(学生)不等式专题练习一

合集下载

专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03 解一元一次不等式(组)及参数问题八种模型(学生版)

专题03解一元一次不等式(组)及参数问题八种模型【类型一解一元一次不等式模型】例题:(2022·陕西·模拟预测)解不等式3136x x-<-,并在如图所示的数轴上表示出该不等式的解集.【变式训练1】(2022·陕西·西安市西光中学二模)解不等式7132184x x->--,并把它的解集在如图所示的数轴上表示出来.【变式训练2】(2021·上海徐汇·期中)解不等式38236x x---≤,把解集在数轴上表示出来,并求出最小整数解.【变式训练3】(2022·福建·三明一中八年级阶段练习)解不等式:(1)2(41)58x x -≥-(2)261136x x +-≤【变式训练4】(2022·河南驻马店·八年级阶段练习)解下列一元一次不等式,并把它们的解集表示在数轴上:(1)2﹣5x <8﹣6x ;(2)53-x +1≤32x .【类型二解一元一次不等式组模型】例题:(2022·福建·三明一中八年级阶段练习)解不等式组52331132x xx x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集在数轴上表示出来:【变式训练1】(2022·广东·汕头市龙湖实验中学九年级阶段练习)解不等式组:1011122x x -≥⎧⎪⎨--<⎪⎩,并写出它的所有整数解.【变式训练2】(浙江省温州市2020-2021学年八年级上学期3月月考数学试题)解一元一次不等式组523(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩,并把解集在数轴上表示出来.【变式训练3】(2022·广东揭阳·八年级阶段练习)解不等式组:12(1)2235xx x x ⎧+<-⎪⎪⎨+⎪>⎪⎩,并把它的解集在数轴上表示出来.【变式训练4】(2022·湖南岳阳·八年级期末)(1)解不等式121132x x+++≥;(2)解不等式组:3242(1)31x x x -<⎧⎨-≤+⎩,并把它的解集在数轴上表示出来.【类型三一元一次不等式的定义时含参数问题】例题:(2021·全国·七年级课时练习)已知不等式||1(2)20n n x --->是一元一次不等式,则n =____.【变式训练1】(2022·山东·枣庄市第十五中学八年级阶段练习)已知()3426m m x --+>是关于x 的一元一次不等式,则m 的值为______.【变式训练2】(2021·黑龙江·肇源县超等蒙古族乡学校八年级期中)若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.【类型四一元一次不等式整数解中含参数问题】例题:(2022·上海·七年级期中)如果不等式2x ﹣3≤m 的正整数解有4个,则m 的取值范围是_____.【变式训练1】(2020·全国·八年级单元测试)已知不等式30x m -≤有5个正整数解,则m 的取值范围是________.【类型五一元一次方程组与不等式间含参数问题】例题:(2022·全国·八年级)关于x 的方程42158x m x -+=-的解是负数,则满足条件的m 的最小整数值是_____.【变式训练1】(2021·四川成都·八年级期末)已知关于x 的方程35x a x +=-的解是正数,则实数a 的取值范围是______.【变式训练2】(2021·全国·七年级课时练习)如果关于x 的方程2435x a x a++=的解不是负数,那么a 的取值范围是________.【变式训练3】(2021·全国·七年级课时练习)当m________时,关于x的方程222x m xx---=的解为非负数.【类型六二元一次方程组与不等式间含参数问题】例题:(2021·内蒙古呼和浩特·七年级期末)已知关于x、y的二元一次方程组231231x y kx y k+=+⎧⎨+=-⎩的解满足x+y<4,则满足条件的k的最大整数为____.【变式训练1】(2021·四川绵阳·x,y的二元一次方程组221x yx y k+=⎧⎨+=+⎩的解为正数,则k的取值范围为__.【变式训练2】(2021·江苏江苏·七年级期末)已知关于x,y的二元一次方程组231323x y mx y m+=+⎧⎨-=+⎩,且x,y满足x+y>3.则m的取值范围是___.【变式训练3】(2021·四川南充·七年级期末)已知关于x,y的方程组24223x y kx y k+=⎧⎨+=-+⎩,的解满足x﹣y>0,则k的最大整数值是______________.【变式训练4】(2021·甘肃·九年级专题练习)若关于x,y的二元一次方程组3331x yx y a+=⎧⎨+=+⎩的解满足x+y<2,则a的取值范围为_______.【类型七解一元一次不等式组中有无解集求参数问题】例题:(2021·内蒙古·包头市青山区教育教学研究中心八年级期中)关于x的不等式组352x ax a->⎧⎨-<⎩无解,则a的取值范围是_____.【变式训练1】(2022·广西贵港·八年级期末)若关于x的不等式组33235x xx m-<⎧⎨->⎩有解,则m的取值范围是______.【变式训练2】(2021·四川凉山·七年级期末)已知关于x的不等式组5122x ax x->⎧⎨->-⎩无解,则a的取值范围是_________.【变式训练3】(2021·河南南阳·三模)已知关于x的不等式组3xx m>⎧⎨≤⎩有实数解,则m的取值范围是____.【变式训练4】(2022·江苏南通·九年级阶段练习)如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则常数a的取值范围是______________.【类型八解一元一次不等式组中有整数解求参数问题】例题:(2021·宁夏中卫·八年级期末)不等式组,3x ax>⎧⎨<⎩的整数解有三个,则a的取值范围是_________.【变式训练1】(2021·安徽·马鞍山二中实验学校七年级期中)已知不等式组211x x a-<⎧⎨-≤⎩,只有三个整数解,则a 的取值范围是_________.【变式训练2】(2021·黑龙江佳木斯·模拟预测)不等式组2312x ax -⎧⎨-≤⎩<有3个整数解,则a 的取值范围是_____.【变式训练3】(2020·内蒙古·北京八中乌兰察布分校一模)关于x 的不等式组3x ax <⎧⎨≥⎩只有两个整数解,则a 的取值范围是_____.【变式训练4】(2022·湖南湘潭·八年级期末)已知关于x 的不等式组3010x a x -≤⎧⎨-≤⎩①②,有且只有3个整数解,则a 的取值范围是______________。

不等式练习

不等式练习

不等式练习一(一)知识回顾 1、例1、将下列不等式化成“x >a ”或“x <a ”的形式: (1)x -5>-1; (2)-2x >3; (3)3x <-9. (4)6x <5x -3 (5)-32x >-1 注意:移项型和化系数为1型各自的依据 2、一元一次不等式解法(1)试验法(2)性质法及解一元一次不等式的基本步骤:①________;②________;③________;④________;⑤________. 例2、解下列不等式 (1)125-+x ≤223+x (2)215312+--x x ≤1(二)巩固练习 一.选择题1、(2010 河北)把不等式2x -< 4的解集表示在数轴上,正确的是( )2、下列说法中,错误..的是( ) A 、由22(1)(1)a m b m +<+成立可推出a b <成立 B 、由()()a m b b m a +<+成立可推出am bm <成立 C 、由22(1)(1)a m b m -<-成立可推出a b <成立 D 、由22(1)(1)a m b m +<+成立可推出a b <成立 3、如果01x <<,则下列不等式成立的是( )A 、21x x x >> B 、21x x x >> C 、21x x x >> D 、21x x x>>4、实数a 在数轴上对应的点如图所示,则a ,a -,1的大小关系正确的是( )A .1a a -<<B .1a a <-<C .1a a <-<D .1a a <<-5、若a ,b ,c 满足下列条件:①用a 去乘不等式两边,不等号的方向不变; ②用b 去乘不等式两边,不等号的方向改变;③用c 去乘不等式两边,不等号要变成等号; 则a ,b ,c 的大小关系是( )A .a >b >c;B .a >c >b;C .b >c >a;D .c >a >b 6、如果x >-y,则下列不等式中一定能成立的是( ) A .y<-x; B.x-y<O; C .x+y >0; D .m 2x >-m 2y.aA B DC7、若a<b ,有下列不等式:①-1+a<-1+b,② -3a-3<-3b-3,③-a<-b,④-2a+2>12b+2.其中成立的个数有( ) A .l 个 B.2个 C .3个 D .4个8、已知4>3,则下列结论①4a >3a ②4+a >3+a ③4-a >3-a 中正确的是( )A.①②B.①③C.②③D.①②③9、下列说法中,正确的有 ( )①4是不等式x +3>6的解,②x+3<6的解是x <2,③3是不等式x +3≤6的解, ④x>4是不等式x +3≥6的解的一部分 A 、1个 B 、2个 C 、3个 D 、4个10、 用 表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么 这三种物体按质量从大到小的顺序排列应为( )▲A .B .C .D .11、(2010台湾)有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、小砝码皆为1克,且图(一)是将糖果与砝码放在等臂天平上的两种情形。

权方和不等式(高阶拓展)(学生版)

权方和不等式(高阶拓展)(学生版)

权方和不等式(高阶拓展)【学习目的】本节内容为基本不等式的高阶版,能快速解决基本不等式中的最值问题知识讲解权方和不等式:若a,b,x,y>0则a2x+b2y ≥(a+b)2x+y当且仅当ax=by时取等.(注:熟练掌握这个足以应付高考中的这类型最值问题可以实现对一些问题的秒杀)广义上更为一般的权方和不等式:设x1,x2,⋯, x n∈R+,y1,y2,⋯,y n∈R+,若m>0或m<-1,则x1m+1y1m+x2m+1y2m+⋯+x m+1ny m n≥x1+x2+⋯x nm+1y1+y2+⋯+y nm;若-1<m<0,则x1m+1y1m+x2m+1y2m+⋯+x m+1ny m n≤x1+x2+⋯x nm+1y1+y2+⋯+y nm;上述两个不等式中的等号当且仅当x1y1=x2y2=x3y3=⋯=x ny n时取等注意观察这个不等式的结构特征,分子分母均为正数,且始终要求分子的次数比分母的次数多1,出现定值是解题的关键,特别的,高考题中以m=1最为常见,此时这个不等式是大家熟悉的柯西不等式.考点解析1若正数x,y满足1x+1y=1,则x+2y的最小值为2若x>0,y>0,12x+y +3x+y=2,则6x+5y的最小值为3若a>1,b>0,a+b=2,则1a−1+2b的最小值为4若a>1,b>1,则a2b−1+b2a−1的最小值为5已知正数x,y,z满足x+y+z=1,则x2y+2z+y2z+2x+z2x+2y的最小值为6已知正数x,y,z满足x+y+z=1,则1x+4y+9z的最小值为7已知正数x,y满足x+y=1,则1x2+8y2的最小值为8求1sin2θ+4cos2θ的最小值为9求f(x)=52sin2x+3+85cos2x+6的最小值为10已知正数x,y满足4x+9y=1,则42x2+x+9y2+y的最小值为11已知x+2y+3z+4u+5v=30,求x2+2y2+3z2+4u2+5v2的最小值为12已知a>0,b>0,a+b=5,求a+1+b+3的最大值为13求f(x)=x2−3x+2+2+3x−x2的最大值为14已知正数a,b,c满足a+b+c=1,求3a+1+3b+1+3c+1的最大值为一、单选题1(2023·全国·高三专题练习)设m,n为正数,且m+n=2,则4m+1+1n+1的最小值为()A.134B.94C.74D.952(2023·河北邯郸·统考一模)已知a>0,b>0,且a+b=2,则2a+1+8b+1的最小值是()A.2B.4C.92D.93(2023·广西·校联考模拟预测)已知正实数x,y满足2x+y=3,则15x+y+1x+2y的最小值为()A.49B.89C.83D.434(2023·海南海口·校联考模拟预测)若正实数x,y满足x+3y=1.则12x+1y的最小值为()A.12B.25C.27D.365(2023·全国·高三专题练习)若正数a,b满足a+b=7,则1a+1+9b+1的最小值是()A.1B.169C.6D.256(2023·全国·高三专题练习)若α∈0,π2,m=cos2α+1,n=2sin2α,则4m+1n的最小值等于()A.2B.52C.3 D.927(2023·全国·高三专题练习)若x>0,y>0,且1x+3y=1,则3x+y的最小值为()A.6B.12C.14D.168(2023春·广东广州·高三统考阶段练习)已知a>0,b>0,且a+2b=1,则1a+1b的最小值为()A.42B.12C.3-22D.3+229(2023·全国·高三专题练习)已知正实数x,y满足2x+y=3,则4x+y+1x的最小值为()A.289B.283C.3D.110(2023·全国·高三专题练习)已知a>0,b>0,且1a+1+21+b=1,那么a+b的最小值为()A.22-1B.2C.22+1D.411(2023·全国·高三专题练习)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a,b,x,y>0,则a2x+b2y≥a+b2x+y,当且仅当ax=by时等号成立.根据权方和不等式,函数f(x)=2x+91-2x0<x<12的最小值为()A.16B.25C.36D.4912(2023·全国·高三专题练习)已知a+b=1,a>0,b>0,则1a+1b+4a2+b2的最小值为()A.12B.6+42C.152D.4+6213(2023·全国·高三专题练习)已知正数x,y满足2x+3y+13x+y=1,则x+y的最小值()A.3+224B.3+24C.3+228D.3+2814(2023春·广东揭阳·高三校考阶段练习)已知实数x≥0>y,且1x+2+11-y=1,则x-y的最小值是()A.0B.1C.2D.415(2023·河南开封·开封高中校考模拟预测)已知锐角α,β满足α+β=π3,则1sinαcosβ+1cosαsinβ的最小值为()A.2B.433C.833D.83二、填空题16(2023·天津红桥·统考二模)已知x,y∈R+,4x+5y=1,则1x+3y+13x+2y的最小值.17(2023·全国·高三专题练习)已知正数x、y满足1x+1y=1,求x+2y的最小值为.18(2023·吉林·长春十一高校联考模拟预测)已知正实数x,y满足x+y=15,则13x+y+2x+2y的小值为.19(2023·黑龙江哈尔滨·哈尔滨三中校考一模)已知x+y=4,且x>y>0,则2x-y+1y的最小值为.20(2023秋·天津南开·高三南开中学校考阶段练习)已知正实数x,y满足4x+7y=4,则2x+3y+12x+y的最小值为.21(2023·全国·高三专题练习)已知f(x)=1x+94-x(0<x<4),则f(x)的最小值为.22(2023·全国·高三专题练习)若正实数x,y满足2x+y=2,则4x2y+1+y22x+2的最小值是.23(2023·全国·高三专题练习)函数f x =1cos2x+25sin2x的最小值为.24(2023·全国·高三专题练习)设x>-1,y>0且x+2y=1,则1x+1+1y的最小值为.25(2023秋·贵州贵阳·高一统考期末)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a,b,x,y>0,则a2x+b2y≥a+b2x+y,当且仅当ax=by时,等号成立.根据权方和不等式,函数f x =3x+12-3x0<x<23的最小值为.。

2024年一元一次不等式(组)(学生版)中考模拟数学真题分项汇编

2024年一元一次不等式(组)(学生版)中考模拟数学真题分项汇编

专题05 一元一次不等式(组)考点1 一元一次不等式(组)一、单选题1.(2024年湖南省邵阳市中考数学真题)不等式组1024x x -<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .14x+( ). A .B .C .D .3.(2024·广东·统考中考真题)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤4.(2024年广西壮族自治区中考数学真题)2x ≤在数轴上表示正确的是( ) A . B .C .D .轴上表示为( ) A . B . C .D .6.(2024年内蒙古包头市中考数学真题)关于x 的一元一次不等式1x m -≤的解集在数轴上的表示如图所示,则m 的值为( )A .3B .2C .1D .07.(2024年四川省遂宁市中考数学真题)若关于x 的不等式组()4131532x x x x a ⎧->-⎨>+⎩的解集为3x >,则a 的取值范围是( ) A .3a >B .3a <C .3a ≥D .3a ≤8.(2024·云南·统考中考真题)若关于x 的不等式组()2120x a x ⎧->⎨-<⎩的解集为x >a ,则a 的取值范围是( )A .a <2B .a ≤2C .a >2D .a ≥29.(2024年四川省眉山市中考数学真题)关于x 的不等式组35241x m x x >+⎧⎨-<+⎩的整数解仅有4个,则m 的取值范围是( )A .54m -≤<-B .54m -<≤-C .43m -≤<-D .43m -<≤-二、填空题三、解答题23() 3⎝⎭25.(2024·浙江·一模)关于x 的不等式1x m+≥-的解集如图所示,则m等于()A.3B.1C.0D.3-3A.B.C.D.202x->⎩A.B.C .D .1x x+( )A .B .C .D .31.(2024·福建福州·福建省福州铜盘中学校考模拟预测)不等式组2421x x -<⎧⎨->⎩的解集为( )A .23x -<<B .2x >-C .3x >D .23x <<( )1321xx -+≥-的解集为324x -≥的解为统考中考真题)不等式组51111423x x x -⎧⎪⎨--⎪⎩的解集为38.(2024·黑龙江·统考中考真题)若关于x的一元一次不等式组1020xx a->⎧⎨-<⎩有2个整数解,则a的取值范围是.39.(2024·广西·校联考二模)不等式组21{30xx+≥-≥①②的解集在数轴上表示正确的是()A .B.C.D.23()211x x⎧-≤+①26⎩。

1一元一次不等式的解法(学生版)

1一元一次不等式的解法(学生版)

一元一次不等式的解法1. 一元一次方程:只含有一个未知数,并且未知数的次数是1,这样的方程叫做一元一次方程。

2. 解一元一次方程的步骤:①____________,②_____________,③______________,④_____________,⑤______________。

3. 一元一次不等式:有一个未知数,并且含未知数的项的次数是1的不等式,称为一元一次不等式。

4.下列是一元一次不等式的是:( )21.210;.3;.21;.222(1)A x B x C x D x x x+>+>-<-+>+ 。

5. 不等式的解集:把一个不等式的解的全体称为这个不等式的解集。

6. 解不等式:求一个不等式的解集的过程。

不等式最终化成(,)x a x a x a x a ≥≤><或 ,的形式。

7. 解一元一次不等式的步骤:①____________,②_____________,③______________,④_____________,⑤______________。

8. 下列是一元一次不等式的_____________________________。

222226;3;31;321;2324;3;1(1)x x x xx y x x x x >->-+-<->++>+<+①.8 ②. ③.2 ④.⑤. ⑥. ⑦.5 9.求不等式104(3)2(1)x x --≥-的非负整数解,并在数轴上表示出了。

2121.23x x x +--10当是哪些正整数时,代数式6的值不小于的值。

1.52,x m x x m -<>1若关于的不等式32的解集是求的值。

53,2.35x y a x y x y a x y a +=+⎧>⎨-=-⎩1已知关于,的方程组的解满足,求的取值范围。

3.110.40.6 1.520.12(1)(1)2(1)(1);320.20.50.1x x x x x x x ---+--<--++≤1解不等式:(1).3 (2).111(3).;(4).265;263x x x x x +---≥-<32(5).;(6).3(1)422x x x x +<-+≥225(7).22(1);(8).1;32x x x x ++->->-1+2114.;23x x ->求不等式的非负整数解一元一次不等式的应用1.解一元一次不等式的应用题的具体步骤:①审:认真审题,分清已知量、未知量及其关系,找出题中不等关系,要抓住题中的关键词,如“大于”“小于”“不大于”“不小于”“至少”“超过”等。

常见不等式的解法

常见不等式的解法

常见不等式的解法(教师版)一、一元一次不等式 解下列关于x 的不等式1、2x+3>52、-2x+5<63、ax>14、不等式3(x +1)≥5x -9的正整数解是_________5、已知关于x 的不等式(3a -2)x +2<3的解集是41->x ,则a =______.二、一元二次不等式1、22x ≥ 2、2(1)2x -< 3、x 2+x -2≤4 4、若0<a <1,则不等式(x -a )(x -a 1)<0的解是______.a <x <a 15、已知不等式022>++bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121x x ,则b a +的值为______.-146、不等式2x 2-3|x |-35>0的解为______..x <-5或x >57、方程实数根,有两个不相等的 0122=+++m x m mx )(则实数m 的取值范围是______.041≠->m m 且8、不等式02≤++n mx x 的解集是{}32≤≤-x x |,则m = __,n = __.-1;-69、函数的定义域为22--=x x x f )(______________{2≥x x 或}1-≤x10、对于任意实数x ,一元二次不等式(2m -1)x 2+(m +1)x +(m -4)>0恒成立,则实数m 的取值范围是______. m >511、函数()f x =R ,则a 的取值范围是_________ 【0,8】1)标准化:移项通分化为()()f xg x>(或()()f xg x<);()()f xg x≥(或()()f xg x≤)的形式,2)转化为整式不等式(组)()()0 ()()0()()00()0 ()()f xg xf x f xf xg xg xg x g x≥⎧>⇔>≥⇔⎨≠⎩;1. 不等式22231372x xx x++>-+的解集是 2. 不等式3113xx+>--的解集是3. 不等式2223712x xx x+-≥--的解集是 4. 不等式1111x xx x-+<+-的解集是5. 不等式229152x xx--<+的解集是 6. 不等式2232712x xx x-+>-+的解集是7. 不等式2121x xx+≤+的解集是 8. 不等式2112xx->-+的解集是9. 不等式23234xx-≤-的解集是 10. 不等式2212(1)(1)xx x-<+-的解集是答案1. 2. (-2,3)3. 4.5. 6. 7. 8. (1,2)9. 10.无理不等式一般是指在根号下含有未知数的不等式,今天我们主要研究在二次根号下含有未知数的简单的无理不等式的解法。

专题21不等式与不等式组(1) 中考数学真题分项汇编系列2(学生版)

专题21不等式与不等式组(1)(全国一年)学校:___________姓名:___________班级:___________考号:___________一、单选题1.(2020·广东中考真题)不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( )A .无解B .1x ≤C .1x ≥-D .11x -≤≤2.(2020·广西河池中考真题)不等式组1224x x x +>⎧⎨-⎩的解集在数轴上表示正确的是( )A .B .C .D .3.(2020·辽宁朝阳中考真题)某品牌衬衫进价为120元,标价为240元,商家规定可以打折销售,但其利润率不能低于20%,则这种品牌衬衫最多可以打几折?( ) A .8B .6C .7D .94.(2020·辽宁铁岭中考真题)不等式组31231x x +>⎧⎨-≤⎩的整数解的个数是( )A .2B . 3C .4D .55.(2020·黑龙江鹤岗中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <-6.(2020·内蒙古呼伦贝尔中考真题)满足不等式组()5231131722x x x x⎧+-⎪⎨-≤-⎪⎩>的非负整数解的个数为( )A .4B .5C .6D .77.(2020·内蒙古赤峰中考真题)不等式组20240x x +>⎧⎨-+≥⎩的解集在数轴上表示正确的是 ( )A .B .C .D .8.(2020·内蒙古鄂尔多斯中考真题)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)9.(2020·云南中考真题)若整数a 使关于x 的不等式组1112341x xx a x -+⎧≤⎪⎨⎪->+⎩,有且只有45个整数解,且使关于y 的方程2260111y a y y+++=++的解为非正数,则a 的值为( )A .61-或58-B .61-或59-C .60-或59-D .61-或60-或59-10.(2020·江苏宿迁中考真题)若a >b ,则下列等式一定成立的是( ) A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |11.(2020·辽宁沈阳中考真题)不等式26x ≤的解集是( ) A .3x ≤B .3x ≥C .3x <D .3x >12.(2020·云南昆明中考真题)不等式组1031212x x x +>⎧⎪⎨+-⎪⎩,的解集在以下数轴表示中正确的是( )A .B .C .D .13.(2020·四川眉山中考真题)不等式组121452(1)x x x x +≥-⎧⎨+>+⎩的整数解有( )A .1个B .2个C .3个D .4个14.(2020·四川雅安中考真题)不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( )A .B .C .D .15.(2020·重庆中考真题)若关于x 的一元一次不等式组()21321? 2x x x a ⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为( ) A .-1B .-2C .-3D .016.(2020·重庆中考真题)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元.小明买了7支签字笔,他最多还可以买的作业本个数为( ) A .5 B .4C .3D .217.(2020·吉林长春中考真题)不等式23x +≥的解集在数轴上表示正确的是( ) A .B .C .D .18.(2020·湖南益阳中考真题)将不等式组201x x +≥⎧⎨<⎩的解集在数轴上表示,正确的是( )A .B .C .D .19.(2020·海南中考真题)不等式21x -<的解集是( ) A .3x <B .1x <-C .3x >D .2x >20.(2020·广西玉林中考真题)把二次函数2(0)y ax bx c a =++>的图象作关于x 轴的对称变换 ,所得图象的解析式为2(1)4y a x a =--+,若()10m a b c -++≤,则m 的最大值为( )A .4-B .0C .2D .621.(2020·内蒙古中考真题)下列命题正确的是( )A .若分式242x x --的值为0,则x 的值为±2. B .一个正数的算术平方根一定比这个数小. C .若0b a >>,则11a ab b ++>. D .若2c ≥,则一元二次方程223x x c ++=有实数根.22.(2020·湖北黄石中考真题)不等式组13293x x -<-⎧⎨+≥⎩的解集是( )A .33x -≤<B .2x >-C .32x -≤<-D .3x ≤-23.(2020·四川宜宾中考真题)不等式组20211x x -<⎧⎨--≤⎩的解集在数轴上表示正确的是( )A .B .C .D .24.(2020·四川宜宾中考真题)某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶500元/个,B 型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有( ) A .2种B .3种C .4种D .5种25.(2020·山西中考真题)不等式组26041x x ->⎧⎨-<-⎩的解集是( )A .5x >B .35x <<C .5x <D .5x >-二、解答题26.(2020·西藏中考真题)解不等式组:122(1)6x x +<⎧⎨-⎩并把解集在数轴上表示出来.27.(2020·甘肃金昌中考真题)解不等式组:3512(21)34x x x x -<+⎧⎨--⎩,并把它的解集在数轴上表示出来.28.(2020·江苏淮安中考真题)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-. ……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”) A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.29.(2020·辽宁抚顺中考真题)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元. (1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?30.(2020·江苏苏州中考真题)如图,“开心”农场准备用50m 的护栏围成一块靠墙的矩形花园,设矩形花园的长为()a m ,宽为()b m .(1)当20a =时,求b 的值;(2)受场地条件的限制,a 的取值范围为1826a ≤≤,求b 的取值范围.31.(2020·广西河池中考真题)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg ;乙店的香蕉价格为5元/kg ,若一次购买6kg 以上,超过6kg 部分的价格打7折.(1)设购买香蕉xkg ,付款金额y 元,分别就两店的付款金额写出y 关于x 的函数解析式; (2)到哪家店购买香蕉更省钱?请说明理由.32.(2020·辽宁铁岭中考真题)某中学为了创设“书香校园”,准备购买,A B 两种书架,用于放置图书.在购买时发现,A 种书架的单价比B 种书架的单价多20元,用600元购买A 种书架的个数与用480元购买B 种书架的个数相同.(1)求,A B 两种书架的单价各是多少元?(2)学校准备购买,A B 两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?33.(2020·江苏泰州中考真题)(1)计算:11()602π-⎛⎫-+︒ ⎪⎝⎭(2)解不等式组:311442x x x x -≥+⎧⎨+<-⎩34.(2020·黑龙江鹤岗中考真题)某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克m 元,售价每千克16元;乙种蔬菜进价每千克n 元,售价每千克18元.(1)该超市购进甲种蔬菜10千克和乙种蔬菜5千克需要170元;购进甲种蔬菜6千克和乙种蔬菜10千克需要200元.求m ,n 的值.(2)该超市决定每天购进甲、乙两种蔬菜共100千克,且投入资金不少于1160元又不多于1168元,设购买甲种蔬菜x 千克,求有哪几种购买方案.(3)在(2)的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的利润率不低于20%,求a 的最大值.35.(2020·内蒙古赤峰中考真题)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米(2)我市计划修建长度为3600 m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0. 5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天36.(2020·江苏镇江中考真题)(1)解方程:23xx+=13x++1;(2)解不等式组:427 3(2)4x xx x+>-⎧⎨-<+⎩37.(2020·内蒙古鄂尔多斯中考真题)(1)解不等式组3(1)52(1)237(2)22x xxx-<+⎧⎪⎨--⎪⎩,并求出该不等式组的最小整数解.(2)先化简,再求值:(2211-211aa a a--+-)÷22a a-,其中a满足a2+2a﹣15=0.38.(2020·云南中考真题)众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:现安排上述装好物资的20辆货车(每辆大货车装15吨物资,每辆小货车装10吨物资)中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.39.(2020·四川绵阳中考真题)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?40.(2020·江苏南通中考真题)已知抛物线y=ax2+bx+c经过A(2,0),B(3n﹣4,y1),C(5n+6,y2)三点,对称轴是直线x=1.关于x的方程ax2+bx+c=x有两个相等的实数根.(1)求抛物线的解析式;(2)若n<﹣5,试比较y1与y2的大小;(3)若B,C两点在直线x=1的两侧,且y1>y2,求n的取值范围.41.(2020·辽宁营口中考真题)先化简,再求值:(41xx--﹣x)÷21xx--,请在0≤x≤2的范围内选一个合适的整数代入求值.42.(2020·山东烟台中考真题)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A,B两种型号的口罩9000只,共获利润5000元,其中A,B两种型号口罩所获利润之比为2:3.已知每只B型口罩的销售利润是A型口罩的1.2倍.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B型口罩的进货量不超过A型口罩的1.5倍,设购进A型口罩m只,这1000只口罩的销售总利润为W元.该药店如何进货,才能使销售总利润最大?43.(2020·黑龙江大庆中考真题)期中考试后,某班班主任对在期中考试中取得优异成绩的同学进行表彰.她到商场购买了甲、乙两种笔记本作为奖品,购买甲种笔记本15个,乙种笔记本20个,共花费250元.已知购买一个甲种笔记本比购买一个乙种笔记本多花费5元.(1)求购买一个甲种、一个乙种笔记本各需多少元?(2)两种笔记本均受到了获奖同学的喜爱,班主任决定在期末考试后再次购买两种笔记本共35个,正好赶上商场对商品价格进行调整,甲种笔记本售价比上一次购买时减价2元,乙种笔记本按上一次购买时售价的8折出售.如果班主任此次购买甲、乙两种笔记本的总费用不超过上一次总费用的90%?至多需要购买多少个甲种笔记本?并求购买两种笔记本总费用的最大值.44.(2020·四川雅安中考真题)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)45.(2020·山东威海中考真题)解不等式组,并把解集在数轴上表示出来423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩46.(2020·湖南永州中考真题)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元. (1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?47.(2020·湖北荆州中考真题)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A 地240吨,B 地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(0m15<≤且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.48.(2020·湖北荆州中考真题)先化简,再求值2211121aa a a-⎛⎫-÷⎪++⎝⎭:其中a是不等式组22213a aa a-≥-⎧⎨-<+⎩①②的最小整数解;49.(2020·宁夏中考真题)解不等式组:53(1)?21511?32x xx x--⎧⎪⎨-+-<⎪⎩①②50.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b定义为[]n b如表2:定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+. 如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式; (2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围; (3)若脚长为271毫米,那么应购鞋的鞋号为多大?51.(2020·宁夏中考真题)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件,共需1140元;如果购买A 种物品45件,B 种物品30件,共需840元. (1)求A 、B 两种防疫物品每件各多少元;(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7000元,那么A 种防疫物品最多购买多少件?52.(2020·贵州毕节中考真题)某学校拟购进甲、乙两种规格的书柜放置新购买的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用5400元购进的甲种书柜的数量比用6300元购进乙种书柜的数量少6个.(1)每个甲种书柜的进价是多少元?(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.该校应如何进货使得购进书柜所需费用最少?53.(2020·内蒙古呼和浩特中考真题)(1)计算:22|1|3-⎛⎫- ⎪⎝⎭;(2)已知m是小于0的常数,解关于x的不等式组:41713142x xx m->-⎧⎪⎨-<-⎪⎩.54.(2020·湖南郴州中考真题)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨(2)现在计划安排,A B两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车.按此要求安排,A B两型卡车的数量,请问有哪几种运输方案55.(2020·广东广州中考真题)解不等式组:212541 x xx x-+⎧⎨+<-⎩.56.(2020·广东深圳中考真题)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?57.(2020·内蒙古通辽中考真题)某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B 型打七五折,那么该专卖店至少需要准备多少货款?58.(2020·内蒙古通辽中考真题)用※定义一种新运算:对于任意实数m 和n ,规定23m n m n mn n =--※,如:2121212326=⨯-⨯-⨯=-※.(1)求()2-(2)若36m ≥-※,求m 的取值范围,并在所给的数轴上表示出解集.59.(2020·黑龙江穆棱朝鲜族学校中考真题)某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40 000元购进A 型号电脑的数量与用30 000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2 500元,每台B 型号电脑售价为1 800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36 000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案? (3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.60.(2020·湖南娄底中考真题)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶. 求:(1)该校购进洗手液和84消毒液各多少瓶?(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?61.(2020·陕西中考真题)解不等式组:362(5)4x x >⎧⎨->⎩62.(2020·江苏盐城中考真题)解不等式组:21134532x x x -⎧≥⎪⎨⎪-<+⎩.63.(2020·湖北省直辖县级单位中考真题)(1)先化简,再求值:22244422a a a a a a-+-÷-,其中1a =-. (2)解不等式组32235733x x x x +>-⎧⎪-⎨≤-⎪⎩,并把它的解集在数轴上表示出来.三、填空题64.(2020·四川攀枝花中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.65.(2020·湖南湘西中考真题)不等式组13121xx ⎧-⎪⎨⎪+≥-⎩的解集为______________.66.(2020·辽宁大连中考真题)不等式5131x x +>-的解集是______.67.(2020·辽宁鞍山中考真题)不等式组21321x x -≤⎧⎨-<⎩的解集为________.68.(2020·黑龙江鹤岗中考真题)若关于x 的一元一次不等式组1020x x a ->⎧⎨->⎩的解是1x >,则a 的取值范围是_______.69.(2020·山东滨州中考真题)若关于x 的不等式组12420x a x ⎧->⎪⎨⎪-≥⎩无解,则a 的取值范围为________.70.(2020·四川绵阳中考真题)若不等式52x +>﹣x ﹣72的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是_______.71.(2020·四川绵阳中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本) 72.(2020·江苏宿迁中考真题)不等式组120x x >⎧⎨+>⎩的解集是_____.73.(2020·四川凉山中考真题)关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解,则a 的取值范围是________________.74.(2020·广西中考真题)如图,数轴上所表示的x 的取值范围为_____.75.(2020·吉林中考真题)不等式317x +>的解集为_______.76.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件: (1)阅读过《西游记》的人数多于阅读过《水浒传》的人数; (2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数; (3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.77.(2020·宁夏中考真题)若二次函数22y x x k =-++的图象与x 轴有两个交点,则k 的取值范围是_____.78.(2020·贵州毕节中考真题)不等式362x x -<-的解集是_______.79.(2020·青海中考真题)分解因式:2222ax ay-+=________;不等式组24030xx-⎧⎨-+>⎩的整数解为________.。

不等式性质与基本不等式(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

考向22 不等式性质与基本不等式1.(2022年甲卷理科第12题)12.已知3132a =,1cos 4b =,14sin 4c =,则 A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A【解析】构造函数21()1cos 2h x x x =--,0,2x π⎡⎤∈⎢⎥⎣⎦,则()()sin g x h x x x '==-+,()1cos 0g x x '=-+所以()(0)0g x g =,因此,()h x 在0,2π⎡⎤⎢⎥⎣⎦上递减,所以1()(0)04h a b h =-<=,即a b <. 另一方面,114sintan 4411cos 44c b ==,显然0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >, 所以114sintan 44111cos 44c b ==>,即b c <.因此c b a >>. 2.(2022年甲卷文科第12题)12.已知910m =,1011m a =-,89m b =-,则 ( )A .0a b >>B .0a b >>C .0b a >>D .0b a >> 【答案】A【解析】由910m =,可得9log 10(11.5)m =∈ ,.根据a ,b 的形式构造函数()1m f x x x =-- (1x >), 则1()1m f x mx -'=-,令()0f x '=,解得110mx m -=,由9log 10(11.5)m =∈ ,知0(0)x ∈ 1,. ()f x 在(1) +∞,上单调递增,所以(10)(8)f f >,即a b >,又因为9log 10(9)9100f =-=,所以0a b >>,答案选A .3.(2022年新高考1卷第7题)设0.10.1e =a ,19b =,ln0.9c =-,则A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C【解析】令e =x a x ,1xb x=-,ln(1)c x =--, ① ln ln ln [ln ln(1)]-=+---a b x x x x , ln(1),(0.0.1]y x x x =+-∈;1'1011x y x x-=-=<--, 所以0y ,所以ln ln 0-a b ,所以b a > ②e ln(1),(0,0.1]-=+-∈x a c x x x ,1(1)(1)e 1'e e 11+--=+-=--x xxx x y x x x, 令()(1)(1)1x k x x x e =+--,所以2'()(12)e 0=-->x k x x x , 所以()(0)0k x k >>,所以'0y >,所以0a c ->,所以a c >.4.(2022年新高考2卷第12题)对任意22,,1x y x y xy +-=,则A .1x y +≤B .2x y +≥-C .222x y +≤ D .221x y +≥【答案】BC【解析】由221x y xy +-=得2212y x y ⎫⎛⎫-+=⎪ ⎪⎪⎝⎭⎝⎭令cos sin cos 23sin ??23y x x y y θθθθθ⎧⎧-==+⎪⎪⎪⎪⇒⎨⎪==⎪⎪⎩⎩故[]cos 2sin 2,26x y πθθθ⎛⎫+=+=+∈- ⎪⎝⎭,故A 错,B 对;2222cos sin 33x y θθθ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()14242 2cos 2sin 2,2,333333θθθϕ⎡⎤=-+=-+∈⎢⎥⎣⎦(其中tan 3ϕ=), 故C 对,D 错.5. (2022年北京卷第11题)函数1()f x x =+_________.【答案】()(],00,1-∞⋃ 【解析】因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃6.(2022年乙卷理科第14题)已知1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,若21x x <,则a 的取值范围是___________ 【答案】⎪⎭⎫ ⎝⎛e 1,0【解析】()()ex a a x f x-=ln 2'至少要有两个零点1x x =和2x x =,我们对其求导,()()e a a x f x 2ln 22''-=,(1)若1>a ,则()x f''在R 上单调递增,此时若()00''=x f ,则()x f '在()0,x ∞-上单调递减,在()+∞,0x 上单调递增,此时若有1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,则21x x >,不符合题意。

一元一次不等式与一次函数练习

一元一次不等式与一次函数练习练习一:一、选择题1.已知函数y =8x -11,要使y >0,那么x 应取( )A .x >B .x <C .x >0D .x <02.已知一次函数y =kx +b 的图像,如图所示,当x <0时,y 的取值范围是( •) A .y >0B .y <0C .-2<y <0D .y <-23.已知y 1=x -5,y 2=2x +1.当y 1>y 2时,x的取值范围是( )A .x >5B .x <C .x <-6D .x >-6 4.已知一次函数的图象如图所示,当x <1时,y 的取值范围是( )A .-2<y <0B .-4<y <0C .y <-2D .y <-45.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k <0;②a >0;③当x <3 时,y 1<y 2中,正确的个数是( )A .0 B .1 C .2 D .36.如图,直线交坐标轴于A,B 两点,则不等式的解集是( )A .x >-2B .x >3C .x <-2D .x <37.已知关于x 的不等式ax +1>0(a≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)6题 8题81181112y kx b =+y kx b =+0kx b +>xb +x)x +akx +b5题 题 题14题8.直线:与直线:在同一平面直角坐标系中的图象如图所示,则关于的不等式的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定二、填空题9.若一次函数y =(m -1)x -m +4的图象与y 轴的交点在x 轴的上方,则m 的取值范围是________.10.如图,某航空公司托运行李的费用与托运行李的重量的关系为一次函数,由图可知行李的重量只要不超过________千克,就可以免费托运.11.当自变量x 时,函数y =5x +4的值大于0;当x 时,函数y =5x +4的值小于0.12.已知2x -y =0,且x -5>y ,则x 的取值范围是________.13.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________.14.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象相交于A (3,2),则不等式(k 2-k 1)x +b 2-b 1>015.已知关于x 的不等式kx -2>0(k≠0)的解集是x <-3,则直线y =-kx +2与x•轴的交点是__________.16.已知不等式-x +5>3x -3的解集是x <2,则直线y =-x +5与y =3x -3•的交点坐标是_________.三、能力提升17.已知:y 1=x+3,y 2=-x+2,求满足下列条件时x 的取值范围:(1)y 1 <y 2 (2)2y 1-y 2≤41l 1y k x b =+2l 2y k x =x 12k x b k x +>(千克)10题ax -3 13题18.在同一坐标系中画出一次函数y 1=-x +1与y 2=2x -2的图象,并根据图象回答下列问题:(1)写出直线y 1=-x +1与y 2=2x -2的交点P 的坐标.(2)直接写出:当x 取何值时y 1>y 2;y 1<y 2四、聚沙成塔如果x ,y 满足不等式组,那么你能画出点(x ,y )所在的平面区域吗?练习二:一、选择题1.荆门市的中小学每学年都要举行春季体育达标运动会,为进一步科学地指导学生提高运动成绩,某体育老师在学校的春季达标运动会上根据一名同学 1 500m 跑的测试情况汇成下图,图中OA 是一条折线段,图形反映的是这名同学跑的距离与时间的关系,由图可知下列说法错误的是( )A .这名同学跑完1 500m 用了6分钟,最后一分钟跑了300m ;B .这名同学的速度越来越快;C .这名同学第3至第5分钟的速度最慢;D .这名同学第2、第3这两分钟的速度是一样的.2.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折 B .7折 C .8折 D .9折3.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x≤2B .x <2C .x≥2D .x >23050x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩(1题4.小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12 B。

用不等式(组)解决问题(培优)(学生版)

专题03 用不等式(组)解决问题(提优)1.已知关于x 、y 的方程组{x +2y =1x −2y =m的解都小于1,关于x 的不等式组{15x +2≥12n −x ≥1没有实数解.(1)分别求出m 与n 的取值范围; (2)化简:|m +3|+√(1−m)2+|n +2|.2.疫情期间,各年级陆续开学,五十五中教育集团计划购进红外线测温仪,需购进A ,B 两种测温仪.已知购买1台A 种测温仪和2台B 种测温仪需要3.5万元;购买2台A 种测温仪和1台B 种测温仪需要2.5万元. (1)求每台A 种、B 种测温仪的价格;(2)根据教育集团实际需求,需购进A 种和B 种测温仪共30台,总费用不超过30万元,请你通过计算,求至少购买A 种测温仪多少台.3.已知代数式mn +2m ﹣2=0(n ≠﹣2). (1)①用含n 的代数式表示m ; ②若m 、n 均取整数,求m 、n 的值.(2)当n 取a 、b 时,m 对应的值为c 、d .当﹣2<b <a 时,试比较c 、d 的大小.4.一工厂以90元/每箱的价格购进100箱原材料,准备由甲、乙两个车间全部用于生产某种产品,甲车间用每箱原材料可生产出该产品12千克,乙车间用每箱原材料可生产出的该产品比甲车间少2千克,已知该产品的售价为40元/千克,生产的产品全部售出,那么原材料最少分配给甲车间多少箱,才能使去除成本后所获得的总利润不少于35000元?5.某公司有甲、乙两个口罩生产车间,甲车间每天生产普通口罩6万个,N95口罩2.2万个.乙车间每天生产普通口罩和N95口罩共10万个,且每天生产的普通口罩比N95口罩多6万个.(1)求乙车间每天生产普通口罩和N95口罩各多少万个?(2)现接到市防疫指挥部要求:需要该公司提供至少156万个普通口罩和尽可能多的N95口罩.因受原料和生产设备的影响,两个车间不能同时生产,且当天只能确保一个车间的生产.已知该公司恰好用20天完成防疫指挥部下达的任务.问:①该公司至少安排乙车间生产多少天?②该公司最多能提供多少个N95口罩?6.某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.(1)若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少个?(2)①若该工厂仓库里现有A型板材30张、B型板材100张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少个,恰好将库存的板材用完?②若该工厂新购得78张规格为(3×3)m的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求横式箱子不少于30个,且材料恰好用完,则能制作两种箱子共个.(不写过程,直接写出答案)7.某网店销售甲、乙两种书包,已知甲种书包每个售价比乙种书包每个售价2倍少30元,网购2个甲种书包和3个乙种书包共花费255元(免运费).请解答下列问题:(1)该网店甲、乙两种书包每个售价各是多少元?(列方程组解答此问)(2)根据消费者需求,该网店决定用不超过8900元购进甲、乙两种书包共200个,且甲种书包的数量超过87个,已知甲种书包每个进价为50元,乙种书包每个进价为40元,该网店有哪几种进货方案;(3)在(2)条件下,若该网店推出促销活动:一次性购买同一种书包超过10个,赠送1个相同的书包,该网店这次所购进书包全部售出,共赠送了4个书包,获利1250元,直接写出该网店甲、乙两种书包各赠送几个.8.某手机旗舰店销售A,B两种型号的手机,售出1台A型号和3台B型号所得利润为500元,售出2台A型号和5台B型号所得利润为900元.(1)求A,B两种型号手机每台的利润分别为多少元?(2)由于手机销量很好旗舰店决定再一次购进A,B两种型号的手机共35台,为了售出后利润不少于5000元,则需购进A型号手机不少于多少台?9.养牛场的李大叔分三次购进若干头大牛和小牛,其中有一次购买大牛和小牛的价格同时打折,其余两次均按原价购买,三次购买的数量和总价如表:大牛(头)小牛(头)总价(元)第一次439900第二次269000第三次678550(1)李大叔以折扣价购买大牛和小牛是第次;(2)每头大牛和小牛的原价分别为多少元?(3)如果李大叔第四次购买大牛和小牛共10头(其中小牛至少一头),仍按之前的折扣(大牛和小牛的折扣相同),且总价不低于8100元,那么他共有哪几种购买方案?10.2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B 型风扇进价共62元.(1)求A型风扇、B型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?哪种进货方案的费用最低?最低费用为多少元?11.受新冠疫情扩散的影响,市场上防护口罩出现热销,某药店购进一批A、B两种不同型号的口罩进行销售.如表是甲、乙两人购买A.B两种型号口罩的情况:A型口罩数量(个)B型口罩数量(个)总售价(元)甲1326乙3229(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)某同学准备用不超过300元的资金购买两种型号的口罩,其中A型口罩数比B型口罩的3倍还要多5个,则A型口罩最多购买多少个?12.“直播带货,助农增收”.前不久,一场由央视携手部分直播平台,以“秦晋之‘好’,晋陕尽美”为主题的合作直播,将我市的部分农产品推向网络,助农增收.已知购买2袋大同黄花、3袋阳高杏脯,共需130元;购买1袋大同黄花、2袋阳高杏脯,共需80元.(1)求每袋大同黄花和每袋阳高杏脯各多少元;(2)某公司根据实际情况,决定购买大同黄花和阳高杏脯共400袋,要求购买总费用不超过10000元,那么至少购买多少袋大同黄花?13.某物流公司安排A、B两种型号的卡车向灾区运送抗灾物资,装运情况如下:装运批次卡车数量装运物资重量A种型号B种型号第一批2辆4辆56吨第二批4辆6辆96吨(1)求A、B两种型号的卡车平均每辆装运物资多少吨;(2)该公司计划安排A、B两种型号的卡车共15辆装运150吨抗灾物资,那么至少要安排多少辆A种型号的卡车?14.某小区准备新建60个停车位,以解决小区停车难的问题.已知新建2个地上停车位和3个地下停车位共需1.7万元;新建4个地上停车位和2个地下停车位共需1.4万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区新建车位的投资金额超过14万元而不超过15万元,问共有几种建造方案?(3)对(2)中的几种建造方案中,哪一种方案的投资最少?并求出最少投资金额.15.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. (1)在方程①x ﹣(3x +1)=﹣5;②2x3+1=0;③3x ﹣1=0中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 (填序号). (2)若不等式组{x −2<11+x >−x +2的某个关联方程的根是整数,则这个关联方程可以是 (写出一个即可)(3)若方程12−12x =12x ,3+x =2(x +12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.16.某商场欲购进甲乙两种商品,若购进甲2件,乙3件,则共需成本1700元; 若购进甲3件,乙1件,则共需成本1500元.(1)求甲乙两种商品成本分别为多少元?(2)该商场决定在成本不超过3万元的前提下购进甲、乙两种商品,若购进乙种商品的数量是甲种商品的3倍多10件,求最多购进甲种商品多少件?17.已知关于x 、y 的方程组{x +y =−m −7x −y =3m +1的解满足x ≤0,y <0.(1)用含m 的代数式分别表示x 和y ; (2)求m 的取值范围;(3)在m 的取值范围内,当m 为何整数时,不等式2mx +x <2m +1的解为x >1?18.学校购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,不少于B型节能灯数量的2倍,有几种购买方案,哪种方案最省钱?19.某工厂现有甲种原料3600kg,乙种原料2410kg,计划利用这两种原料生产A,B两种产品共500件,产品每月均能全部售出.已知生产一件A产品需要甲原料9kg和乙原料3kg;生产一件B种产品需甲种原料4kg和乙种原料8kg.(1)设生产x件A种产品,写出x应满足的不等式组.(2)问一共有几种符合要求的生产方案?并列举出来.(3)若有两种销售定价方案,第一种定价方案可使A产品每件获得利润1.15万元,B产品每件获得利润1.25万元;第二种定价方案可使A和B产品每件都获得利润1.2万元;在上述生产方案中哪种定价方案盈利最多?(请用数据说明)20.我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求购买A,B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?21.为了更好地保护环境,某市污水处理厂决定先购买A,B两型污水处理设备共20台,对周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知2台A型污水处理设备和1台B型污水处理设备每周可以处理污水680吨,4台A型污水处理设备和3台B型污水处理设备每周可以处理污水1560吨.(1)求A、B两型污水处理设备每周每台分别可以处理污水多少吨?(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案.(3)如果你是厂长,从节约资金的角度来谈谈你会选择哪种方案并说明理由?22.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.23.为提高饮水质量,越来越多的居民选购家用净水器.我市腾飞商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)24.某商场经销甲、乙两种商品,甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元.(1)若该商场同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)该商场为使甲、乙两种商品共100件的总利润不少于750元,且不超过760元,请你通过计算求出该商场所有的进货方案;(3)在“五•一”黄金周期间,该商场对甲、乙两种商品进行如下优惠促销活动:打折前一次性购物总金额优惠措施不超过300元不优惠超过300元且不超过400元售价打九折超过400元售价打八折按上述优惠条件,若贝贝第一天只购买甲种商品一次性付款200元,第二天只购买乙种商品打折后一次性付款324元,那么这两天他在该商场购买甲、乙两种商品各多少件?25.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学(必修5不等式)专题练习(一)
班级 姓名
一、选择题

1.若a0,b0,则不等式-b1xa等价于 ( )

A.1b-x0或0x1a B.-1ax1b C.x-1a或x1b D.x1b-或x1a
2.设a,b∈R,且a≠b,a+b=2,则下列不等式成立的是 ( )
A、2baab122 B、2ba1ab22

C、12baab22 D、1ab2ba22
3.二次方程22(1)20xaxa,有一个根比1大,另一个根比1小,则a的取值范围
是A.31a B.20a C.10a D.02a ( )
4.下列各函数中,最小值为2的是 ( )

A.1yxx B.1sinsinyxx,(0,)2x

C.2232xyx D.21yxx
5.
下列结论正确的是 ( )

A.当2lg1lg,10xxxx时且 B.21,0xxx时当

C.xxx1,2时当的最小值为2 D.当xxx1,20时无最大值
6.已知函数2(0)yaxbxca的图象经过点(1,3)和(1,1)两点,若01c,则a的取
值范围是A.(1,3) B.(1,2) C.2,3 D.1,3 ( )

7.不等式组131yxyx的区域面积是 ( )

A.12 B.32 C.52 D.1
8.
给出平面区域如下图所示,其中A(5,3),B(1,1),C(1,5),若使目标函数z=ax+y(a>0)

取得最大值的最优解有无穷多个,则a的值是
( )

A.32 B.21 C.2 D.23

9、已知正数x、y满足811xy,则2xy的最小值是( )
A.18 B.16 C.8 D.10
10.
已知不等式250axxb的解集为{|32}xx,则不等式

2
50bxxa
的解集为
A、11{|}32xx

B、11{|}32xxx或
C、{|32}xx D、{|32}xxx或 ( )
二、填空题

11.设函数23()lg()4fxxx,则()fx的单调递减区间是 。

12.已知x>2,则y=21xx的最小值是 .
13.对于任意实数x,不等式23208kxkx恒成立,则实数k的取值范围是
14、设yx,满足,404yx且,,Ryx则yxlglg的最大值是 。
15.设实数,xy满足2210xxy,则xy的取值范围是___________。

16.当02x时,函数21cos28sin()sin2xxfxx的最小值是________。
三、解答题
17.解不等式2232142xx

18
、.解不等式:3)61(log2xx

相关文档
最新文档