磁共振成像基本原理

合集下载

磁共振弥散加权成像原理及应用

磁共振弥散加权成像原理及应用

磁共振弥散加权成像原理及应用磁共振成像简介磁共振成像(Magnetic Resonance Imaging,MRI)是一种医学成像技术,利用磁性共振现象和无线电波信号,对人体进行成像的方法。

它可以非侵入性地获取人体内部的高清图像,对于疾病的诊断、治疗和观察都具有重要的作用。

MRI技术的基本原理是通过利用医学应用中的高强度磁场使得人体内的原子发生共振,从而捕捉并分析自发放射的放射线。

MRI分为多种类型,如结构成像、功能成像、弥散成像等,其中弥散成像应用较为广泛。

弥散成像的概念弥散成像是指通过测量水分子扩散运动的速率和方向,来还原影像图像结果的过程。

水分子扩散运动的速率和方向取决于组织状态。

弥散成像的原理弥散成像通过特定的扫描序列和强度梯度对水分子进行编码,并记录其在空间过程中的移动和扩散。

机体中的水分子扩散在不同生理状态下的扩散系数也不同,因此可以对组织状态进行区分。

弥散成像中,常用的成像模式是弥散加权成像模式,即通过改变弥散梯度在空间上的分布来实现加权,在成像中强调不同的结构。

弥散梯度的方向和强度变化对应不同结构的成像。

弥散加权成像应用弥散加权成像目前应用较广泛,主要用于以下方面:1. 脑部疾病诊断脑部中白、灰物质的分布在MRI影像中很难区分,通过弥散加权成像,利用水分子通过灰色及白色物质所具有的不同的弥散系数,可以区分出正常情况下的脑部组织结构。

帮助医生更准确地进行疾病诊断,如肿瘤、卒中等。

2. 脑干横纹束成像脑干横纹束是连接脑干和大脑皮层的一束神经纤维,不同于其他成像技术如CT,弥散加权成像可以更加明显地显示脑干横纹束的位置和走向。

3. 心脏疾病的检测和评估弥散成像可以对心肌疾病进行评估,包括心肌梗塞和心肌水肿等。

弥散加权成像可见心肌内部分区域中水分子扩散受限,炎性细胞浸润的损伤区域,提高早期发现病变的概率。

弥散加权成像是一种重要的MRI成像技术,利用细微水分子扩散的情况,帮助医生更清晰地了解身体内部器官和组织的情况。

磁共振成像的原理与应用

磁共振成像的原理与应用

磁共振成像的原理与应用磁共振成像(Magnetic Resonance Imaging,MRI)是一种无创性的医学影像检查技术,广泛应用于临床医学领域。

MRI利用核磁共振现象,通过在人体内产生强大的磁场和射频脉冲,对人体组织进行断层成像,以获取高分辨率的解剖结构和生理功能信息。

本文将介绍MRI 的原理及其在医学中的应用。

一、磁共振成像的原理MRI的工作原理基于核磁共振现象,即原子核处于外部磁场中时,能够吸收或发射特定频率的电磁辐射。

核磁共振现象是由于原子核自旋的存在,当一强磁场施加在原子核上时,原子核自旋会在磁场的作用下呈现不同的能级。

当原子核在这两个能级之间跃迁时,会吸收或发射电磁辐射,这种现象即核磁共振。

实现MRI成像需要一个强磁场、一组梯度磁场和一组射频脉冲。

首先,强磁场使人体内的原子核自旋定向,形成一个整体的磁矢量。

接着,通过梯度磁场对磁场的分布进行控制,使得磁场在不同方向上有所变化。

然后,通过向人体内发送一组射频脉冲,使部分原子核自旋发生共振现象。

当射频脉冲关闭后,原子核自旋会恢复原来的状态,同时发射出特定频率的电磁辐射信号。

最后,通过接收和解析这些电磁辐射信号,根据其强度、频率等信息,将其转化为图像,从而得到人体组织的断层图像。

二、磁共振成像的应用1. 临床诊断MRI在临床上的应用非常广泛,可以检测到人体内部各种器官和组织的形态和结构。

例如,在神经科学领域,MRI可用于观察脑部结构、器质性损伤和神经退行性病变;在心脏疾病诊断方面,MRI可用于观察心脏的大小、形态和心肌的运动情况;在骨科方面,MRI可用于观察关节软骨、骨骼肿瘤和软组织的病变等。

2. 功能研究除了结构成像,MRI还可用于研究人体各个器官的功能。

例如,在脑科学研究中,功能性磁共振成像(fMRI)可以通过观察脑部的血氧水平变化,间接反映出不同脑区的功能活动状态。

fMRI广泛应用于研究人类的感知、认知、运动等各个领域,为神经科学的研究提供了强有力的工具。

MR常用序列成像基本原理

MR常用序列成像基本原理

3 重建算法
使用先进的重建算法抑制 或减少运动伪影的影响。
梯度磁场在空间中创建线性磁场梯度,用于定 位信号的来源位置。
磁共振信号识别原理
通过检测原子核释放的信号,得到组织的磁共 振信号。
原子核磁矩和自旋共振
原子核磁矩的作用
原子核磁矩对外磁场具有自旋力矩,使其与外磁场 相互作用。
自旋共振与磁共振
自旋共振是原子核磁矩在外磁场作用下产生共振现 象,而磁共振是检测这种共振现象并形成图像。
脉冲序列的构成
1
激发脉冲
发射短脉冲使原子核翻转。
梯度脉冲
2
在特定时间和特定梯度条件下,产生空
间编码。
3
回波信号
接收原子核释放信号。
快速成像技术
探测阵列
使用多通道同步采集技术, 提高图像的时间分辨率和空 间分辨率。
平行成像技术
以加速成像为目标,减少扫 描时间,提高成像效率。
并行成像技术
在多通道中同时激励和接收 信号,实现多条同时成像。
T1加权成像和T2加权成像
1 T1加权成像原理
T1加权成像利用不同组织 T1弛豫时间的差异产生对 比,从而揭示组织的解剖 信息。
2 T2加权成像原理
T2加权成像利用不同组织 T2弛豫时间的差异产生对 比,突出病变区域和水分 布。
3 T1加权与T2加权的区

T1加权成像在脑脊液中呈 现暗信号,而T2加权成像 中呈现亮信号。
平扫与增强扫描的原理
平扫成像
通过选择不同的脉冲序列参数,获取ຫໍສະໝຸດ 织的基本信 号信息。增强扫描
通过注射对比剂,改变组织信号强度,增强病变显 示。
MR成像图像的格式
1 矢状面(Sagittal) 2 冠状面(Coronal) 3 轴状面(Axial)

磁共振成像基本原理卫生部北京医院杨正汉PPT课件

磁共振成像基本原理卫生部北京医院杨正汉PPT课件
99.0 1.6 0.35 0.1 0.078 0.045 0.031 0.015 0.0066
•第37页/共143页
相对磁化率
1.0 0.083 0.066 0.016 0.093 0.0005 0.029 0.096 0.83
•人体内有无数个氢质子(每毫升水含氢 质子3×1022) •每个氢质子都自旋产生核磁现象
– 激发人体产生共振(广 播电台的发射天线)
– 采集MR信号(收音机 的天线)
•第22页/共143页
•脉冲线圈的分类
•按作用分两类 –激发并采集MRI信号(体线圈) –仅采集MRI信号,激发采用体线 圈进行(绝大多数表面线圈)
•第23页/共143页
接收线圈与MRI图像SNR密切相关
接收线圈离身体越近,所接收到的信号越强 线圈内体积越小,所接收到的噪声越低
•按磁体的外形可分为
•开放式磁体 •封闭式磁体 •特殊外形磁体
OpenMark 3000
•第8页/共143页
•MR按主磁场的场强分类
–MRI图像信噪比与主磁场场强成正比
–低场: 小于0.5T –中场:0.5T-1.0T –高场: 1.0T-2.0T(1.0T、1.5T、2.0T) –超高场强:大于2.0T(3.0T、4.7T、7T)
• 没有外加磁场的情况下,质子自旋 产生核磁,每个氢质子都是一个
“小磁铁”,但由于排列杂乱无章,
磁场相互抵消,人体并不表现出宏
观的磁场,宏观磁化矢量为0。
•第42页/共143页
指南针与地磁、小磁铁与大磁场
•第43页/共143页
•第44页/共143页
组进 织入 质主 子磁 的场 核前 磁后 状人 态体
•MRI基本原理
•非常重要 •难以理解

磁共振成像原理

磁共振成像原理

磁共振成像原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种利用核磁共振现象获取人体内部组织结构和功能信息的医学成像技术。

它通过利用强磁场、射频脉冲以及梯度线圈的作用,产生影响生物体内原子核的局部磁场,并探测其信号来生成图像。

下面将详细介绍磁共振成像的原理。

一、原子核的核磁共振现象核磁共振现象是指当原子核处于强磁场中时,其核自旋会与外界磁场发生共振,进而产生一种特殊的电磁辐射现象。

核磁共振现象的产生基于原子核自旋角动量与外部磁场相互作用的量子力学效应。

在强磁场中,原子核自旋的辐射频率与外部磁场强度成正比。

当外部射频脉冲的频率与原子核自旋的共振频率相同时,原子核将吸收能量并处于激发态,随后通过释放能量回到基态。

这种吸收和释放能量的过程被称为共振现象,也是磁共振成像的基础。

二、强磁场的建立磁共振成像使用强磁场来激发和探测被成像物体内部原子核的信号。

强磁场的建立是磁共振成像的第一步。

在MRI设备中,使用超导磁体来产生一个稳定而均匀的强静态磁场。

超导磁体内部通入液氦使其冷却到超导状态,从而消除了电阻,使得磁场可以持续很长时间。

这样的超导磁体可以产生高达1.5特斯拉至3特斯拉的强磁场。

稳定的强磁场将所有原子核的自旋定向在同一个方向,并使其具有较大的自旋角动量,为之后的成像提供了条件。

三、射频脉冲的应用在磁共振成像中,射频脉冲用于激发原子核自旋,以实现信号的产生和增强。

使用射频线圈产生与特定谐振频率相匹配的射频脉冲,将其传输到成像区域。

当脉冲的频率与原子核自旋的共振频率相同时,能量被吸收,原子核进入激发态。

此时,通过改变射频脉冲的参数,比如脉冲强度和脉冲宽度,可以控制原子核的激发程度。

四、梯度线圈的作用梯度线圈在磁共振成像中起到了定位和空间编码的作用。

梯度线圈是位于主磁场中的一组线圈,产生额外的磁场,其方向和强度可以根据需要进行调节。

梯度线圈通过在不同时间点产生不同强度的磁场,使得成像区域内的原子核处于不同的共振频率状态。

mri的基本概念

mri的基本概念

MRI是磁共振成像(Magnetic Resonance Imaging)的缩写,是一种利用核磁共振现象获取人体组织结构和功能信息的医学影像技术。

本文将从MRI的基本原理、影像生成过程以及临床应用等方面进行介绍,希望能够为您提供全面的了解。

一、MRI的基本原理MRI的基本原理建立在核磁共振现象之上。

核磁共振是指原子核在外加磁场和射频场的作用下发生共振吸收和辐射的现象。

在MRI中,主要利用水素原子核的核磁共振特性来获取人体组织的影像信息。

当被放置在强静态磁场中时,人体组织中的水分子会产生特定的共振信号,通过对这些信号的检测和分析,可以得到高分辨率的影像信息。

二、MRI的影像生成过程1. 磁场建立:首先,患者被置于强静态磁场中,这个磁场可以使体内的水分子的原子核朝向发生变化,使其产生共振信号。

2. 射频激射:在静态磁场的作用下,通过向人体施加射频脉冲,可以激发体内的水分子原子核,使其发出特定的共振信号。

3. 信号检测:接收体内产生的共振信号,并将其转化为电信号进行处理。

4. 影像重建:通过计算机对接收到的信号进行处理和重建,生成图像。

三、MRI的临床应用1. 诊断性应用:MRI在临床上广泛应用于各种疾病的诊断,如脑部肿瘤、脊柱疾病、关节损伤等。

由于其高分辨率和无辐射的优势,MRI成为了很多病症的首选影像学检查方法。

2. 术前评估:在外科手术前,MRI可以提供准确的解剖结构信息,帮助医生进行手术方案的制定和评估,降低手术风险。

3. 研究应用:MRI在医学研究领域也有着广泛的应用,例如在神经科学、心血管疾病等方面发挥着重要作用。

四、MRI的发展趋势1. 高场强技术:随着MRI设备技术的不断进步,高场强MRI 技术的应用越来越广泛,可以提供更高分辨率的影像信息。

2. 功能性MRI:功能性磁共振成像(fMRI)可以观察大脑在特定任务下的代谢活动,对认知科学研究具有重要意义。

3. 分子成像:分子成像技术的发展,使得MRI可以在细胞水平上观察生物分子的活动和分布,对疾病的早期诊断有着重要意义。

MRI磁共振成像基本原理-杨正汉(可编辑)

MRI磁共振成像基本原理-杨正汉(可编辑)MRI磁共振成像基本原理-杨正汉学习MRI前应该掌握的知识电学磁学量子力学高等数学一、MRI扫描仪的基本硬件构成一般的MRI仪由以下几部分组成主磁体梯度线圈脉冲线圈计算机系统其他辅助设备 1、主磁体 2、梯度线圈作用: 空间定位产生信号其他作用梯度线圈性能的提高 ? 磁共振成像速度加快没有梯度磁场的进步就没有快速、超快速成像技术 3、脉冲线圈脉冲线圈的作用如同无线电波的天线激发人体产生共振(广播电台的发射天线) 采集MR信号(收音机的天线) 4、计算机系统及谱仪数据的运算控制扫描显示图像 5、其他辅助设备空调检查台激光照相机液氦及水冷却系统自动洗片机等二、MRI的物理学原理1、人体MR成像的物质基础原子的结构原子核总是绕着自身的轴旋转,,自旋 ( Spin )通常情况下人体内氢质子的核磁状态把人体放进大磁场 2、人体进入主磁体发生了什么, 没有外加磁场的情况下,质子自旋产生核磁,每个氢质子都是一个“小磁铁”,但由于排列杂乱无章,磁场相互抵消,人体并不表现出宏观的磁场,宏观磁化矢量为0。

指南针与地磁、小磁铁与大磁场进入主磁场后磁化矢量的影响因素进入主磁场后人体被磁化了,产生纵向宏观磁化矢量不同的组织由于氢质子含量的不同,宏观磁化矢量也不同磁共振不能检测出纵向磁化矢量 3、什么叫共振,怎样产生磁共振, 共振:能量从一个震动着的物体传递到另一个物体,而后者以前者相同的频率震动。

共振条件频率一致实质能量传递无线电波激发后,人体内宏观磁场偏转了90度,MRI可以检测到人体发出的信号氢质子含量高的组织纵向磁化矢量大,90度脉冲后磁化矢量偏转,产生的旋转的宏观横向矢量越大,MR信号强度越高。

此时的MR图像可区分质子密度不同的两种组织 4、射频线圈关闭后发生了什么, 横向弛豫也称为T2弛豫,简单地说,T2弛豫就是横向磁化矢量减少的过程。

纵向弛豫也称为T1弛豫,是指90度脉冲关闭后,在主磁场的作用下,纵向磁化矢量开始恢复,直至恢复到平衡状态的过程。

mrcp成像原理

mrcp成像原理MRCP成像原理引言:MRCP(磁共振胆道成像)是一种无创的胆道成像技术,通过磁共振成像技术对胆道系统进行高分辨率的成像。

本文将介绍MRCP的成像原理及其应用。

一、MRCP成像原理1. 磁共振成像基本原理MRCP利用磁场和射频脉冲来获取图像。

在磁场中,人体组织中的氢原子核会对外施加的磁场做出反应,并产生共振信号。

通过检测这些共振信号,可以获取人体各个部位的图像。

2. 胆道成像原理MRCP是利用胆道中含有的胆红素和胆汁中的溶解物质对磁场的影响进行成像。

胆红素是一种具有磁性的物质,能够在磁场中产生明显的信号。

胆汁中的溶解物质则可以通过磁共振技术对其运动进行观察。

二、MRCP的应用1. 诊断胆道疾病MRCP可以用于检测和诊断胆道疾病,如胆结石、胆管狭窄等。

通过对胆道进行高分辨率的成像,可以清晰地显示胆道的结构和异常情况,帮助医生进行准确的诊断。

2. 指导胆道手术MRCP还可以用于指导胆道手术。

在手术前,医生可以通过MRCP对患者的胆道进行全面评估,了解胆道的解剖结构和病变情况,从而制定出更合理的手术方案。

手术过程中,医生还可以利用MRCP的成像结果进行实时引导,提高手术的准确性和安全性。

3. 评估胆道治疗效果MRCP可以用于评估胆道治疗的效果。

例如,对于经过胆道扩张治疗的患者,可以通过MRCP观察扩张后的胆管情况,判断治疗效果是否良好。

这对于及时调整治疗方案和提高治疗效果非常重要。

4. 监测胆道病变进展MRCP还可以用于监测胆道病变的进展情况。

通过定期进行MRCP检查,可以观察胆道病变的变化,及早发现并治疗异常情况,避免病情进一步恶化。

结论:MRCP是一种无创的胆道成像技术,通过磁共振成像原理对胆道进行高分辨率的成像。

它具有诊断准确、手术指导、治疗效果评估和病变监测等多种应用。

在临床实践中,MRCP已成为一项重要的胆道检查手段,为临床医生提供了更准确、安全和有效的诊疗方法。

磁共振成像的原理

磁共振成像的原理
首先,我们来了解一下核磁共振的基本原理。

核磁共振是一种原子核在外加磁场和交变电磁场作用下发生共振吸收和发射的现象。

在外加静磁场的作用下,原子核会产生磁矩并取向,当外加交变电磁场的频率与原子核的共振频率相同时,原子核会吸收能量并发生共振。

而在磁共振成像中,利用的就是这种原理。

其次,磁共振成像的原理是通过对人体部位施加静磁场,使人体内的原子核产生磁矩,并用射频脉冲使原子核进入共振状态,然后检测原子核在共振状态下的信号,并利用计算机处理得到图像。

在施加静磁场的过程中,人体内的原子核会按照不同的组织类型和状态产生不同的信号,这些信号经过检测和处理后,就可以形成人体内部的结构图像。

另外,磁共振成像的原理还涉及到梯度磁场的作用。

梯度磁场是在静磁场的基础上加上的一组可变磁场,它可以使得不同位置的原子核产生不同的共振频率,从而可以确定原子核的位置。

通过对梯度磁场的调节,可以获得不同位置的信号,从而实现对人体内部结构的精确定位和成像。

总的来说,磁共振成像的原理是基于核磁共振技术和梯度磁场技术的结合,通过对人体内部原子核的共振信号进行检测和处理,最终获得人体内部结构的高分辨率图像。

这种成像技术不仅可以清晰显示软组织结构,还可以避免X射线辐射对人体的损伤,因此在临床诊断中具有重要的应用价值。

综上所述,磁共振成像的原理是一种基于核磁共振和梯度磁场技术的医学成像技术,通过对人体内部原子核的共振信号进行检测和处理,最终获得人体内部结构的高分辨率图像。

这种成像技术在临床诊断中具有重要的应用价值,对于诊断疾病和损伤具有重要意义。

希望通过对磁共振成像原理的了解,可以更好地理解和应用这一先进的医学成像技术。

功能磁共振成像(fMRI)原理与应用


人工智能在fMRI图像重建中的 应用
人工智能在fMRI图像分类中的 应用
无创脑刺激技术: 通过电磁场刺激 大脑,实现无创 治疗
功能连接研究: 研究大脑不同区 域之间的功能联 系
未来发展:无创 脑刺激技术在精 神疾病治疗中的 应用
未来发展:功能 连接研究在认知 科学和人工智能 领域的应用
汇报人:XXX
操作复杂,需要专业人员操 作
fMRI设备价格昂贵,维护成 本高
扫描时间长,患者舒适度低
数据处理和分析难度大,需 要专业人员处理
更高分辨率的fMRI技术 更准确的图像重建算法
更快的扫描速度
更广泛的应用领域,如脑科学 研究、临床医学等
深度学习在fMRI图像识别中的 应用
机器学习在fMRI数据分析中的 应用
信号来源:神经 元活动、血管血 流、细胞代谢等
信号处理:使用 各种算法和模型, 提取有效信息, 进行图像重建和 可视化
fMRI技术可以实时监测大脑活 动,从而实现脑功能区的定位。
通过fMRI研究,科学家可以了 解大脑不同区域的功能,以及它
们在认知过程中的作用。
fMRI技术可以帮助科学家研究 各种认知过程,如记忆、注意力、
fMRI在神经退行 性疾病研究中的作 用:揭示疾病机制 、寻找新的治疗靶 点
fMRI技术可以实时监测药物对大脑活动的影响 通过fMRI数据,可以了解药物对特定脑区的作用机制 fMRI技术可以帮助研究人员发现新的药物靶点 fMRI技术可以评估药物的安全性和有效性
fMRI在脑部手术 前的应用:帮助医 生了解脑部结构, 制定手术方案
fMRI信号的多样 性:包括血流、代 谢、组织结构等多 种因素
信号解读的难度: 需要结合多种技术 和方法,如统计分 析、机器学习等
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

进入主磁场前后质子核磁状态对比
图a 为进入主磁场前,尽管每 个质子自旋都产生一个小磁场, 但排列杂乱无章,磁化矢量相 互抵消,因此没有宏观磁化矢 量产生。
图b 示进入主磁场后,质子自旋 产生的小磁场与主磁场平行排列, 平行同向者略多于平行反向者, 最后产生一个与主磁场方向一致 的宏观纵向磁化矢量。
磁共振加权成像
• 加权 突出重点
一般的成像过程中,组织的各方面特性(例如:质子密度、 T1 值、T2 值)均对MR 信号有贡献,几乎不可能得到仅 纯粹反映组织一个特性的MR图像,我们可以利用成像参 数的调整,使图像主要反映组织某方面特性,而尽量抑制 组织其他特性对MR 信号的影响,这就是“加权”。
T1加权成像的实现
假设甲、乙两种组织质子密度相同,但甲组织的纵向弛豫比乙组织快(即甲组织的T1 值短于乙组织): (1)进入主磁场后由于质子密度一样,甲乙两种组织产生的纵向磁化矢量大小相同; (2)90°脉冲后产生的宏观横向磁化矢量的大小也相同; (3)射频脉冲关闭后,甲乙两种组织将发生纵向弛豫,由于甲组织的纵向弛豫比乙组 织快,过一定时间以后,甲组织已经恢复的宏观纵向磁化矢量将大于乙组织; 在T1WI 上,组织的T1 值越小,其MR 信号强度越大。 (4)由于接收线圈不能检测到这种纵向磁化矢量的差别,必须使用第二个 90°脉冲。 第二个90°脉冲后,甲、乙两组织的宏观纵向磁化矢量将发生偏转,产生宏观横向磁化 矢量,因为这时甲组织的纵向磁化矢量大于乙组织,其产生的横向磁化矢量将大于乙组 织,马上检测MR 信号,甲组织产生的MR 信号将高于乙组织,这样就实现了T1WI。
进入主磁场前后质子核磁状态对比
三、进动和进动频率
进入主磁场后,无论是处于高能级还是处于低能级的质子, 其磁化矢量并非完全与主磁场方向平行,而总是与主磁场 有一定的角度。 质子除了自旋运动外,还绕着主磁场轴进行旋转摆动,我 们把质子的这种旋转摆动称为进动。进动是磁性原子核自 旋产生的小磁场与主磁场相互作用的结果。
磁共振加权成像
T1 加权成像(T1WI):重点突出组织纵向弛豫差别; T2 加权成像(T2WI):重点突出组织横向弛豫差别;
质子密度图像(PD ):主要反映组织质子含量差别。
质子密度加权成像的实现
以甲、乙两种组织为例,甲组织质子含量高于乙质子: (1)进入主磁场后,甲组织产生的宏观纵向磁化矢量大于乙组织; (2)90°脉冲后甲组织产生的旋转宏观横向磁化矢量就大于乙组织; 质子密度越高,MR 信号强度越大,这就是质子密度加权成像。 (3)马上检测MR 信号,甲组织产生的MR 信号将高于乙组织。
• 纵向磁化分矢量产生一个与主磁场同向的宏观纵向磁化矢 量。 • 横向磁化分矢量相互抵消,因而没有宏观横向磁化矢量产 生。
进入主磁场前后质子核磁状态对比
磁共振现象
• 磁共振现象:给处于主磁场中的人体组织一个射频 脉冲,射频脉冲的频率与质子的进动频率相同,射 频脉冲的能量将传递给处于低能级的质子,处于低 能级的质子获得能量后将跃迁到高能级。
磁共振成像基本原理
徐文鹏 2015-08-04
MRI设备
一、MRI发展历史
• 磁共振成像概述
一种生物磁自旋成像技术,利用原子核(氢核)自旋 运动的特点,在外加磁场内,经射频脉冲激后产生信号, 用探测器(接收线圈)检测并输入计算机,经过处理转换 在屏幕上显示图像。 英文简称MRI(magnetic resonance imaging )
二、MRI主要硬件 主磁体
• 主磁体是MRI 仪最基本的构件,是产生磁场的装 置,主要作用Байду номын сангаас产生稳定均匀的静磁场使组织产 生磁化。根据磁场产生的方式可将主磁体分为永 磁型和电磁型,根据导线材料不同又可将电磁型 主磁体分为常导磁体和超导磁体。 (一)常导型磁体 (二)永磁型磁体 (三)超导型磁体
梯度系统
核磁驰豫
T2值:横向磁化矢量衰减到最大值的37%所 用的时间; 不同组织由于质子受周围微观磁环境影响不 同,T2值不同,即T2弛豫速度不一样;不同 的场强下,T2值也会发生变化。
核磁驰豫
纵向弛豫
射频脉冲关闭后,在主磁场的作用下,宏观纵向磁化矢量 将逐渐恢复到平衡状态,这一过程称为纵向弛豫,即T1 弛豫。 T1值:宏观纵向磁化矢量恢复到最大值的63%所用的时间。 不同的组织由于质子周围的分子自由运动频率不同,其纵 向弛豫速度存在差别,即T1 值不同。人体组织的T1 值受 主磁场场强的影响较大,一般随场强的增高,组织的T1 值延长。
• 1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫宣布, 他们发现了磁共振NMR。两人因此获得了1952年诺贝尔奖。
MRI发展历史
• 1973年Lauterbur研究出MRI所需要的空间定位方法,也 就是利用梯度场。他的研究结果是获得水的模型的图像。 • 在以后的10年中,人们进行了大量的研究工作来制造磁共 振扫描机,并产生出人体各部位的高质量图像,先后通过 MR扫描,获得手、胸、头和腹部的图像。 • 1980年商品化MRI装置问世。
MRI发展历史
• 1930年代,物理学家伊西多•拉比发现在磁场中的原子核会 沿磁场方向呈正向或反向有序平行排列,而施加无线电波之 后,原子核的自旋方向发生翻转。
• 1946年两位美国科学家布洛赫和珀塞尔发现,将具有奇数个 核子(包括质子和中子)的原子核置于磁场中,再施加以特 定频率的射频场,就会发生原子核吸收射频场能量的现象, 这就是人们最初对磁共振现象的认识。
射频系统
• 组成:主要由射频脉冲发射单元和射频脉冲接收单元两部分 组成,其中包括射频发射器、射频功率放大器、射频发射线 圈、射频接收线圈、以及低噪声射频信号放大器等关键部件。 • 作用:负责实施射频(Radio Frequency,RF)激励并接收 和处理射频信号,即MR信号。
计算机系统
计算机系统控制着MRI 仪的脉冲激发、信 号采集以及实现图像处理、显示、传输、存 储 等功能。
• 用于人体磁共振成像的原子核为质(H1),选择(H1) 的理由有:
(H1)是人体中最多的原子核,约占人体中总原 子核数的2/3 以上; (H1)的磁化率在人体磁性原子核中是最高的。
进入主磁场前后质子核磁状态对比
一、进入主磁场前质子核磁状态
人体的质子不计其数,产生无数个小磁场,尽管每个 质子均能产生一个小磁场,这种小磁场的排列是随机无序 (即杂乱 无章)的,使每个质子产生的磁化矢量相互抵 消。因此,人体自然状态下并无磁性,即没有宏观磁化矢 量的产生。
进入主磁场前后质子核磁状态对比
进动频率也称Larmor 频率,其计算公式为: ω=γ·B
式中ω为Larmor 频率,γ为磁旋比(γ对于某一种磁性原子核来说是 个常数,质子的γ约为42.5 mHz/T ),B 为主磁场的场强,单位为特斯 拉(T)。从式中可以看出,质子的进动频率与主磁场场强成正比。
• 进入主磁场前后质子核磁状态对比
• 磁共振现象
磁共振现象的物质基础
原子结构:
原子由原子核和绕核运动的电子组成,原子核由质子 和中子组成。电子带负电荷,质子带正电荷,中子不带电。
质子和中子如果不成对,将使质子在旋转中产生 角动量,磁共振就是要利用这个角动量的物理特 性来实现激发、信号采集和成像的。
进入主磁场前后质子核磁状态对比
二、进入主磁场后质子核磁状态
进入主磁场后,人体内的质子产生的小磁场不再是杂乱无章, 呈有规律排列。一种是与主磁场方向平行且方向相同,另一 种是与主磁场平行但方向相反,处于平行同向的质子略多于 处于平行反向的质子。 从量子物理学的角度来说,这两种核磁状态代表质子的能量 差别。平行同向的质子处于低能级,因此受主磁场的束缚, 其磁化矢量的方向与主磁场的方向一致;平行反向的质子处 于高能级,因此能够对抗主磁场的作用,其磁化矢量尽管与 主磁场平行但方向相反。 由于处于低能级的质子略多于处于高能级的质子,因此进入 主磁场后,人体内产生了一个与主磁场方向一致的宏观纵向 磁化矢量。
从微观角度来说,磁共振现象是低能级的质子获得能量跃迁 到高能级。
从宏观的角度来说,磁共振现象的结果是使宏观纵向磁化矢 量发生偏转。偏转的角度与射频脉冲的能量有关,能量越大 偏转角度越大;而射频脉冲能量的大小与脉冲强度及持续时 间有关 共振:能量从一个振动着的物体传递到另一个物体,后者以 与前者相同的频率振动。共振的条件是相同的频率,实质是 能量的传递。
进动频率明显低于自旋频率, 但对于磁共振成像的来说,进 动频率比自旋频率重要。质子 的进动频率与主磁场场强成正 比。
进入主磁场前后质子核磁状态对比
由于进动的存在,质子自旋产生小磁场可以分解成两个部 分: (1)方向恒定的纵向磁化分矢量(沿主磁场方向); (2)以主磁场方向即Z轴为轴心,在X、Y平面旋转的横 向磁化分矢量。
磁共振现象
四、磁共振成像原理
• 核磁驰豫 • 磁共振加权成像
核磁驰豫
核磁弛豫: 90°脉冲关闭后,组织的宏观磁化矢 量逐渐恢复到平衡状态的过程。 核磁弛豫又可分解成两个相对独立的部分:
(1)横向磁化矢量逐渐减小直至消失,称为横向弛豫; (2 )纵向磁化矢量逐渐恢复直至最大(平衡状态),称 为纵向弛豫。
磁共振现象的物质基础
自旋:质子以一定的频率绕轴高速旋转。
高速旋转
带正电荷的质子

电流环路
核磁
并非所有原子核的自旋运动都能产生核磁根据原子核内中子 和质子的数目不同,不同的原子核产生不同的核磁效应。 非磁性原子核:质子数和中子数均为偶数 磁性原子核:中子数和质子数至少一个为奇数

磁共振现象的物质基础
T2加权成像的实现
假设甲、乙两种组织质子密度相同,但甲组织的横向弛豫比乙组织慢(即甲 组织的T2 值长于乙组织): (1)进入主磁场后由于质子密度一样,甲乙两种组织产生的宏观纵向磁化矢 量大小相同(图a); (2)90 °脉冲后产生的宏观横向磁化矢量的大小也相同(图 b): 在 T2WI 上,组织的T2 值越大,其MR 信号强度越大。 (3)由于甲组织横向弛豫比乙组织慢,到一定时刻,甲组织衰减掉的宏观横 向磁化矢量少于乙组织,其残留的宏观横向磁化矢量将大于乙组织(图 c); (4)这时检测MR 信号,甲组织的MR 信号强度将高于乙组织(图d),这样 就实现了T2WI。
相关文档
最新文档