概率与数理统计
概率论与数理统计目录

概率论与数理统计目录一、随机事件及其概率1.1 随机事件的基本概念定义与分类事件的运算1.2 概率的定义与性质概率的公理化定义概率的基本性质1.3 古典概型与几何概型古典概型的计算几何概型的计算1.4 条件概率与独立性条件概率事件的独立性1.5 全概率公式与贝叶斯公式全概率公式贝叶斯公式及其应用二、随机变量及其分布2.1 随机变量的概念随机变量的定义随机变量的分类2.2 离散型随机变量及其分布常见的离散型分布分布律与分布函数2.3 连续型随机变量及其分布常见的连续型分布概率密度函数与分布函数2.4 随机变量函数的分布离散型随机变量函数的分布连续型随机变量函数的分布三、多维随机变量及其分布3.1 多维随机变量的概念联合分布函数边缘分布3.2 多维离散型随机变量联合分布律边缘分布律3.3 多维连续型随机变量联合概率密度函数边缘概率密度函数3.4 条件分布离散型条件分布连续型条件分布3.5 随机变量的独立性独立性的定义独立性的判定与性质四、数字特征4.1 数学期望数学期望的定义与性质数学期望的计算4.2 方差方差的定义与性质方差的计算4.3 协方差与相关系数协方差的定义与性质相关系数的定义与性质4.4 矩与协矩阵矩的定义与计算协矩阵的定义与计算五、大数定律与中心极限定理5.1 大数定律切比雪夫大数定律伯努利大数定律5.2 中心极限定理林德贝格-莱维中心极限定理德莫佛尔-拉普拉斯中心极限定理六、数理统计的基本概念6.1 总体与样本总体的定义与性质样本的定义与性质6.2 统计量与抽样分布统计量的定义与性质常见的抽样分布七、参数估计与假设检验7.1 参数估计点估计区间估计7.2 假设检验假设检验的基本概念单侧检验与双侧检验正态总体的假设检验八、回归分析与方差分析8.1 回归分析一元线性回归多元线性回归回归模型的检验与预测8.2 方差分析单因素方差分析双因素方差分析方差分析的应用。
概率论与数理统计

第一章 概率论第一节 随机事件和概率一、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
(2)加法原理(两种方法均能完成此事):n m +某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):n m ⨯某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由n m ⨯种方法来完成。
(4)一些常见排列① 特殊排列② 相邻③ 彼此隔开④ 顺序一定和不可分辨【例1】 袋中有N 个球,其中M 个为白色,从中有放回地取出n 个:①N =10,M =2, n =3;②N =10,M =4,n =3.考虑以下各事件的排列数: (Ⅰ)全不是白色的球. (Ⅱ)恰有两个白色的球. (Ⅲ)至少有两个白色的球. (Ⅳ)至多有两个白色的球. (Ⅴ)颜色相同. (Ⅵ)不考虑球的颜色.解:①当M =2时,(Ⅰ)83. (Ⅱ)3³22³8. (Ⅲ)3³22³8+23.(Ⅳ)3³22³8+3³2³83+83(或103-23). (Ⅴ)23+83. (Ⅵ)103. ②当M =4时,将上面的2→4,8→6即可.二、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
例如:掷一枚硬币,出现正面及出现反面;掷一颗骰子,出现“1”点、“5”点和出现偶数点都是随机事件;电话接线员在上午9时到10时接到的电话呼唤次数(泊松分布);对某一目标发射一发炮弹,弹着点到目标的距离为0.1米、0.5米及1米到3米之间都是随机事件(正态分布)。
概率论与数理统计

概率论与数理统计概率论与数理统计是现代数学中非常重要的分支之一,它们在自然科学、社会科学,以及工程技术等领域都有广泛的应用。
在生物学,物理学,化学等领域,常常需要采用概率论和数理统计的方法,来研究和分析现象。
这篇文章将要探讨概率论和数理统计的一些基本概念和方法,并介绍它们在现实生活中的应用。
一、概率论概率论是一门研究随机现象及其规律的数学学科。
它的基本思想是通过建立数学模型,来描述随机事件的概率分布及其规律。
随机事件指某一次试验中可能发生或不发生的事情,例如掷骰子、抛硬币、抽扑克牌等,这些事件的结果是随机的,因此需要采用概率论的方法来研究。
1.概率和概率分布概率是指某一事件发生的可能性,用一个数值来表示。
在概率论中,对于某一特定随机事件,概率的大小常常用P(A)来表示,其中A是这个事件。
例如,抛一枚硬币,正面朝上的概率是0.5,用数学语言可以表示为P(正面)=0.5,反面朝上的概率也是0.5,即P(反面)=0.5。
概率分布是指某个随机事件的各种结果的概率分布情况。
在一次试验中,随机事件可能会有多个结果,即样本空间。
概率分布用来描述每个结果的概率大小。
例如,抛一枚硬币的样本空间是{正面,反面},正面和反面各占1/2的概率。
2.条件概率和独立事件条件概率是指在已知某个事件发生的情况下,某个随机事件会发生的概率。
条件概率的计算方法一般采用贝叶斯公式,例如给定事件A,以及事件B,P(A|B)表示在B发生的情况下,A 发生的概率,则条件概率可以表示为:P(A|B) = P(AB)/P(B)其中AB表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
独立事件是指某个随机事件的发生不会对另一个随机事件的发生产生影响。
如果事件A、B是独立事件,则可以表示为P(A|B) = P(A),P(B|A) = P(B),即A和B的概率相互独立,并不受对方的影响。
3.期望值和方差期望值是统计学中一个非常重要的概念,用来描述一个随机变量的总体平均数。
概率论与数理统计考点归纳

概率论与数理统计考点归纳1. 引言概率论与数理统计是数学中的两个重要分支,它们研究随机现象的规律和利用数据推断总体特征。
在实际应用中,概率论与数理统计广泛应用于自然科学、社会科学、工程技术等领域。
本文将从以下几个方面对概率论与数理统计的考点进行归纳和总结。
2. 概率论考点2.1 随机变量与概率分布•随机变量的定义、分类和常见概率分布:离散随机变量、连续随机变量、二项分布、泊松分布、正态分布等。
•期望、方差和协方差的定义和性质,以及它们与随机变量的关系。
•大数定律和中心极限定理的概念和应用。
2.2 一维随机变量的分布特征•分布函数、概率密度函数和概率质量函数的定义和性质。
•分位数和分位点的概念和计算方法。
•随机变量的矩、协方差和相关系数的定义和计算。
•常见分布的特征:均匀分布、指数分布、正态分布等。
2.3 多维随机变量的分布特征•多维随机变量的联合分布、边缘分布和条件分布的定义和性质。
•多维随机变量的矩、协方差矩阵和相关系数矩阵的定义和计算。
•多维正态分布的定义和性质,以及多维正态分布的应用。
2.4 随机变量的函数的分布特征•随机变量函数的分布:线性变换、和、积、商的分布。
•随机变量函数的期望、方差和协方差的计算方法。
3. 数理统计考点3.1 抽样与抽样分布•抽样的概念和方法:随机抽样、简单随机抽样、系统抽样、分层抽样、整群抽样等。
•抽样分布的概念和性质:样本均值的抽样分布、样本比例的抽样分布、样本方差的抽样分布等。
•中心极限定理在抽样分布中的应用。
3.2 参数估计•点估计的概念和方法:矩估计、最大似然估计等。
•点估计的性质:无偏性、有效性、一致性等。
•置信区间的定义和计算方法。
3.3 假设检验•假设检验的基本步骤:建立原假设和备择假设、选择检验统计量、确定显著性水平、计算拒绝域、做出判断。
•假设检验的错误和功效:第一类错误、第二类错误和功效的概念和计算。
•常见假设检验方法:正态总体均值的假设检验、正态总体方差的假设检验、两样本均值的假设检验等。
概率论与数理统计公式整理(超全免费版)

(1)排列组合公式
Pmn
m!
从 m 个人中挑出 n 个人进行排列的可能数。
(m n)!
C
n m
m!
从 m 个人中挑出 n 个人进行组合的可能数。
n!(m n)!
(2)加法和乘法原理
(3)一些常见排列 (4)随机试验和随机事
件
(5)基本事件、样本空 间和事件
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种方法来完成,则这件事
A、B 中至少有一个发生的事件:A B,或者 A+B。
(6)事件的关系与运算
属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表示为 A-AB 或者 AB ,
它表示 A 发生而 B 不发生的事件。
A、B 同时发生:A B,或者 AB。A B=?,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不
它们是 的子集。 为必然事件,?为不可能事件。
不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率 为 1,而概率为 1 的事件也不一定是必然事件。 ①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B 如果同时有 A B , B A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 X 的概率分布或分布律。有时也用分布列的形式给出:
X
| x1, x2,, xk,
概率论与数理统计

概率论与数理统计本篇笔记内容主要整理自笔者的教材——《概率论与数理统计》(第四版),作者为盛骤、试式千、潘承毅等人 ,高等教育出版社出版。
一、概率论的基本概念1. 什么是概率?描述性定义:随机事件A发生的可能性的大小的度量(非负值),称为事件A发生的概率。
公理化定义:在随机试验的样本空间的每一个事件A,都对应一个实数值P(A),如果函数P( · )满足下列条件:非负性:规范性:S是必然事件,有P(S) = 1;可列可加性:设A1,A2,...,是两两不相容的事件(即i≠j时,AiAj = ∅),有P(A1∪A2∪...∪An) = P(A1) + P(A2) + ... + P(An)不相容事件的并的概率 等于 这些事件的概率的和。
2. 古典概型有什么特点?随机试验的样本空间只包含有限个元素;随机试验中的每个基本事件发生的可能性都相同。
3. 几何概型有什么特点?样本空间 是一个可度量的有界区域;有无限个基本事件,每个基本事件发生的可能性都一样,即样本点落入 的某一个可度量子区域S可能性与S的几何度量成正比,而与S的位置及形状无关。
4. 什么是条件概率?在已知事件A发生的情况下事件B发生的概率为条件概率P(A|B),公式有5. 什么是全概率公式?有一些时候事件B的概率不容易直接求,可以通过计算给B在各个条件下Ai发生的概率P(B| · ),来研究B发生的概率。
6. 什么是贝叶斯公式?解释一下“先验”和“后验”的概念(按照课本的思路)通过已知信息B来修正A发生的概率(即后验概率),可以通过先验概率P(A)以及AB之间的关系来研究。
举个例子:假设由多年的统计数据可以知道某种疾病的发病率,有一种检测试剂的准确率为99%,即=99%,同时有=5%会误报(检测没有病的病人为阳性),可以通过全概率公式计算试剂表现为阳性的概率。
根据这些信息,就可以计算一个病人在这种试剂检测为阳性的情况下患病的概率7. 什么叫做事件相互独立?P(AB) = P(A)P(B)即一个事件的发生,不会影响另一个事件的发生。
概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
概率论与数理统计基本概念

概率论与数理统计基本概念
概率论与数理统计是研究事件发生的可能性,以及由此衍生的结果
的一门学科。
它可以帮助人们提高分析和预测能力。
可以帮助我们了
解自然界及其客观原理,以及把握当代社会经济实体及其活动。
一、概率概念:
1. 随机事件:指事件发生以来,在所有结果中,用概率值去衡量其发
生的可能性,及其各个单一结果的概率分布情况;
2. 概率:是用来衡量某一随机事件发生的可能性的数值,可以给出这
个事件发生的可能性大小;
3. 概率分布:是某一随机变量及其可能取值之间发生关系的一种描述;
二、数理统计概念:
1、统计:是指对数据进行定量描述,尝试从数据中获得解释性的统计
特征;
2、变量:是指以数值形式表示的某类事物,是研究目标内容分析的一
种实际基础;
3、统计分布:是给定一组数据,通过统计手段,计算出变量的概率分
布情况,及其可能的变化规律;
4、极限定理:是一种概率论的定理,旨在探讨一个系统在重复抽样下,抽样结果的收敛情况;
5、数据描述:是指对数据的描述,可以让人简单明了地理解数据,及
其特征和趋势;
6、统计推断:是指根据统计样本信息,以概率结果作为有效依据,做
出关于总体参数情况的推断;
7、回归分析:是指建立一条回归函数模型,以描述解释变量对被解释
变量的影响;
8、判别分析:是指构建一个准确的模型,能够根据输入的观测值来准
确地判断属于哪一类人或物;
9、聚类分析:是指将一组数据进行分类,从而揭示内部数据间的关系,辅助决策;
10、卡方检验:是指判断某一种统计判断是否证实对某一总体分布结
果的检验,从而决定是否接受或拒绝假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简介:
全书共分9章:随机事件与概率,一维随机变量及其分布,多维随机变量及其分布,随机变量的数字特征,极限定理,统计量及抽样分布,参数估计,假设检验,方差分析与回归分析.本书科学、系统地介绍了概率论与数理统计的基本内容,重点介绍了概率论与数理统计的方法及其在经济管理中的应用,每章均配有习题,书末附有习题的参考答案.
图书目录:
第一章随机事件与概率
§1.1随机试验与样本空间;§1.2随机事件及其概率;一、随机事件;二、事件间的关系与运算;三、频率与概率;§1.3古典概型;§1.4概率的基本性质;§1.5条件概率与事件的独立性;一、条件概率;二、乘法定理;三、全概率公式;四、贝叶斯公式;五、事件的独立性;§1.6贝努里概型;数学家简介--费马;习题一
第二章一维随机变量及其分布
§2.1一维随机变量;§2.2离散型随机变量;一、离散型随机变量及其分布律;二、常用的离散型随机变量的分布;§2.3随机变量的分布函数;§2.4连续型随机变量;一、连续型随机变量及其密度函数;二、常用的连续型随机变量的分布;§2.5随机变量函数的分布;一、离散型随机变量函数的分布;二、连续型随机变量函数的分布;数学家简介--帕斯卡贝叶斯;习题二
第三章多维随机变量及其分布
§3.1二维随机变量;一、二维随机变量及其联合分布函数;二、二维离散型随机变量及其分布;三、二维连续型随机变量及其分布;§3.2条件分布;§3.3随机变量的独立性;数学家简介--雅各布·贝努里;习题三
第四章随机变量的数字特征
§4.1数学期望;一、离散型随机变量的数学期望;二、连续型随机变量的数学期望;三、随机变量函数的数学期望;四、数学期望的性质;§4.2方差;一、方差的定义;二、方差的性质;§4.3协方差与相关系数;一、协方差;二、相关系数;数学家简介--棣莫弗;习题四
第五章极限定理
§5.1切比雪夫不等式;§5.2大数定律;§5.3中心极限定理;数学家简介--拉普拉斯;习题五
第六章统计量及抽样分布
§6.1总体与样本;一、总体与样本;二、统计量;§6.2样本分布函数;一、频率分布表;
二、直方图;三、样本分布函数;§6.3常用统计量的分布;一、正态总体样本的线性函数的分布;二、χ2分布;三、t分布;四、F分布;数学家简介--切比雪夫;习题六|
第七章参数估计
§7.1点估计;一、矩估计法;二、极大似然估计法;§7.2估计量的评价标准;一、无偏性;二、有效性;三、一致性;§7.3区间估计;一、正态总体均值的区间估计;二、正态总体方差的区间估计;三、非正态总体均值的区间估计;四、单边置信区间;数学家简介--马尔柯夫;习题七
第八章假设检验
§8.1假设检验的基本概念;§8.2单个正态总体的假设检验;一、方差σ2=σ20已知,检验假设H0:μ=μ0;二、方差σ2未知,检验假设H0:μ=μ0;三、检验假设H0:σ2=σ20;§8.3两个正态总体的假设检验;一、方差σ21, σ22已知时,检验假设H0:μ1=μ2;二、方差
σ21, σ22未知,但σ21=σ22时,检验假设H0:μ1=μ2;三、检验假设H0:σ21=σ22;数学家简介--辛钦;习题八
第九章方差分析与回归分析
§9.1单因素方差分析;一、方差分析的基本思想;二、数学模型;§9.2双因素方差分析;§9.3一元线性回归分析;一、回归分析的基本概念;二、线性回归方程;三、线性相关性的检验;§9.4可线性化的回归方程;数学家简介--柯尔莫戈洛夫;习题九
附录:
附录1 习题参考答案
附录2 集合论基础知识
附录3 排列与组合基础知识
附录4 附表
附表4-1 普阿松分布表
附表4-2 标准正态分布表附表4-3 χ2分布表
附表4-4 t分布表
附表4-5 F分布表
附表4-6 相关系数检验表
参考书目。