N atural Science) Jun.2007基于小波变换的多尺度图像边缘检测郦丹芸1,2,陶 亮1,詹小四2(1.安徽大学计算机科学与技术学院,安徽合肥 230039;2.阜阳师范学院计算机系,安徽阜阳 236041)摘 要:边缘作为图像的最主要特征,成为图像信息获取的重要内容.而小波变换具有检测局域突变的能力,而且可以结合多尺度信息进行检测,因此成为图像信息边缘检测的优良工具.文章首先构造了高斯多尺度边界检测算子,然后根据信号边界与噪声边界的小波变换模值跨尺度传递的不同特性,讨论了不同尺度的检测算子检测的边缘所具有的特点,在此基础上提出由边缘传递、继承和生长构成的多尺度边缘关联融合算法.实验结果说明这种特征提取方法不仅有效地降低了噪声,而且融合的边界比较完整,定位准确.关键词:图像处理;边缘检测;多尺度小波分析;小波中图分类号:T P391 文献标识码:A 文章编号:100424329(2007)022******* 在图像中,边缘是指其周围像素灰度有阶跃变化或屋顶变化的像素的集合.边缘是图像的基本特征之一,.因此,边缘提取与检测在图像处理中占有很重要的地位.传统的边缘检测方法基于空间运算,借助空域微分算子进行,通过将算子模板与图像进行卷积合成,根据模板的大小和元素值的不同有不同的微分算子,如Robert算子、Sobel算子、P rew itt算子、LO G 算子、Canny算子等,这些算子虽然易于实现、具有较好的实时性,但由于边缘检测问题固有的复杂性,使这些方法在抗噪性能和边缘定位方面往往得不到满意的效果,这主要是因为边缘和噪声都是高频信号,很难在噪声和边缘中作取舍[1].1983年W itk in提出尺度空间的思想,对边缘检测中的多尺度多分辨的思想进行了深入、直接的研究.1992年M allat提出小波变换多尺度边缘检测方法,并将小波边缘检测方法与LO G算子及Canny 最优检测算子在小波意义下统一起来,更加明确地表达了多尺度的思想在边缘检测中的重要意义[2].然而,边缘检测的不确定性指出边缘检测算子的抑噪能力和定位精度是一对矛盾,小尺度算子有利于边缘定位,但对噪声极为敏感;大尺度算子抑噪能力强,但边缘定位精度差,甚至会丢失某些局部细节.因此,固定尺度的边缘检测算子难以兼顾良好的边界定位,噪声抑制和弱边界检测等性能指标. M arr[3]从神经生理学和心理物理学出发,指出人的视觉前期处理中有多个分辨率的边缘算子在对图像作卷积,各边缘检测算子输出的组合能提高定位精度,减少噪声干扰.由于小波变换具有良好的时频局域化特性及多尺度分析能力,本文根据多尺度分析构造多尺度边缘检测算子,通过多尺度边缘融合,实现图像边缘的检测.1 多尺度图像边缘提取算法在文献[4]中,Young R.A从人类视觉的生理特性和数学形式上分析,指出一个高斯平滑函数叠加一个高斯函数的二阶导数能够更加精确的模拟人类的视觉特性,即能更好地强化边缘并准确定位.1.1 设计多尺度离散掩模算子高斯函数的一阶导数满足允许小波函数的定义[5],利用高斯函数构造小波边缘检测算子.设Η(x, y)为均值为0,方差Ρ2的高斯函数,Ηs(x,y)= 1s2Η(xs,ys)为Η(x,y)的尺度变换函数,s为伸缩因子,则71s(x,y)=s5Ηs5x,72s(x,y)=s5Ηs5y为尺度上s收稿日期:2007204208基金项目:安徽省高校青年教师“资助计划”项目(2007jql145)作者简介:郦丹芸(1976-),女,硕士研究生,讲师.研究方向:图像处理.的小波函数.在尺度s上,函数f(x,y)∈L2(R2)的W T(小波变换)定义为W1s f(x,y) W2s f(x,y)≡f371s(x,y)f372s(x,y)=s (f3Ηs)(x,y)(1)因此,f(x,y)关于71和72的W T的两个分量为f(x,y)的竖直和水平边缘增强图,记为n1(x,y)和n2(x,y).令I(x,y)=n21+n22,A(x,y)= arctg(n2 n1)分别为边缘幅度图和梯度方向图.在实际应用中,由于图像都为离散化的,因此需要对71s和72s进行采样,获得多尺度离散掩模算子. f(x,y)的W T的离散化形式为:W1s f(x,y)=6x+(L-1) 2m=x-(L-1) 26x+(L-1) 2 n=y-(L-1) 2 f(m,n)71s(x-m,y-n)(2)W2s f(x,y)=6x+(L-1) 2m=x-(L-1) 26x+(L-1) 2 n=y-(L-1) 2 f(m,n)72s(x-m,y-n)(3)其中L为掩模算子的宽度.在实际情况下L不可能为无限长,由于71s,72s具有负指数的衰减形式,因此可以取其波峰和波谷之间距离的两倍作为的长度.可得71s和71s的宽度均为 L=(in t)4sΡ(4)若L为偶数,则L=L+1.若已知L及s,则可通过Ρ=L (in t)4s求出标准差Ρ的值.令最小尺度为s= 1,该尺度对应的掩模算子宽度L=3,可以求出Ρ=0.75.同理可以求出s为任何整数时的掩模算子.1.2 基于多尺度小波算子的边缘检测方法1.2.1 检测边缘候选点对图像进行有限尺度的小波分解,形成噪声逐渐减少的多尺度边缘增强图像.在选定的最大尺度和最小尺度之间设定尺度的跨度,产生一系列尺度空间.首先,两个空间的尺度越相近,则两个尺度下检测出的边缘位置也越相近,两个空间的尺度跨度较大,那么检测出的边缘的位置也会有较大的差异.尺度越小,检测的边缘越接近真实边缘,如果在最小尺度下的噪声边缘淹没了图像边缘,则认为该尺度为无效尺度,重新选择;在最大尺度空间,噪声得到抑制,图像边缘信息在局部模极大值中占主导地位,但要防止边缘失真,如果边缘严重失真,这样的大尺度也视为无效.因此,边缘关联应该在相近的尺度范围内进行,而不应该跨越较大尺度范围,否则边缘信息在相邻尺度空间的相关性将降低.本文选择个相邻的整数尺度,把s=m,m+1,…,m+n-1,m∈Z+作为分解尺度,分别得到各尺度的掩模算子.图像与掩模算子进行卷积,局部模极大值点即为检测出的图像的候选边缘.为边缘幅度设定阈值T s,幅度大于T s的候选点作为边缘点.还为每个边缘的长度设定阈值L s,将连续长度小于阈值L s的边缘删去,使得检测出来的边缘可信度较高,L s一般取20.最小尺度m和最大尺度m+n-1根据具体情况选定,要保证最小尺度下边缘信息比较准确,没有被噪声边缘淹没;最大尺度空间边缘失真较小.对于不同的尺度空间,选择不同的阈值,在最大尺度空间,选择的阈值较高,以减少噪声的影响;而在其他尺度空间,阈值比较小,使得边缘信息尽量完整.因此在最大尺度空间,边缘可能是不完整的.1.2.2 图像的多尺度融合多尺度边缘的融合并不等于将不同尺度下的边缘简单相加,因为不同尺度的边缘检测算子对同一边缘的响应并不相同,因此在不同尺度的边缘增强图像中的位置也不相同,边缘相加必然会造成边缘冗余,同时噪声也没有得到抑制.本文利用多尺度边缘在位置、强度和方向上的联系,提出边缘传递、继承和生长3种处理方法来实现多尺度边缘的融合.尺度s+1上的3×3邻域中的像素是尺度s上局部模极大值点(i,j)的关联域,定义为F s,s+1(i,j).通过下面的判断式来确定尺度s上点(i,j)是否与尺度s+1关联.定义尺度s上局部模极大值点的集合为M,用C s,s+1(i,j)来表示s空间点(i,j)与s+1空间的相关性.则C s,s+1(i,j)=1 ϖ(m,n)∈F s,s+1(i,j)&(m,n)∈M s+1,st. Υs(i,j)-Υs+1(m,n) ≤Αo r Υs(i,j)-Υs+1(m,n)≥360°-Α0 else(5)其中Υs(i,j)和Υs+1(i,j)为尺度s,s+1上极大值点(i,j)的梯度方向,Α是为方向差设定的阈值.如果C s,s+1(i,j)=1,则说明尺度s上极大值点(i,j)是与尺度s+1上极大值点相关联的,否则不关联.(a)边缘传递如果尺度s上的极值点(i,j)不与尺度s+1关联,说明尺度s+1上的边缘信息传递不到(i,j).如果尺度s上的极值点(i,j)与尺度s+1关联,则认为尺度s上的极值点(i,j)是由尺度s+1中的某个边缘点(m,n)传递而来,在不同尺度空间反映图像中的同一边缘.经边缘传递后边缘点集合为B1s,s+1,其组成为 B1s,s+1={(i,j)∈M s C s,s+1(i,j)=1}(6)75第2期 郦丹芸等:基于小波变换的多尺度图像边缘检测(b)边缘继承尺度空间s+1上存在某些边缘点不与尺度上的任何边缘点关联,尺度s+1上这部分边缘信息需要保留,用B2s,s+1表示,其组成为B2s,s+1={(m,n)∈M s+1 Π(i,j)∈ M s,C s,s+1(i,j,m,n)=0} (7)其中C s,s+1(i,j,m,n)表示尺度s上点(i,j)与尺度s +1上点(m,n)的相关性.B1s,s+1表示从尺度s+1传递到尺度s的边缘,而B2s,s+1表示从尺度s+1空间继承下的边缘.引入I s,s+1和Υs,s+1来分别代表合成边缘模值和合成梯度方向,它们表示跨尺度融合后的边缘增强图和梯度方向图. I s,s+1(i,j)=I s+1(i,j),(i,j)∈B2s,s+1I s(i,j), else(8) Υs,s+1(i,j)=Υs+1(i,j),(i,j)∈B2s,s+1Υs(i,j), else(9)(c)边缘生长为了获得完整的边缘,不仅需要边缘的传递、继承,还需要边缘生长.在大尺度空间,为边缘选取较高的阈值T s,以减少噪声的干扰,这也导致了检测出的边缘的不完整性.在小尺度空间,降低阈值T s,虽然噪声的影响较大,但图像的边缘比大尺度空间完整,因此小尺度空间包含了比大尺度空间更多的边缘信息,也包含了更多的噪声边界.由于前面介绍的边缘传递仅在3×3的小窗口内进行,使得边缘信息无法传递到较远的地方.可以增大窗口的尺寸,但是在这种情况下相邻尺度有相关性的局部模极大值可能并不对应于同一边缘.因此本文利用小窗口迭代来实现边缘生长.将从尺度s+1和尺度s通过传递和继承获得的局部模极大值点集合B s,s+1另记为B0s,s+1,Υs,s+1另记为Υ0s,s+1,以此为基础,使得B0s,s+1在M s中迭代扩展.设第k次迭代之后的边缘点集合为B k s,s+1,k≥1.将M s中的像素(i,j)与B k-1s,s+1中的像素的相关性用D k-1s (i,j)表示.如果D k-1s(i,j)=1,表示M s中的像素(i,j)与B k-1s,s+1中的像素相关联;否则不关联.如果点(i,j)在B0s,s+1中是一个边缘的端点,而在M s中位于某个边缘的中间,B k s,s+1通过上述迭代,就会扩展到整个的边缘,完成边缘生长.多尺度边缘融合从最大尺度开始,先进行边缘传递;无法传递的大尺度边缘得到保留;然后在小尺度空间进行边缘的生长扩展.由于扩展只是在像素的8邻域范围内逐步进行,并且有方向的限制,因此可以克服噪声边缘的干扰.以上步骤逐层向下进行,最后得到多尺度融合的边缘.2 实验结果分析下图1中(a)是一幅SA R图像,对图像进行小波变换,图1(b)2(f)是经过5级小波变换后获得的高于给定门限局部模极大值点位置图,即各尺度下的边缘图,尺度分别为s=2,3,4,5,6.从边缘图可以看出,随着尺度的增大,噪声逐渐减少,边缘逐渐平滑.在尺度2时,噪声的影响非常大,边界比较破碎;尺度s=6为最大尺度,提取的边缘体现了原图中的主要边缘,基本不受噪声的影响,但是边缘失真比较严重,且提取的边缘不完整,对于某些连续的边缘,只检测出其中的一段,但是在小尺度空间可以较完整地检测出来.因此需要利用最大尺度空间提供的位置信息,融合各尺度的信息,合成精确的边缘.运用本文提出的多尺度融合算法,结果如图1(g)2(j)所示.通过逐层融合,原来断裂的边缘连接起来,而且边缘位置越来越贴近实际边缘位置.对于本文所选取的小波函数,各尺度下的极值点检测相当于图像的Canny边缘检测.与尺度2、3、4、5下的边界相比,多尺度融合获得的边界有效地抑制了噪声干扰;与尺度6下的边界相比,多尺度融图1 各尺度下边缘检测结果85 阜阳师范学院学报(自然科学版) 第24卷图2 传统的边缘检测算子检测结果合获得的边界定位更准确,边界更完整.图2中(l )为Canny 算子,(m )Sobel 算子,(n )为LO G 算子检测出的边界,通过比较可以看出:对于受强烈噪声污染的SA R 图像,用Canny 算子检测出的边缘较模糊,去噪效果差,在定位精度、精确检测等方面都不如本文采用的方法.与其他边缘检测算子的比较可以获得相似结果.参考文献[8、9]给出了其他基于小波变换的图像边缘检测方法.文献[8]利用多尺度分解获得LL 空间的细节图,然后对细节图进行中值滤波抑制噪声的干扰,对滤波后图像二值化后利用Sobel 算子检测边缘.该方法实际仅利用某一尺度下的细节图进行边缘检测,没有考虑到不同尺度边缘的关联.文献[9]在对相邻尺度的边缘进行信息融合时,仅对链的端点进行处理,没有考虑到不同尺度下,提取的边缘定位的不同.仅利用端点进行融合减少计算量,但是获得的融合边缘定位会有误差,并且这种方法边缘的补充有限.本文方法通过边缘生长可以充分实现不同尺度的边缘互补.因此从机理上说,本文的方法更优越.3 结论本文根据信号边界与噪声边界的小波变换模值跨尺度传递的不同特性,讨论了不同尺度的检测算子检测的边缘所具有的特点,在此基础上提出由边缘传递、继承和生长构成的多尺度边缘关联融合算法.(1)由于小波变换有多尺度的特点,可以利用多尺度特性,通过细节和粗节进行逼近,强于其他经典算法.(2)在边缘和噪声的取舍中,由于二者均为高频信号,很难用频带划分.使用小波变换的方法,使得可在大尺度下抑制噪声,小尺度下,得到边缘的真实位置;而传统的和经典的边缘检测算法则在此问题上不能提供有效的解决办法.不论选用怎样的小波函数,都可以利用上述算法进行多尺度边缘融合.实验表明该方法可以有效抑制噪声的干扰,同时保证融合边界的完整性和定位的准确性.参考文献[1] 刘贵忠,邸双亮.小波分析及其应用[M ].西安:西安电子科技大学出版社,1995:1742289.[2] 王 涛.模糊多尺度边缘检测算法的研究[J ].微计算机信息,2006,22(1023):3042306.[3] M arr .视觉计算理论[M ].姚国正,刘 磊,汪云九,译.北京:科学出版社,1988:2562260.[4] Young R A .Si m ulati on of H um an R etinal Functi on w ith the Gaussian D erivative M odel [J ].IEEE the Computer SocietyConference on Computer V isi on and Pattern R ecogniti on .M ich igan U SA ,1988,8(6):5642569.[5] 程正兴.小波分析算法与应用[M ].西安:西安交通大学出版社,1998:1682257.[6] 陈 虹.基于小波变换的多尺度图像边缘检测[J ].首都师范大学学报(自然科学版),2004,25(12):326.[7] 施成湘.扩展的多尺度模糊边缘检测计算机工程与应用2006,7:65268[8] 赵志钦,王建国.SA R 图像的边沿检测方法研究电子科技大学学报,2000,29(3):2252228.[9] 刘宏兵,杨万海.图像小波边缘提取中阈值选取的一种自适应方法[J ].西安电子科技大学学报,2000,27(3):2942296.I mage Edge D etection Ba sed On M ultisca le W avelet Tran sformL I D an 2yun1,2,TAO L iang 1,ZHAN X iao 2si 2(1.S chool of Co m p u ter S ience ,A nhu i U niversity of Ch ina ,H ef ei A nhu i ,230039,Ch ina ;2.D ep art m ent of Co m p u ter ,F uy ang T eachers Colleg e ,F uy ang A nhu i ,236041,Ch ina )Abstract :T he edge ,as the mo st basic characteristic of i m ages ,is an i m po rtant content of obtaining info r m ati on of ap icture .T he w avelet transfo r m can detect part m utati on ,and can do it com bining m ultiscale info r m ati on ,so w avelet has be 2com e a good too l of detecting info r m ati on of edge i m ages .In th is paper ,a m ultiscale Gaussian edge detecto r is constructed .A cco rding to transfer p roperties acro ss scales of the w avelet modules of the signal edge and the no ise edge ,w e com bine the p roperties of edges in different scales and p ropo se a m ulti 2scale edge fusi on algo rithm consisting of edge transfer ,edge inherit and edge grow th .T he result of experi m ents show s that th is algo rithm can get rid of the affect of no ise and the edges fused have p recise po siti on and intact contour .Key words :i m age p rocess ;edge detecti on ;m ultiscale w avelet transfo r m ;w avelet95第2期 郦丹芸等:基于小波变换的多尺度图像边缘检测。
基于小波变换的红外热成像图像处理的无损检测技术

基于小波变换的红外热成像图像处理的无损检测技术一、红外热成像技术概述红外热成像技术是一种将物体发出的红外辐射转换成图像的技术,利用物体发出的红外辐射来显示物体表面的温度分布。
通过红外热成像技术可以实时观测物体的表面温度分布情况,对各种设备和设施的安全运行和无损检测起着至关重要的作用。
红外热成像技术在电力、建筑、化工、冶金等行业有着广泛的应用。
红外热成像图像的处理是红外热成像技术的关键环节。
通常,红外热成像图像会因为受到环境和物体表面条件的影响而出现噪声、模糊等问题,这就要求对红外热成像图像进行有效的处理和分析。
二、小波变换概述小波变换是一种多尺度信号分析方法,它具有时频局部性良好、分辨率高等优点,因此在信号和图像处理领域有着广泛的应用。
小波变换能够将信号分解成不同尺度的成分,并能够提取出信号的局部特征。
在红外热成像图像处理中,小波变换可以将图像在不同的尺度和频率上进行分解,能够更好地提取出图像中的信息。
小波变换还可以实现对图像的去噪和边缘检测等功能,因此在处理红外热成像图像时具有较好的适用性。
基于小波变换的红外热成像图像处理技术是通过对红外热成像图像进行小波变换分解和重构,实现对图像的去噪、增强和特征提取等处理过程。
一般来说,基于小波变换的红外热成像图像处理技术包括以下步骤:1. 红外热成像图像的预处理。
对红外热成像图像进行灰度拉伸、直方图均衡化等预处理操作,以增强图像的对比度和清晰度。
2. 小波变换分解。
将预处理后的红外热成像图像进行小波变换分解,得到不同尺度和频率的小波系数图像。
3. 小波系数的阈值处理。
对小波系数进行阈值处理,实现对图像的去噪和特征提取。
基于小波变换的红外热成像图像处理技术能够有效地提取出图像中的有用信息,同时实现对图像的去噪和增强,从而得到更加清晰和可靠的图像结果。
基于小波变换的红外热成像图像处理技术已在许多领域得到了应用,并取得了良好的效果。
在建筑领域,红外热成像技术能够检测建筑物表面的温度分布情况,从而发现建筑物的隐患。
基于B样条小波的图像边缘检测.

基于B样条小波的图像边缘检测周何,黄山,盛贤(四川大学电气信息学院自动化系,成都市610065;)摘要:研究图像边缘优化检测问题。
针对图像边缘信息被噪声污染影响定位精度,经典的边缘检测方法Canny算法中的高斯平滑函数边缘定位精确度较低,导致图像缓变边缘信息丢失和假边缘的现象。
在Canny最优边缘检测准则下,引入了渐进最优的B样条小波函数,采用小波变换应用于图像边缘检测中的基于模极大值的方法,并结合基于Kmeans聚类的自适应双阈值方法进行图像边缘检测。
实验结果表明,改进的算法改善了噪声干扰情况下图像边缘提取效果,有效提高了边缘检测的准确性,得到较高的边缘检测图像质量。
关键词:边缘检测;小波变换;定位精度;中图法分类号: TP391.4文献标识码: AImage edge detection based on B-spline waveletZHOU He,HUANG Shan,SHENG Xian(School of Electrical Engineering and Information, Sichuan University, Chengdu 610065, China;) Abstract:In order to solve the low positioning accuracy of image edge detection by noise, make a research on optimization of image edge detection. The Gaussian smoothing function of Canny edge detection method, the classical algorithm, causes the missing of slowly varying edge and the producing of feigned edge and the edge detection is not accurate enough. So in the Canny criteria of optimum edge detection, the introduction of the asymptotically optimal B-spline wavelet function was put forward. The method of modulus maxima of wavelet transform and Kmeans clustering method determining its duel valves automatically was used in the edge detection experiments.The experiments proved that the new algorithm was in a higher accuracy, and improved the quality of the edge detection image.Keywords : edge detection; wavelet transform; positioning accuracy;1 引言传统的边缘检测Canny算法是将图像与高斯滤波器相卷积以获得平滑降噪的效果,其基本思想是在图像中找出具有局部最大梯度幅值的像素点,对边缘提取的大部分工作集中在寻找能够用于实际图像的梯度数学逼近。
使用小波变换进行图像边缘检测的实用方法

使用小波变换进行图像边缘检测的实用方法图像边缘检测是计算机视觉和图像处理领域中的一个重要任务,它可以帮助我们理解图像的结构和形状。
小波变换是一种在信号处理中常用的工具,它具有多分辨率分析的能力,可以对图像进行细节和边缘的提取。
本文将介绍使用小波变换进行图像边缘检测的实用方法。
首先,我们需要了解小波变换的基本原理。
小波变换是一种将信号分解成不同频率的成分的方法。
它使用一组称为小波基函数的函数来表示信号,这些函数在时域和频域上都具有局部性质。
小波基函数具有时频局部化的特点,能够在时域和频域上同时提供较好的分辨率,因此适用于图像边缘检测。
在实际应用中,我们常用的小波变换方法是离散小波变换(DWT)。
离散小波变换将信号分解成不同频率的子带,每个子带都包含了信号在不同频率上的信息。
对于图像边缘检测,我们通常使用一维的小波变换方法对图像的每一行和每一列进行变换。
接下来,我们需要选择合适的小波基函数。
小波基函数的选择对于图像边缘检测的效果有很大的影响。
常用的小波基函数有Haar小波、Daubechies小波和Symlet小波等。
它们具有不同的性质,适用于不同类型的图像。
在选择小波基函数时,我们需要考虑图像的特点和需求,选择最适合的小波基函数。
然后,我们需要对图像进行小波变换。
在进行小波变换之前,我们需要将图像转换为灰度图像,并进行归一化处理。
然后,我们可以使用离散小波变换算法对图像进行变换。
变换后,我们得到了图像在不同频率上的子带系数。
这些子带系数可以表示图像的细节和边缘信息。
接下来,我们需要对小波变换后的图像进行边缘检测。
一种常用的方法是通过阈值处理来提取边缘信息。
我们可以设置一个阈值,将小于阈值的子带系数置为0,将大于阈值的子带系数保留。
这样,我们就可以得到一个二值图像,其中白色像素表示边缘,黑色像素表示背景。
然而,简单的阈值处理方法往往会导致边缘信息的丢失和噪声的引入。
为了提高边缘检测的准确性,我们可以使用基于小波变换的边缘检测算法,如Canny算子。
基于小波变换的金相图像边缘检测

C i a S i nc a d Te h l g R v e h n c e e n c no o 图像 边缘 检测
谢 建林 刘 昆
王 爽
( 中国矿 业大学徐海学院 江 苏 徐 州 2 0 8 10)
[ 摘 要] 文利用 小波 变换 原理 对 金相 图像进 行边 缘检 测 ,对边 缘定位 准 确 ,检 测边 缘较 光滑 , 图像 的骨 架连 续 。 本 [ 关键词] 小波变 换 图像 边缘检测 中图分类 号:T 3 1 P 1 文献标识码 :A 文章 编号 : 1 0 — l X( 0 8 l ( ) 0 4 — 1 0 9 9 4 2 0 ) l b 一 1 5 0
图 l 小波边缘检测示意 图 对金相去噪图像如 图 2 f 进行小波边缘检测 , () 1 结果如图 2 b 所示 。 ()
1 、 边 缘 检 测 物 体 的边 缘 是 以图像 局 部 特 性 的 不连 续 性 的 形 式 出现 的 ,例
如 ,灰度值的突变 ,颜色 的突变 ,纹理结构的突变等 。从本 质上说 ,边 缘常 常意味着一个 区域 的终结和 另一个区域 的开始 。 图像边缘信 息在 图像分 析和人的视觉 中都是十分重 要的 ,是图像识别 中提取图像特 征 的一 个 重要 属 性 。 图像 的边 缘有方 向和幅 度两个特性 。通常 ,沿 边缘走 向的像 素变 化平缓 ,而垂直于边缘走 向的像素变化 剧烈 。这种变化 可能呈现阶跃 型 、 房 顶 型 和 凸缘 型 。 这些变 化 分别对 应景 物 中不 同的物 理状 态 。例 如 ,阶跃 型变化 常常对应 目标 的深度或反射 边界 ,而后两者则 常常反应表 面法线方 向 的不连续 。实际要分析 的图像是 比较复 杂的 ,灰度变化不 一定是上述 的标准形式 。 2 、小 波 变 换 边 缘 检 测 边 缘是 图像 中重 要的特 征之 一 ,是 计算机 视觉 、 模式 识别 等的 基础。然而边缘 检测又是 图像处 理中一个 困难 的问题 ,这是 因为实际 景物图像 中的边 缘往往是各种类 型的边缘 以及 它们模糊化 后结果 的组 合。除 了这种边 缘成因的复杂外 ,实际 图像信号存在着 噪声 ,而噪声 和边缘一样都属 于高频信号 ,很难用频 带来作取舍 。但它们之 间的显 著 区别是两者 的能量 不同。边缘 有较大 的能量和范 围,因此在平 滑滤 波 作用 下 ,它不会像 噪声那样消 失,而是表现 为模糊化 。此时再用 空 间导数方法提取边缘 ,得到 的往 往是移位 以后的结果 。基于 小波 变换 的多尺度方法弥补 了上述不足,并能提供边缘的尖锐或平滑程度的估计 。 边缘 像素实质上 是局部 图像 范围 内灰度 的急剧变 化点 ( 奇异 点) , 图像边缘 就是二维图像 中奇异点的集合 。 反映到频域 ,边 缘点表现 为 高频信 号,而图像噪声 也多为高频信号 ,这使得 两者难 以区分。边缘 检测器 的工作既要将高频信 号从 图像 中分离出来 ,又要 区分边缘与 噪 声 ,准确地标 定边缘位 置。 目前 的算法 大多没有很 好地解决 从局 部高 频信号 中区分噪声与边缘 的问题 。小波 变换卓越 的 “ 时频 ”局部化 分 析本 领 ,为 图 像边 缘提 取 提供 了新 的技 术途 径 。 为了评估边缘提取 的效果 ,人 们提 出了形式 多样的评价 指标 ,其 中误检率和定位精度 是两个最 常用的指标 。边缘 的误检率指 实际边缘 点漏 检和标记虚假边缘 点等 两种错误发生 的概率。 设原 图像 E ( , ) X Y 和滤 波后图像 E ( , X Y)的信噪 比为 S R N ,当 S R大时,噪声对边缘 N 检测 的干扰小 ,真 实边缘容易被检 测,噪 声引起 的虚假 边缘点相对减 少 ,图像边 缘的误检率 降低 ;反之 ,当 S R 时,边 缘的误检率将 升 N 小 高 。由此可 以看 出,图像边缘的误检率是滤波后 图像 E ( , X Y)的信
小波变换在图像边缘检测中的应用

小波变换在图像边缘检测中的应用鲍雄伟【摘要】目前,被广泛使用的经典边缘检测算子有Sobel算子,Prewitt算子,Roberts算子,Log算子,Canny算子等等。
这些算子的核心思想是图像的边缘点是相对应于图像灰度值梯度的局部极大值点。
然而,当图像中含有噪声时这些算子对噪声都比较敏感,使得将噪声作为边缘点。
由于噪声的干扰,不能检测出真正的边缘。
一个拥有良好属性的的边缘检测算法是每个研究者的追求。
利用小波交换的特点,设计了三次B样条平滑滤波算子。
通过利用这个算子,对利用小波变换来检测图像的边缘进行了一定的研究和理解。
%The current widely used edge detection algorithm have Sobel,Prewitt,Roberts,Log,Canny etc.The core idea of these algorithms is that the edge points correspond to the local maximal points of original image’s gray-level gradient.However,when there are noises in images,these algorithms are very sensitive to noises,and may detect noise points as marginal points,and the real edge may not be detected because of the noises’ interference.A image edge detection method with good nature is a goal which all researchers pursue.The third B-spline smoothing filter operator to perform multi-scale filtering was designed using the characteristics of wavelet transform.Through use this algorithm,the use of wavelet transform to detect the edge of the image has been studied and understood.【期刊名称】《电子设计工程》【年(卷),期】2012(020)014【总页数】3页(P160-162)【关键词】小波变换;边缘检测;B样条;多尺度分析【作者】鲍雄伟【作者单位】长安大学信息工程学院,陕西西安710064【正文语种】中文【中图分类】TP391.4图像包含了人类所需要认识世界,进而改造世界的大部分的信息量。
基于小波变换多尺度边缘检测分析解读
基于小波变换多尺度边缘检测分析解读小波变换是一种时频分析方法,具有多尺度分析的特点。
在图像处理领域中,小波变换被广泛应用于边缘检测。
在这篇文章中,我们将通过分析小波变换多尺度边缘检测的原理和方法,来解读其应用和优势。
首先,我们需要了解小波变换的基本原理。
小波变换可以将信号在时间域和频率域上进行分析,通过选择不同的小波函数(母小波),可以实现不同尺度的信号分析。
小波变换将信号分解成不同频率的子信号,这些子信号可以对应图像的不同特征。
在边缘检测中,我们希望能够提取出图像中明显的边缘特征。
传统的边缘检测算法,如Sobel算子、Canny边缘检测等,只能提取出单一尺度的边缘特征。
而小波变换可以通过选择不同的小波函数,实现多尺度的特征提取。
多尺度边缘检测算法的基本思想是,在不同尺度下,对图像进行小波变换,并提取出具有边缘特征的子信号。
然后将这些子信号进行重构,得到多尺度边缘图像。
具体而言,多尺度边缘检测算法包括以下几个步骤:第一步,选择合适的小波函数。
小波函数的选择会影响边缘检测的效果。
常用的小波函数有Haar小波、Daubechies小波等。
第二步,对图像进行小波变换。
通过选择不同尺度的小波函数,对图像进行小波变换,得到不同频率的子信号。
第三步,提取具有边缘特征的子信号。
根据不同尺度下的边缘特征,选择适当的阈值,将边缘信号从其他噪声信号中分离出来。
第四步,将提取出的边缘信号进行重构。
通过将不同尺度的边缘信号进行重构,得到多尺度的边缘图像。
多尺度边缘检测的优势在于它可以提取出不同尺度的边缘特征。
在实际应用中,图像中的边缘通常具有不同的宽度和强度。
传统的边缘检测算法往往只能提取出其中一特定尺度的边缘特征,而多尺度边缘检测能够提取出多个尺度的边缘特征,从而更全面地描述图像中的边缘结构。
此外,多尺度边缘检测还可以在一定程度上消除图像中的噪声。
由于不同频率的子信号对应着不同尺度的特征,对较高频率的子信号进行阈值处理,可以去除图像中的高频噪声。
小波及形态学在图像边缘检测中的应用研究的开题报告
小波及形态学在图像边缘检测中的应用研究的开题
报告
【摘要】
边缘检测是数字图像处理中的一个基本问题,是图像分析和识别的
前置处理步骤。
传统的边缘检测算法如Sobel、Canny等存在着过于灵敏、噪声敏感等问题。
而小波变换技术在处理非平稳信号方面具有优越性,
可以有效地提高边缘检测的准确性。
本文将对小波及形态学在图像边缘
检测中的应用进行研究。
本文的研究目标是探究小波及形态学在数字图像边缘检测中的应用,进一步提高数字图像处理技术在应用中的效果。
首先,介绍边缘检测的
概念和传统算法,并分析其存在的问题。
然后,阐述小波变换技术的基
本理论和应用特点。
接着,研究小波及形态学在图像边缘检测中的联合
应用,并给出相应的实验结果与分析。
最后,总结本文的工作,展望小
波及形态学在数字图像处理中的深入研究方向。
本文的研究方法主要是采用文献综述法和实验研究法。
通过对相关
文献的收集和筛选,解析小波及形态学在边缘检测中的原理和优势,找
出其存在的问题并提出改进措施。
同时,进行一系列实验研究,验证小
波及形态学在数字图像边缘检测中的有效性和优越性。
预期研究成果是提出一个小波及形态学联合算法,用于数字图像边
缘检测。
该算法具有较高的边缘检测准确性和抗噪声能力,可应用于实
际图像处理中。
同时,本文还将探究小波及形态学在数字图像处理中的
新思路和新方法,为该领域的发展提供一定的参考和借鉴价值。
【关键词】小波变换;形态学;边缘检测;数字图像处理。
小波变换在图像分割和边缘检测中的应用
小波变换在图像分割和边缘检测中的应用图像分割和边缘检测是计算机视觉领域中的重要研究方向,它们在图像处理、计算机图形学、模式识别等领域都有广泛的应用。
而小波变换作为一种有效的信号处理工具,也被广泛应用于图像分割和边缘检测中。
一、小波变换简介小波变换是一种多尺度分析方法,它将信号分解为不同频率的子信号,能够更好地捕捉到信号的局部特征。
与傅里叶变换相比,小波变换具有时频局部化的特点,能够更好地描述非平稳信号。
小波变换通过将信号与一组基函数进行卷积运算,得到不同尺度和频率的分解系数。
二、小波变换在图像分割中的应用图像分割是将图像划分成若干个具有一定语义的区域,是图像理解和分析的基础。
小波变换在图像分割中的应用主要包括以下几个方面。
1. 基于小波变换的边缘检测小波变换可以提取图像中的边缘信息,因此可以用于边缘检测。
通过对图像进行小波变换,可以得到不同尺度和频率的小波系数。
边缘通常表现为图像中的高频成分,因此可以通过分析小波系数的高频成分来检测边缘。
常用的小波边缘检测算法有Canny小波边缘检测算法、基于小波包变换的边缘检测算法等。
2. 基于小波变换的阈值分割阈值分割是一种基于像素灰度值的分割方法,通过将图像中的像素根据其灰度值与阈值的关系进行分类,将图像分割成不同的区域。
小波变换可以提取图像的局部特征,因此可以用于阈值分割。
通过对图像进行小波变换,可以得到不同尺度和频率的小波系数,然后对小波系数进行阈值处理,将小于阈值的系数置零,大于阈值的系数保留。
最后通过逆小波变换,可以得到分割后的图像。
三、小波变换在边缘检测中的应用边缘检测是图像处理中的一项基本任务,它可以提取图像中物体的轮廓信息。
小波变换在边缘检测中的应用主要包括以下几个方面。
1. 基于小波变换的边缘增强小波变换可以提取图像中的高频成分,因此可以用于边缘增强。
通过对图像进行小波变换,可以得到不同尺度和频率的小波系数,然后对小波系数进行增强处理,使边缘更加明显。
小波变换在图像边缘检测中的应用
小波变换在图像边缘检测中的应用图像边缘检测是计算机视觉领域一项重要的任务,它在图像处理、目标识别和图像分割等方面发挥着关键作用。
而小波变换作为一种多尺度分析方法,具有良好的局部性和时频局部化特性,因此在图像边缘检测中得到了广泛的应用。
一、小波变换的基本原理小波变换是一种时频分析方法,它可以将信号分解成不同尺度的频率成分,从而更好地描述信号的时频特性。
其基本原理是通过将信号与一组小波基函数进行卷积运算,得到小波系数,然后根据小波系数的变化来分析信号的频率成分和局部特征。
二、1. 尺度变换小波变换具有多尺度分析的特性,可以根据不同尺度的小波基函数来提取图像的不同频率成分。
在图像边缘检测中,可以利用小波变换的尺度变换特性来检测不同尺度的边缘信息。
通过对图像进行多次小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更准确的边缘检测结果。
2. 频率分析小波变换可以将图像分解成不同频率的成分,从而可以对图像进行频率分析。
在图像边缘检测中,可以利用小波变换的频率分析特性来检测图像中的高频边缘信息。
通过对图像进行小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更精确的边缘检测结果。
3. 局部特征提取小波变换具有良好的局部性和时频局部化特性,可以更好地描述信号的局部特征。
在图像边缘检测中,可以利用小波变换的局部特征提取能力来检测图像中的边缘信息。
通过对图像进行小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更细致的边缘检测结果。
三、小波变换在图像边缘检测中的优势1. 鲁棒性强小波变换具有良好的鲁棒性,对噪声和干扰具有较好的抵抗能力。
在图像边缘检测中,由于图像常常存在噪声和干扰,因此小波变换能够更好地提取图像中的边缘信息,并减少噪声和干扰对边缘检测的影响。
2. 多尺度分析小波变换具有多尺度分析的特性,可以对不同尺度的边缘信息进行提取。
在图像边缘检测中,通过对图像进行多次小波变换,并根据小波系数的变化来确定边缘的位置和强度,可以得到更全面、更准确的边缘检测结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于小波变换的图像边缘检测技术研究
随着科技的发展,图像处理技术得到了极大的发展。
图像处理
作为一种高科技,已经深入到了我们的生活中。
在人们日常生活、工业生产和医疗健康等领域,图像处理都可以提供更好的服务。
图像边缘检测技术就是关键技术之一。
在众多的图像处理技术中,边缘检测技术在实际应用中的重要性一直得到了广泛的认可。
传统的边缘检测技术主要有基于阈值法、基于梯度法、基于二
阶导数等几种方法。
但是这些方法在实际应用中都存在一些问题,比如难以处理边缘模糊的情况,易受噪声干扰等。
为了解决这些
问题,一些新的边缘检测技术应运而生,其中就包括基于小波变
换的图像边缘检测技术。
小波变换是一种多分辨率分析方法,可以将连续信号和离散信
号分解成不同尺度的小波基函数。
在小波变换中,基本的函数是
小波基函数,它具有局部性和多分辨率性质。
由于小波变换有局
部性和多分辨率的特点,被广泛应用于图像处理领域,尤其是图
像边缘检测中。
基于小波变换的图像边缘检测技术主要分为两种,一种是基于
离散小波变换(DWT)的图像边缘检测技术,另一种是基于连续
小波变换(CWT)的图像边缘检测技术。
下面我们就来分别介绍
这两种技术。
基于离散小波变换(DWT)的图像边缘检测技术
基于离散小波变换的图像边缘检测技术主要包括以下几个步骤:(1)图像预处理
为了减少噪声对边缘检测结果的影响,需要对原始图像进行预
处理。
可以采用一些滤波器,如高斯滤波器或中值滤波器等,来
对图像进行平滑。
(2)小波分解
经过预处理的图像经离散小波分解后,可以得到图像在各个不
同频率下的小波系数。
(3)小波系数的阈值处理
由于小波系数在各个频率下的大小不同,因此可以根据小波系
数的大小进行阈值处理。
这可以通过一个单一的全局阈值或基于
局部统计特性来完成。
(4)小波系数的逆变换
经过阈值处理的小波系数可以进行小波逆变换,从而得到图像
的边缘。
基于连续小波变换(CWT)的图像边缘检测技术
与基于离散小波变换的图像边缘检测技术不同,基于连续小波变换的图像边缘检测技术直接使用了信号的连续小波变换系数来进行边缘检测。
具体来说,基于连续小波变换的图像边缘检测技术主要包括以下几个步骤:
(1)连续小波变换
将图像信号进行连续小波变换,可以得到图像在不同频率下的小波系数。
(2)小波系数的幅度计算
从小波系数中,可以计算出每个小波系数的幅度,从而得到图像的局部特征。
(3)小波系数的阈值处理
根据小波系数幅度的大小,在局部最大值的基础上,通过设定一个全局阈值进行阈值处理,以便得到有效的边缘。
(4)小波系数的逆变换
将经过阈值处理后的小波系数进行逆变换,从而得到图像的边缘。
总结
基于小波变换的图像边缘检测技术采用了小波基函数的局部性和多分辨率性质,使其在保持图像细节的同时可以更好地处理图像的边缘信息。
在实际应用中,基于小波变换的图像边缘检测技术相比传统的技术,具有更高的精度和鲁棒性,能过更准确地提供边缘信息,进而帮助在生产和科研中获得更优秀的效果。