概率与数理统计PPT

合集下载

概率与数理统计 5.3 中心极限定理.ppt

概率与数理统计 5.3 中心极限定理.ppt
由德莫佛—拉普拉斯中心极限定理, 有
X ~ N (120, 48) (近似)
问题转化为求 a , 使
P(0 rX a) 99.9%
P(0 rX a) a / r 120 0 120 48 48
a / r 120 (17.32) 48 0
P(Xi k) p1 p k1 , p1/3 k 1,2,
(几何分布)
E( X i )

1 p
p1/ 3

3,
D(Xi )

1
p
p
2
p1/ 3

6
100
X1, X 2,, X100 相互独立, X X k
k 1
E( X ) 300, D( X ) 600
根据第二章知识若 X ~ N(, 2) 则X的标准化 随机变量
Y ( X EX ) / DX ( X ) / ~ N (0,1)
若X1, X2, …Xn为独立同分布的随机变量,
n
X i ~ N (, 2 ) ,则 X i ~ N (n, n 2 ) i 1
其标准化随机变量
X n X n1 Yn (n 1)
其中Xn是第n天该商品的价格.如果今天 的价格为100,求18天后该商品的价格 在 96 与 104 之间的概率.
解 设 X 0 表示今天该商品的价格, X 18为18
天后该商品的价格, 则
18
X18 X17 Y18 X16 Y17 Y18 X 0 Yi
0! 1!
3°用正态分布近似计算
PX 2 1 PX 2 1 PX 1
1 (1 np ) npq

《概率论与数理统计》-课件 概率论的基本概念

《概率论与数理统计》-课件 概率论的基本概念
解 以C记事件“母亲患病”,以N1记事件“第1个 孩子未患病”,以N 2记事件“第2个孩子未患病”.
已知 P(C ) 0.5, P( N1 C ) P( N2 C ) 0.5,
P(N1N2 C) 0.25, P(N1 C) 1, P(N2 C) 1. (1) P(N1) P(N1 C)P(C) P(N1 C)P(C)
6 3 3. 100 100 100
故 注意
p 17 10 3 1 12 . 100 2 25
只有当 B A 时才有 P( A B) P( A) P(B).
例7 设盒 I 有 6 只红球, 4 只白球; 盒 II 有7只红 球, 3只白球. 自盒 I 中随机地取一只球放入盒 II, 接着在盒 II 中随机地取一只球放入盒 I. (1) 然后在盒 I 中随机地取一只球 , 求取到的是红 球的概率. (2) 求盒 I 中仍有 6 只红球 4 只白球的概率.
以 B 记事件“至少有一个配对” , 则 B A1 A2 An .
(1) 由和事件概率公式
P(B) P( A1 A2 An )
n
n
n
P( Ai ) P( Ai Aj )
P( Ai Aj Ak )
i 1
1i jn
1i jkn
(1)n1 P( A1 A2 An ),
n n 1 n(n 2)!, 1 1 2
n n 1 n
(n 2)!
于是
P(B) 1
1 2 nn
.
例4 将 6 只球随机地放入到3 只盒子中去, 求每 只盒子都有球的概率. 解 以 A 记事件 “每只盒子都有球” . A 发生分为三种情况 : (i) 3 只盒子装球数分别为 4, 1, 1, 所含的样本点数为

概率论与数理统计PPT课件第七章最大似然估计

概率论与数理统计PPT课件第七章最大似然估计
最大似然估计
• 最大似然估计的概述 • 最大似然估计的数学基础 • 最大似然估计的实现 • 最大似然估计的应用 • 最大似然估计的扩展
01
最大似然估计的概述
定义与性质
定义
最大似然估计是一种参数估计方法, 通过最大化样本数据的似然函数来估 计参数。
性质
最大似然估计是一种非线性、非参数 的统计方法,具有一致性、无偏性和 有效性等优良性质。
无偏性
在某些条件下,最大似然估计的参数估计值是无偏的,即其期望值等于真实值。
最大似然估计的优缺点
• 有效性:在某些条件下,最大似然估计具有最小方差性质, 即其方差达到最小。
最大似然估计的优缺点
非线性
01
最大似然估计是非线性估计方法,对参数的估计可能存在局部
最优解而非全局最优解。
对初值敏感
02
最大似然估计对初值的选择敏感,不同的初值可能导致不同的
04
最大似然估计的应用
在回归分析中的应用
线性回归
最大似然估计常用于线性回归模型的参数估计,通过最大化似然函 数来估计回归系数。
非线性回归
对于非线性回归模型,最大似然估计同样适用,通过将非线性模型 转换为似然函数的形式进行参数估计。
多元回归
在多元回归分析中,最大似然估计能够处理多个自变量对因变量的影 响,并给出最佳参数估计。
最大熵原理与最大似然估计在某些方面具有相似性,例如都追求最大化某种度量, 但在应用场景和约束条件上有所不同。
THANKS
感谢观看
连续型随机变量的概率密度函数
然函数
基于样本数据和假设的概率模型, 计算样本数据在该模型下的可能 性。
似然函数的性质
非负性、归一化、随着样本数据的 增加而增加。

《概率论与数理统计》课件3-1二维随机变量及其联合分布

《概率论与数理统计》课件3-1二维随机变量及其联合分布
P{a X b} = F(b) − F(a) + P{X = a}
二维随机变量联合分布函数
F(x,y) = P{X x,Y y}
(1) 有界性 0 F(x,y) 1,且有F(− ,y) = lim F(x,y) = 0
x→−
F(x,− ) = lim F(x,y) = 0 F(− ,− ) = lim F(x,y) = 0 ,
1
F(
) 1 F( y) 0 F(x ) 0
F ( , ) A(B )(C ) 1
2
2
F ( , y) A(B )(C arctan y) 0 2
F ( x,
) A( B arctan x) ( C
)0
2
A
F (x, y) y).
1
2
,
B
1
2 (2
C.
2
arctan x)( 2
arctan
(2) P 0 X , 0 Y 1 F( ,1) F(0,1) F( , 0) F(0, 0) .
则〈
l
0,

P 恳1 < X 共 2,3 < Y 共 5}
x > 0, y > 0 其
= F(2,5) − F(1,5) − F(1,3) + F(2,3)
A) V
B) 根
A
B
提交
1 F(x, y) A(B arctan x)(C arctan y).
1
A, B,C 2 P 0 X , 0 Y 1
A.
B.
C.
D.
A
C
B
D
提交
1. F(x, y) P{X x,Y y}.
2.

概率论与数理统计--第二章PPT课件

概率论与数理统计--第二章PPT课件
由概率的可列可加性得X的分布函数为
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页

概率论与数理统计-五大数定理-PPT

概率论与数理统计-五大数定理-PPT
5
300
P
Xi 0
i 1
n
10
n
P
300
Xi
i 1
5
0
2
2 2 2 2 1 0.9544
15
德莫威尔—拉普拉斯定理
设在独立实验序列中,事件A 在各次实验中发生的概率为
p0 p 1, 随机变量 表Yn示事件A 在n 次实验中发生的次
数,则有
lim
n
P
Yn
Ai 表示“在第 i 次试验中,事件A发生”。
n
Bn Ai 而 P( Ai ) p
i 1
P(Bn )
P n Ai i1
1
P
n i 1
Ai
1 P
A1
A2 An
1 P A1 P A2 P An 1 (1 p)n
显然,当n 时,P(Bn ) 1. [注] 小概率事件尽管在个别试验中不可能发生,但在大量试验
X1 , X 2的, 算, X术n平均值:
X n 的数学期望是:EX n
1 n
n i 1
EX i
X n 的方差为:
DX n
1 n2
n
DX i
i 1
1 n
X n n i1 X i
∴若方差一致有上界,则
DX n
1 n2
nK
K n
由此,当
n
充分大时,
随机变量
X
分散程度是很小的,
n
也就是说, X n的值较紧密地聚集在它的数学期望 EX n的附近.
P200 (6)
26 6!
e2
0.012
此概率很小,据小概率事件的实际不可能性原理,
∴不能相信该工厂的次品率不大于0.01。

《概率论与数理统计教程》课件


2-7
随机变量的分类
仅可能取得有限个或 可数无穷多个数值
离散型随机变量 随机变量 连续型随机变量
2-8
§2.2 离散随机变量
一. 概率分布
二. 概率函数及其性质 三. 几何分布 四. 频率分布表
2-9
概率分布
定义 随机变量X一切可能值为x1, x2, ... , xn, ... , 而取 得这些值的概率分别为p(x1), p(x2), ... , p(xn) , ... , 称为离散型随机变量的概率分布或分布律。 可以列出概率分布表如下:
1. 当一批产品总数 N很大,而抽取样品的个 数 n 远小于 N 时,可用二项分布来近似地 计算超几何分布的概率,即 m n m C M C N M M m m n m Cn p q , p n N CN
2. 实际应用中,当n/N10%时,不放回抽样(样品 中的次品数服从超几何分布)与放回抽样(样品 中的次品数服从二项分布)区别不大。
2 - 13
课堂练习
1. P{ X i } 2a i ,i 1,2 , , 求常数a. 2. 下面给出的数列能否成为某一随机变量的 分布列: 0.1,0.2,0.3,0.4.
3. 设随机变量X的概率分布为
X P 0 1/8 1 3/8 2 3/8 3 a
求:(1)a的值; (2)P(X≤1); (3)P(1≤X<3) 4. 某射手在相同条件下独立地进行5次射击,每 次击中目标的概率是0.6,求击中目标次数X的概 2 - 14 率分布.
P(X=n)=qn-1p, (n=1,2,...)
几何分布
2 - 15
频率分布表
频率分布表
X
f n ( xi )
x1

第六章《概率论与数理统计教程》课件


1

例5. 设X服从[0,λ]区间上的均匀分布,参数
λ>0,求λ的最大似然估计. 1 解:由题意得: X ~ f ( x; )
1 L( x1 , x 2 ,..., x n ; ) n 0
0 x
0 其它 0 x1 , x 2 ,..., x n
dL n n1 0 d
其它
无解.
应用最大似然估计基本思想: L越大,样本观察值越可能出现 取 max( x1 , x 2 ,..., x n ) 此时,L取值最大, 所以,所求最大似然估计为 max( x1 , x 2 ,..., x n )
考虑L的取值,要使L取值最大,λ应最小, 0 x1 , x 2 ,..., x n


例2 设总体 X ~ N ( , 2 ) ,其中 及 2 都是未知参数,如
果取得样本观测值为 x1 ,, x n , 求 及 2 的矩估计值。
解: 因为总体X的分布中有两个未知参数,所以应考虑一、二阶 原点矩,我们有 v1 ( X ) E ( X )
v 2 ( X ) E( X 2 ) D( X ) [ E( X )]2 2 2
e

e
1 2
2
2
( x )2 2 2
e
L( x1 , x 2 ,..., x n ; , )
2
i 1
1 2
2
( xi )2
(
2
1 2
2

1 2 2
) e
n

i 1
n
( xi )2

1 n 2 n 1 n 2 2 ) 2 ( x i ) ln 2 ln L n ln( ( xi ) 2 i 1 2 2 2 n 2 2 i 1 1 ln L 1 n Xi X 2 ( xi ) 0 n i 1 i 1 1 n 2 1 n n ln L n 1 ( xi )2 ( xi X )2 2 2 4 ( x i ) 0 n i 1 n i 1 2 2 2 i 1

概率论与数理统计课件完整版ppt


实践操作指导
01
操作一:概率分布的计算与模拟
02
• 概率分布;Python编程;蒙特卡罗模拟
03
• 指导学员使用Python编程实现常见概率分布的计算和模拟,如二项分布、泊 松分布、正态分布等。通过蒙特卡罗模拟方法,加深对随机现象和概率分布 的理解。
实践操作指导
操作二:假设检验与方差分析实践
• 假设检验;方差分析;R语言
方差分析
类型
方差分析有多种类型,如单因素方差分析、多因素方差分析、协方差分析等。不同类型的方差分析适 用于不同的研究设计和数据特点,选择合适的方差分析方法对于获得准确的研究结论具有重要意义。
案例分析
通过实例讲解方差分析的应用,包括数据准备、计算过程、结果解读等。案例分析有助于加深对方差 分析方法和原理的理解,提高实际应用能力。

抽样分布类型
常见的抽样分布有卡方分布、t分布、 F分布等,它们在参数估计和假设检 验中有着重要应用。
常用统计量
包括均值、方差、标准差、偏度、峰 度等。
抽样分布的性质
包括期望、方差、分位数等,这些性 质在推断总体参数时非常关键。
参数估计
点估计 使用样本统计量直接作为总体参 数的估计值,常见的点估计方法 有矩估计和极大似然估计。
回归分析
定义与意义
回归分析是一种统计方法,用于研究自 变量与因变量之间的因果关系。它可以 帮助我们揭示变量间的内在关系,预测 因变量的取值,以及检验理论的正确性 。回归分析在社会科学、经济学、生物 学等领域都有广泛应用。
VS
原理与步骤
回归分析基于最小二乘法的原理,通过拟 合一条回归直线或曲线来描述自变量与因 变量之间的关系。它通常包括如下步骤: 确定回归模型的形式,估计模型参数,检 验模型的显著性,诊断模型的残差,应用 模型进行预测等。

概率论与数理统计教程_第五版_ppt课件

.
推广:
N元情形
n
称 Ak 为 n 个事件 A1, A2 , , An 的和事件,即 k 1
A1, A2 , , An至少发生一个;
.
3.事件的交(积)
"二事件A, B同时发生"也是一个事件 , 称为 事件A 与事件 B 的积事件,记作A B,显然 A B {e | e A且e B}.
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
.
五、随机事件的关系及运算
(1)、随机事件间的关系 设试验 E 的样本空间为 , 而 A, B, Ak (k
1,2, )是 的子集. 1、包含关系 若事件 A 出现, 必然导致 B 出现
若事件 A 、B 满足 A B AB .
则称事件 A与B互不相容.
例 抛掷一枚硬币, “出现花面” 与 “出现字面” 是互不相容的两个事件.
说明 当AB= 时,可将AB记为“直和”形 式A+B 任意事件A与不可能事件为互斥.
.
5.事件的差
事件 “A 出现而 B 不出现”,称为事件 A 与 B 的差. 记作 A- B.
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
.
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档