中考数学方程组

合集下载

中考数学 二元一次方程组易错压轴解答题(及答案)

中考数学 二元一次方程组易错压轴解答题(及答案)

中考数学二元一次方程组易错压轴解答题(及答案)一、二元一次方程组易错压轴解答题1.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当时,求c的值.(2)当a=时,求满足|x|<5,|y|<5的方程的整数解.(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.2.我们用表示不大于x的最大整数,例如请解决下列问题:(1) =________. =________.(其中为圆周率);(2)已知x,y满足方程组求x,y的取值范围.3.仔细阅读下面解方程组的方法,然后解决有关问题:解方程组时,如果直接消元,那将会很繁琐,若采用下面的解法,则会简单很多.解:①-②,得:2x+2y=2,即x+y=1③③×16,得:16x+16y=16④②-④,得:x=-1将x=-1代入③得:y=2∴原方程组的解为:(1)请你采用上述方法解方程组:(2)请你采用上述方法解关于x,y的方程组,其中.4.某集团购买了150吨物资打算运往某地支援,现有甲、乙、丙三种车型供选择,每辆汽车的运载能力和运费如下表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)10001200150024000元,问分别需甲、乙两种车型各多少辆?(2)若该集团决定用甲、乙、丙三种汽车共18辆同时参与运送,请你写出可能的运送方案,并帮助该集团找出运费最省的方案(甲、乙、丙三种车辆均要参与运送).5.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩,N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,请列方程计算.6.文雅书店出售A,B两种书籍,已知A书籍单售为每本50元,B书籍单售为每本30元,整套(A,B各一本)出售为每套70元。

初中数学中考复习:49二元二次方程组(含答案)

初中数学中考复习:49二元二次方程组(含答案)

中考总复习:二元二次方程组--巩固练习(基础)【巩固练习】一、选择题1.下列方程中,是二元二次方程的是()A 、x 2+=1B 、x 2–y 2=1C 、x 2+3x–4=0D 、2.利用代入法解方程组,消去x 可得方程( )A 、y 2+17y+60=0 B 、y 2-17y+60=0C 、2y 2+17y+120=0 D 、2y 2-17y+120=03.下列各对未知数的值中,是方程组的解的是()A 、B 、C 、D 、4. 如果 是方程组的一组解,那么这个方程组的另一组解是( )A 、B 、C 、D 、5.方程组有两组不同的实数解,则( )A 、≥B 、>C 、<<D 、以上答案都不对6.方程组的解有( )组. A. 1B. 2C. 3D. 4二、填空题7.二元二次方程2x 2+3xy -6y 2+x -4y=3中,二次项是 ,一次项是 ,常数项是_______________.8. 若(2x 2-3y 2-10y+5)2+=0,则x= ,y=9.已知方程组是关于x 、y 的二元二次方程组,则k= .10.方程组的解是.11.已知是方程组的一个解,那么这个方程组的另一个解是.12. 已知和是方程的两个解,则.;三、解答题13. 解下列方程组:(1)(2)14. 已知方程组的一个解是,求m及另一个解.15. k为何值时,方程组只有唯一解?16. 已知:矩形的面积是,对角线长,那么矩形的长和宽是多少?【答案与解析】一、选择题1.【答案】B【解析】A、D选项均含有分式;C选项中仅含有一个未知数.2.【答案】B3.【答案】A【解析】将各选项代入原方程,看是否满足方程的左右两边相等.4.【答案】A.【解析】将代入方程组求得,再解方程组.5.【答案】B【解析】两个方程消去y得,,方程组有两组不同的实数解,需要△>0,即1+4m>0,所以>.6.【答案】D.二、填空题7.【答案】2x,3xy,-6y;x,-4y;-3.8.【答案】x=2,y=1.【解析】根据平方数和二次根式的非负性列方程组,解这个方程组即可.9.【答案】3;【解析】根据二元二次方程组的定义,最高次数应该是2,所以要求k-1=2,所以k=3.10.【答案】.【解析】可以采用代入法消元.11.【答案】.【解析】将代入原方程组求得,所以原方程组是,再解此方程组即可.12.【答案】1或-3【解析】将和分别代入方程得,,解得或,所以a+b=1或-3.三、解答题13.【答案与解析】(1)解:由①得,x=2y……③,将③代入②整理得,,解得,,将分别代入③式得,,所以原方程组的解为.(2)解:①式左边分解因式得,,∴x-y+2=0或x+y=0,原方程组转化为以下两个方程组:(i)或(ii),解方程组(i)得,解方程组(ii)得,,所以,原方程组的解是14.【答案与解析】∵方程组的一个解是,将代入方程组得,m=4,∴原方程为,采用代入消元解得,∴m=4,另一组解是15.【答案与解析】由(2)得,y=x-k(3)将(3)代入(1)得,,要使原方程组有唯一解,只需要上式的△=0,即,解得,k=.所以当k=时,方程组只有唯一解.16.【答案与解析】设矩形的长是xcm,宽是ycm. 由题意得,,解得,,,考虑到实际情况,长应该大于宽,所以符合题意.答:矩形的长是4cm,宽是3cm.。

专题05一次方程组及其应用的核心知识点精讲解析版年中考数学一轮复习考点帮全国通用

专题05一次方程组及其应用的核心知识点精讲解析版年中考数学一轮复习考点帮全国通用

专题05 一次方程(组)及其应用的核心知识点精讲1、掌握等式的基本性质掌握代入消元法和加减消元法,能解二元一次方程组.2、能根据具体问题的实际意义,检验方程的解是否合理.3、经历用一次方程组解应用题的过程,提高分析问题和解决问题的能力【题型1:等式的性质】【典例1】(2022•青海)根据等式的性质,下列各式变形正确的是( )A.若=,则a=b B.若ac=bc,则a=bC.若a2=b2,则a=b D.若﹣x=6,则x=﹣2【答案】A【解答】解:A、若=,则a=b,故A符合题意;B、若ac=bc(c≠0),则a=b,故B不符合题意;C、若a2=b2,则a=±b,故C不符合题意;D、﹣x=6,则x=﹣18,故D不符合题意;故选:A.1.(2022•滨州)在物理学中,导体中的电流I跟导体两端的电压U、导体的电阻R之间有以下关系:I=,去分母得IR=U,那么其变形的依据是( )A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质2【答案】B【解答】解:将等式I=,去分母得IR=U,实质上是在等式的两边同时乘R,用到的是等式的基本性质2.故选:B.2.(2021•安徽)设a,b,c为互不相等的实数,且b=a+c,则下列结论正确的是( )A.a>b>c B.c>b>aC.a﹣b=4(b﹣c)D.a﹣c=5(a﹣b)【答案】D【解答】解:∵b=a+c,∴5b=4a+c,在等式的两边同时减去5a,得到5(b﹣a)=c﹣a,在等式的两边同时乘﹣1,则5(a﹣b)=a﹣c.故选:D.【题型2:一次方程(组)的相关概念】【典例2】(2023•永州)关于x的一元一次方程2x+m=5的解为x=1,则m的值为( )A.3B.﹣3C.7D.﹣7【答案】A【解答】解:∵x=1是关于x的一元一次方程2x+m=5的解,∴2×1+m=5,∴m=3,故选:A.【典例3】(2023•眉山)已知关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为( )A.0B.1C.2D.3【答案】B【解答】解:∵关于x、y的二元一次方程组为,①﹣②,得:2x﹣2y=2m+6,∴x﹣y=m+3,∵x﹣y=4,∴m+3=4,∴m=1.故选:B.1.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是( )A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【答案】D【解答】解:根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣4x﹣2=x,故选:D.2.(2021•聊城)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为( )A.﹣1≤x<5B.﹣1<x≤1C.﹣1≤x<1D.﹣1<x≤5【答案】A【解答】解:x+a=2,x=﹣a+2,∵﹣3<a≤3,∴﹣3≤﹣a<3,∴﹣1≤﹣a+2<5,∴﹣1≤x<5,故选:A.3.(2020•重庆)解一元一次方程(x+1)=1﹣x时,去分母正确的是( )A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【答案】D【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.4.(2023•朝阳)已知关于x,y的方程组的解满足x﹣y=4,则a的值为 2 .【答案】2.【解答】解:,①﹣②得:x﹣y=a+2,又∵关于x,y的方程组的解满足x﹣y=4,∴a+2=4,∴a=2.故答案为:2.【题型3:一次方程(组)的解法】【典例4】(2021•广元)解方程:+=4.【答案】x=7.【解答】解:+=4,3(x﹣3)+2(x﹣1)=24,3x﹣9+2x﹣2=24,3x+2x=24+9+2,5x=35,x=7.【典例5】(2023•乐山)解二元一次方程组:.【答案】.【解答】解:,①×2得:2x﹣2y=2③,②+③得:5x=10,解得:x=2,把x=2代入①中得:2﹣y=1,解得:y=1,∴原方程组的解为:.1.(2023•河南)方程组的解为 .【答案】.【解答】解:,①+②,得4x+4y=12,∴x+y=3③.①﹣③,得2x=2,∴x=1.②﹣①,得2y=4,∴y=2.∴原方程组的解为.故答案为:.2.(2021•桂林)解一元一次方程:4x﹣1=2x+5.【答案】见试题解答内容【解答】解:4x﹣1=2x+5,4x﹣2x=5+1,2x=6,x=3.3.(2023•常德)解方程组:.【答案】.【解答】解:①×2+②得:5x=25,解得:x=5,将x=5代入①得:5﹣2y=1,解得:y=2,所以原方程组的解是.4.(2023•衢州)小红在解方程时,第一步出现了错误:解:2×7x=(4x﹣1)+1,…(1)请在相应的方框内用横线划出小红的错误处.(2)写出你的解答过程.【答案】(1)见解析;(2)见解析.【解答】解:(1)如图:(2)去分母:2×7x=(4x﹣1)+6,去括号:14x=4x﹣1+6,移项:14x﹣4x=﹣1+6,合并同类项:10x=5,系数化1:x=.【题型4:一次方程(组)的应用】【典例6】(2023•深圳)某商场在世博会上购置A,B两种玩具,其中B玩具的单价比A玩具的单价贵25元,且购置2个B玩具与1个A玩具共花费200元.(1)求A,B玩具的单价;(2)若该商场要求购置B玩具的数量是A玩具数量的2倍,且购置玩具的总额不高于20000元,则该商场最多可以购置多少个A玩具?【答案】(1)A玩具的进价为50元,每件B玩具的进价为75元;(2)100个.【解答】解:(1)设每件A玩具的进价为x元,则每件B玩具的进价为(x+25)元,根据题意得:2(x+25)+x=200,解得:x=50,可得x+25=50+25=75,则每件A玩具的进价为50元,每件B玩具的进价为75元;(2)设商场可以购置A玩具y个,根据题意得:50y+75×2y≤20000,解得:y≤100,则最多可以购置A玩具100个.1.(2023•自贡)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.【答案】该客车的载客量为40人.【解答】解:设该客车的载客量为x人,根据题意得:4x+30=5x﹣10,解得:x=40.答:该客车的载客量为40人.2.(2023•陕西)“绿水青山就是金山银山”,希望中学每年都会组织学生进行植树活动.今年该校又买了一批树苗,并组建了植树小组.如果每组植5棵,就会多出6棵树苗;如果每组植6棵,就会缺少9棵树苗.求学校这次共买了多少棵树苗?【答案】学校这次共买了81棵树苗.【解答】解:设学校这次共买了x棵树苗,则:=,解得:x=81,答:学校这次共买了81棵树苗.3.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.【答案】边的宽为4cm,天头长为24cm.【解答】解:设天头长为6x cm,地头长为4x cm,则左、右边的宽为x cm,根据题意得,100+(6x+4x)=4×[27+(6x﹣4x)],解得x=4,答:边的宽为4cm,天头长为24cm.4.(2023•安徽)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【答案】调整前甲地该商品的销售单价为40元,乙地该商品的销售单价为50元.【解答】解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,答:调整前甲地该商品的销售单价为40元,乙地该商品的销售单价为50元.5.(2022•黑龙江)学校开展大课间活动,某班需要购买A、B两种跳绳.已知购进10根A种跳绳和5根B 种跳绳共需175元;购进15根A种跳绳和10根B种跳绳共需300元.(1)求购进一根A种跳绳和一根B种跳绳各需多少元?(2)设购买A种跳绳m根,若班级计划购买A、B两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?【答案】见试题解答内容【解答】解:(1)设购进一根A种跳绳需x元,购进一根B种跳绳需y元,依题意得:,解得:.答:购进一根A种跳绳需10元,购进一根B种跳绳需15元.(2)∵该班级计划购买A、B两种跳绳共45根,且购买A种跳绳m根,∴购买B种跳绳(45﹣m)根.依题意得:,解得:23≤m≤25.4,又∵m为整数,∴m可以取23,24,25,∴共有3种购买方案,方案1:购买23根A种跳绳,22根B种跳绳;方案2:购买24根A种跳绳,21根B种跳绳;方案3:购买25根A种跳绳,20根B种跳绳.(3)设购买跳绳所需总费用为w元,则w=10m+15(45﹣m)=﹣5m+675.∵﹣5<0,∴w随m的增大而减小,∴当m=25时,w取得最小值,最小值=﹣5×25+675=550.答:在(2)的条件下,购买方案3需要的总费用最少,最少费用是550元.1.(2023•青县校级模拟)如果x=y,那么根据等式的性质下列变形正确的是( )A.x+y=0B.=C.x﹣2=y﹣2D.x+7=y﹣7【答案】C【解答】解:A、由x=y,得到x﹣y=0,原变形错误,故此选项不符合题意;B、由x=y,得到=,原变形错误,故此选项不符合题意;C、由x=y,得到x﹣2=y﹣2,原变形正确,故此选项符合题意;D、由x=y,得到x+7=y+7,原变形错误,故此选项不符合题意;故选:C.2.(2022秋•昆都仑区校级期末)为做好疫情防控工作,学校把一批口罩分给值班人员,如果每人分3个,则剩余20个;如果每人分4个,则还缺25个,设值班人员有x人,下列方程正确的是( )A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+25【答案】A【解答】解:由题意得3x+20=4x﹣25.故选:A.3.(2023秋•瓦房店市校级期中)若x=﹣4是方程a+3x=﹣15的解,则a的值是( )A.1B.﹣1C.﹣5D.﹣3【答案】D【解答】解:把x=﹣4代入方程得:a﹣12=﹣15,解得:a=﹣3.故选:D.4.(2023秋•南宁期中)一元一次方程2x+1=5的解为( )A.x=3B.x=4C.x=2D.x=0【答案】C【解答】解:移项和合并同类项,可得:2x=4,系数化为1,可得:x=2.故选:C.5.(2022秋•乐亭县期末)解方程,去分母正确的是( )A.2(2x+1)=1﹣3(x﹣1)B.2(2x+1)=6﹣3x﹣3C.2(2x+1)=6﹣3(x﹣1)D.3(2x+1)=6﹣2(x﹣1)【答案】C【解答】解:,去分母得2(2x+1)=6﹣3(x﹣1).故选:C.6.(2022秋•丰宁县校级期末)若方程2x=8和方程ax+2x=4的解相同,则a的值为( )A.1B.﹣1C.±1D.0【答案】B【解答】解:解2x=8,得x=4.由同解方程,得4a+2×4=4.解得a=﹣1,故选:B.7.(2022秋•凤翔县期末)已知3x|m|+(m+1)y=6是关于x、y的二元一次方程,则m的值为( )A.m=1B.m=﹣1C.m=±1D.m=2【答案】A【解答】解:根据题意得|m|=1且m+1≠0,所以m=1或m=﹣1且m≠﹣1,所以m=1.故选:A.8.(2023春•莒南县期末)已知是方程组的解,则a+b=( )A.2B.﹣2C.4D.﹣4【答案】B【解答】解:∵是方程组的解∴将代入①,得a+2=﹣1,∴a=﹣3.把代入②,得2﹣2b=0,∴b=1.∴a+b=﹣3+1=﹣2.故选:B.9.(2023春•西城区校级期中)已知是二元一次方程y﹣kx=7的解,则k的值是( )A.2B.﹣2C.4D.﹣4【答案】D【解答】解:根据题意得,﹣1﹣2k=7,解得:k=﹣4.故选:D.10.(2023•江山市模拟)《孙子算经》中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,木长多少尺?若设绳子长x尺,木长y尺,所列方程组正确的是( )A.B.C.D.【答案】B【解答】解:∵用绳子去量长木,绳子还剩余4.5尺,∴x﹣y=4.5;∵将绳子对折再量长木,长木还剩余1尺,∴.∴所列方程组为.故选:B.11.(2023春•天元区校级期末)若解得x,y的值互为相反数,则k的值为( )A.4B.﹣1C.2D.﹣5【答案】D【解答】解:由题意可知:x+y=0,∴,解得:,将代入2x﹣ky=6,得2×(﹣2)﹣2k=6,解得:k=﹣5.故选:D.二.解答题(共5小题)12.(2023•渝北区校级自主招生)解下列方程:(1)2x﹣3(x﹣1)=5(1﹣x);(2).【答案】见试题解答内容【解答】解:(1)2x﹣3(x﹣1)=5(1﹣x),去括号得:2x﹣3x+3=5﹣5x,移项得:2x﹣3x+5x=5﹣3,合并同类项得:4x=2,把系数化为1得:x=.(2)1﹣=,去分母得:15﹣3(x﹣3)=5(4﹣x),去括号得:15﹣3x+9=20﹣5x,移项得:﹣3x+5x=20﹣15﹣9,合并同类项得:2x=﹣4,把系数化为1得:x=﹣2.13.(2023秋•靖江市校级期中)已知关于x的方程(|k|﹣3)x2﹣(k﹣3)x+2m+1=0是一元一次方程.(1)求k的值;(2)若已知方程与方程3x=4﹣5x的解相同,求m的值.【答案】见试题解答内容【解答】解:(1)由题意得|k|﹣3=0,k﹣3≠0,∴k=﹣3;(2)3x=4﹣5x,3x+5x=4,x=,原方程为:6x+2m+1=0,把x=代入:3+2m+1=0,m=﹣2.14.(2022秋•莲池区校级期末)解下列方程组:(1);(2).【答案】(1);(2).【解答】解:(1)②﹣①得:4y=16,解得:y=4,把y=4代入②得:x+4=6,解得:x=2,则方程组的解为;(2)方程组整理得:,②×2﹣①得:5x=12,解得:x=,把x=代入②得:﹣y=8,解得:y=,则方程组的解为.15.(2022秋•榆阳区校级期末)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?【答案】(1)调入6名工人;(2)10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.【解答】解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得x=6,∴调入6名工人;(2)由(1)知,调入6名工人后,车间有工人16+6=22(名),设y名工人生产螺栓,则(22﹣y)名工人生产螺母,∵每天生产的螺栓和螺母刚好配套,∴240y×2=400(22﹣y),解得y=10,∴22﹣y=22﹣10=12,答:10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.16.(2023春•铁锋区期末)列方程(组)或不等式(组)解应用题:学校为了支持体育社团开展活动,鼓励同学们加强锻炼,准备增购一些羽毛球拍和乒乓球拍.(1)根据图中信息,求出每支羽毛球拍和每支乒乓球拍的价格;(2)学校准备用5300元购买羽毛球拍和乒乓球拍,且乒乓球拍的数量为羽毛球拍数量的3倍,请问最多能购买多少支羽毛球拍?【答案】(1)每支羽毛球拍的价格为80元,每支乒乓球拍的价格为60元;(2)最多能购买20支羽毛球拍.【解答】解:(1)设每支羽毛球拍的价格为x元,每支乒乓球拍的价格为y元,依题意得:,解得:.答:每支羽毛球拍的价格为80元,每支乒乓球拍的价格为60元.(2)设购买m支羽毛球拍,则购买3m支乒乓球拍,依题意得:80m+60×3m≤5300,解得:m≤.又∵m为整数,∴m的最大值为20.答:最多能购买20支羽毛球拍.1.(2023秋•秦淮区期中)如果方程(a﹣2)x|a﹣1|+3=9是关于x的一元一次方程,则a的值为( )A.0B.2C.6D.0或2【答案】A【解答】解:由题意得:|a﹣1|=1且a﹣2≠0,解得a=0.故选:A.2.(2023秋•工业园区校级期中)现定义运算“*”,对于任意有理数a与b,满足a*b=,譬如5*3=3×5﹣3=12,,若有理数x满足x*3=12,则x的值为( )A.4B.5C.21D.5或21【答案】B【解答】解:若x≥3,3x﹣3=12,解得x=5;若x<3,x﹣9=12,解得x=21(不符合题意,舍去).综上,x=5,故选:B.3.(2022秋•颍州区校级期末)某车间有22名工人,每人每天可以生产600个螺钉或1000螺母.1个螺钉配两个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?设有x名工人生产螺钉,可列方程为( )A.2×600x=1000(22﹣x)B.2×1000x=600(22﹣x)C.600x=2×1000(22﹣x)D.1000x=2×600(22﹣x)【答案】A【解答】解:设安排x名工人生产螺钉,则(22﹣x)人生产螺母,由题意得:2×600x=1000(22﹣x),故选:A.4.(2023秋•洛龙区期中)下列运用等式变形错误的是( )A.由a=b,得a+6=b+6B.由a=b,得C.由,得a=b D.由﹣2a=﹣2b,得a=﹣b【答案】D【解答】解:A.∵a=b,∴a+6=b+6,故本选项不符合题意;∴=,故本选项不符合题意;C.∵=,∴a=b,故本选项不符合题意;D.∵﹣2a=﹣2b,∴a=b,故本选项符合题意.故选:D.5.(2023秋•新市区校级期中)如图,表中给出的是某月的日历,任意选取“Z”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现此月这7个数的和可能的是( )A.49B.60C.84D.105【答案】D【解答】解:设中间的数为x,则上一行3个数分别是x﹣8,x﹣7,x﹣6,下一行3个数分别是x+8,x+7,x+6,则这7个数的和为x﹣8+x﹣7+x﹣6+x+x+8+x+7+x+6=7x,A.若7x=49,则x=7,不符合题意;B.若7x=60,则,不符合题意;C.若7x=84,则x=12,不符合题意;D.若7x=105,则x=15,符合题意;故选:D.6.(2023秋•蔡甸区期中)某商品进价4元,标价5元出售,商家准备打折销售,但其利润率恰好为10%,则该商品可以打( )折(利润率=×100%)A.7B.7.5C.8D.8.8【答案】D【解答】解:设这种商品可以按x折销售,则售价为(5×0.1x)元,那么利润为(5×0.1x﹣4)元,所以相应的关系式为5×0.1x﹣4=4×10%,答:该商品可以打8.8折,故选:D.7.(2023•九龙坡区校级开学)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地需4分钟,乙骑自行车从B地到A地需6分钟.现乙从B地先发出1分钟后,甲才从A地出发,问多久后甲、乙相遇?设乙出发x分钟时,甲、乙相遇,则可列方程为( )A.B.C.D.【答案】A【解答】解:∵甲骑自行车从A地到B地需4分钟,乙骑自行车从B地到A地需6分钟,∴甲的速度是,乙的速度是,由题意得.故选:A.8.(2023秋•雁塔区校级期中)若关于x、y的二元一次方程x+2y=2a﹣1的一组解为x=3,y=1,则a的值是( )A.3B.2C.1D.﹣1【答案】A【解答】解:把x=3,y=1代入关于x、y的二元一次方程x+2y=2a﹣1得:2a﹣1=3+2×1,2a﹣1=5,2a=6,a=3,故选:A.9.(2023秋•深圳期中)关于x、y的二元一次方程组的解为,则关于m,n的二元一次方程组的解为( )A.B.C.D.【答案】D【解答】解:设m+n=x',m﹣n=y',则关于m,n的二元一次方程组可以转化为,∵关于x、y的二元一次方程组的解为,∴关于x'、y'的二元一次方程组的解,∴,①+②得:2m=6,解得m=3,将m=3代入①得:n=﹣2,∴.故选:D.10.(2022秋•溧阳市期末)完全相同的4个白色小长方形如图所示放置,形成了一个长、宽分别为m、n 的大长方形则图中阴影部分的周长是( )A.4n B.2m+n C.2m+2n D.3m﹣n【答案】A【解答】解:设白色小长方形的长为x,宽为y,根据题意得:x+2y=m,∵大长方形的长、宽分别为m、n,∴左边阴影部分的长为(m﹣2y),宽为(n﹣2y),右边阴影部分的长为2y,宽为(n﹣x),∴阴影部分的周长=2[(m﹣2y)+(n﹣2y)]+2[2y+(n﹣x)]=2(m+n﹣4y)+2(2y+n﹣x)=2(m+n﹣4y+2y+n﹣x)=2(m+2n﹣2y﹣x)=2[m+2n﹣(2y+x)]=2(m+2n﹣m)=4n,故选:A.11.(2023春•富县期末)若关于x,y的二元一次方程组的解满足,则k的取值范围是( )A.k≤1B.k≤2C.k≤﹣1D.k≤﹣2【答案】A【解答】解:两方程相加,得3x+3y=5k﹣1,∴,∵,∴,解得:k≤1,故选:A.12.(2022春•朝天区期末)已知关于x,y的二元一次方程组,给出下列结论中正确的是( )①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④【答案】D【解答】解:关于x,y的二元一次方程组,①+②得,2x+2y=4+2a,即:x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x+y=4+2a的解满足x+y=6,因此②不正确,(3)方程组,解得,∴x+2y=2a+1+2﹣2a=3,因此③是正确的,(4)方程组,由方程①得,a=4﹣x﹣3y代入方程②得,x﹣y=3(4﹣x﹣3y),即;y=﹣+因此④是正确的,故选:D.13.(2022秋•成都期末)已知关于x,y的二元一次方程组为,则3x+2y的值为 7 .【答案】7.【解答】解:,①+②得:3x+2y=7.14.(2023春•海林市校级期中)已知方程组和有相同的解,求a、b的值.【答案】见试题解答内容【解答】解:先解方程组,解得:,将x=2、y=3代入另两个方程,得方程组:,解得:.15.(2023春•兖州区期末)如图,欣欣食品加工厂与湖州、杭州两地有公路、铁路相连,该食品加工厂从湖州收购一批每吨2000元的枇杷运回工厂加工,制成每吨8000元的枇杷干运到杭州销售,已知公路运价为0.8元/(吨•千米),铁路运价为0.5元/(吨•千米),且这次运输共支出公路运输费960元,铁路运输费1900元.求:(1)该工厂从湖州购买了多少吨枇杷?制成运往杭州的枇杷干多少吨?(2)这批枇杷干的销售款比购买枇杷费用与运输费用的和多多少元?【答案】见试题解答内容【解答】解:(1)设该工厂从湖州购买了x吨枇杷,制成运往杭州的枇杷干y吨,根据题意得:,解得:.答:该工厂从湖州购买了50吨枇杷,制成运往杭州的枇杷干20吨.(2)8000×20﹣2000×50﹣960﹣1900=57140(元).16.(2023春•罗山县期末)某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.【答案】见试题解答内容【解答】解:(1)设每辆小客车能坐m名学生,每辆大客车能坐n名学生根据题意,得,解得,m+n=20+45=65,答:1辆小客车和1辆大客车都坐满后一次可送65名学生.(2)①由题意得:20a+45b=400,∴b=,∵a、b为非负整数,∴或或,∴租车方案有三种:方案一:小客车20车、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:200×20=4000(元),方案二租金:200×11+380×4=3720(元),方案三租金:200×2+380×8=3440(元),∵3720>3440,∴方案三租金最少,最少租金为3440元.答:这批枇杷干的销售款比购买枇杷费用与运输费用的和多57140元.17.(2023春•围场县期末)宁波杨梅季,本地慈溪杨梅在宁波人的心中是一种家乡的味道.今年是杨梅大年,菜杨梅种植大户为了能让居民品尝到物美价廉的杨梅,对1000斤的杨梅进行打包方式优惠出售.打包方式及售价如下:圆篮每篮8斤,售价160元;方篮每篮18斤,售价270元.假如用这两种打包方式恰好全部装完这1000斤杨梅.(1)若销售a篮圆篮和a篮方篮共收入8600元,求a的值;(2)当销售总收入为16760元时,①若这批杨梅全部售完,请问圆篮共包装了多少篮,方篮共包装了多少篮;②若杨梅大户留下b(b>0)篮圆篮送人,其余的杨梅全部售出,求b的值.【答案】(1)a的值为20;(2)①圆篮共包装了44篮,则方篮共包装36 篮;②b的值为9或18.【解答】解:(1)由题意,得160a+270a=8600,解得:a=20,答:a的值为20.(2)①设圆篮共包装了x篮,则方篮共包装y篮,由题意,得,解得:,答:圆篮共包装了44篮,则方篮共包装36 篮.②设此时出售了m篮圆篮,n篮方篮杨梅,则,解这个关于m和n的方程组,可得:,∵n为正整数,∴>0,且b应为9的倍数,解得:,又∵b>0,∴b的值为9或18.答:b的值为9或18.1.(2023•衢州)下列各组数满足方程2x+3y=8的是( )A.B.C.D.【答案】A【解答】解:A.当x=1,y=2时,方程左边=2×1+3×2=8,方程右边=8,∴方程左边=方程右边,选项A符合题意;B.当x=2,y=1时,方程左边=2×2+3×1=7,方程右边=8,7≠8,∴方程左边≠方程右边,选项B不符合题意;C.当x=﹣1,y=2时,方程左边=2×(﹣1)+3×2=4,方程右边=8,4≠8,∴方程左边≠方程右边,选项C不符合题意;D.当x=2,y=4时,方程左边=2×2+3×4=16,方程右边=8,16≠8,∴方程左边≠方程右边,选项D不符合题意.故选:A.2.(2022•百色)方程3x=2x+7的解是( )A.x=4B.x=﹣4C.x=7D.x=﹣7【答案】C【解答】解:移项得:3x﹣2x=7,合并同类项得:x=7.故选:C.3.(2023•南通)若实数x,y,m满足x+y+m=6,3x﹣y+m=4,则代数式﹣2xy+1的值可以是( )A.3B.C.2D.【答案】D【解答】解:由题意可得,解得:,则﹣2xy+1=﹣2××+1=﹣+1=﹣+1=﹣+1=﹣+≤,∵3>>2>,∴A,B,C不符合题意,D符合题意,故选:D.4.(2021•重庆)若关于x的方程+a=4的解是x=2,则a的值为 3 .【答案】3.【解答】解:把x=2代入方程+a=4得:+a=4,解得:a=3,故答案为:3.5.(2021•枣庄)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为 1 .【答案】1.【解答】解:依题意,得:6+m+8=15,解得:m=1.故答案为:1.6.(2023•连云港)解方程组.【答案】.【解答】解:,①+②得:5x=15,解得:x=3,将x=3代入①得:3×3+y=8,解得:y=﹣1,故原方程组的解为:.7.(2022•荆州)已知方程组的解满足2kx﹣3y<5,求k的取值范围.【答案】k<2.【解答】解:①+②得:2x=4,∴x=2,①﹣②得:2y=2,∴y=1,代入2kx﹣3y<5得:4k﹣3<5,∴k<2.答:k的取值范围为:k<2.8.(2022•岳阳)为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,B两种跳绳若干.若购买3根A种跳绳和1根B种跳绳共需140元;若购买5根A种跳绳和3根B种跳绳共需300元.(1)求A,B两种跳绳的单价各是多少元?(2)若该班准备购买A,B两种跳绳共46根,总费用不超过1780元,那么至多可以购买B种跳绳多少根?【答案】(1)A种跳绳的单价为30元,B种跳绳的单价为50元.(2)至多可以购买B种跳绳20根.【解答】解:(1)设A种跳绳的单价为x元,B种跳绳的单价为y元.根据题意得:,解得:,答:A种跳绳的单价为30元,B种跳绳的单价为50元.(2)设购买B种跳绳a根,则购买A种跳绳(46﹣a)根,由题意得:30(46﹣a)+50a≤1780,解得:a≤20,答:至多可以购买B种跳绳20根.9.(2023•河北)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在第一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)6分;(2)k的值为6.【解答】解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),答:珍珍第一局的得分为6分;(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,解得:k=6.∴k的值为6.10.(2023•张家界)为拓展学生视野,某中学组织八年级师生开展研学活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出三辆车,且其余客车恰好坐满.现有甲、乙两种客车,它们的载客量和租金如下表所示:甲型客车乙型客车载客量(人/辆)4560租金(元/辆)200300(1)参加此次研学活动的师生人数是多少?原计划租用多少辆45座客车?(2)若租用同一种客车,要使每位师生都有座位,应该怎样租用才合算?【答案】(1)参加此次研学活动的师生人数是600人,原计划租用13辆45座客车;(2)租用14辆45座客车更合算.【解答】解:(1)设参加此次研学活动的师生人数是x人,原计划租用y辆45座客车.根据题意,得,解得.答:参加此次研学活动的师生人数是600人,原计划租用13辆45座客车;(2)租45座客车:600÷45≈14(辆),所以需租14辆,租金为200×14=2800(元),租60座客车:600÷60=10(辆),所以需租10辆,租金为300×10=3000(元),∵2800<3000,∴租用14辆45座客车更合算.。

中考数学——一元一次方程和二元一次方程组

中考数学——一元一次方程和二元一次方程组

一元一次方程和二元一次方程组第 次课【知识要点】1.等式及其性质 ⑴ 等式:用等号“=〞来表示 关系的式子叫等式. ⑵ 性质:① 假设b a =,那么=±c a ;② 假设b a =,那么=ac ;假设b a =()0≠c ,那么=ca. 2. 方程、一元一次方程的概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a . 3. 解一元一次方程的步骤:①去 ;②去 ;③移 ;④合并 ;⑤系数化为1. 4.二元一次方程:含有 未知数〔元〕并且未知数的次数是 的整式方程.5. 二元一次方程组:由2个或2个以上的 组成的方程组叫二元一次方程组. 6.二元一次方程的解: 适宜一个二元一次方程的 未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有 个解.7.二元一次方程组的解: 使二元一次方程组的 ,叫做二元一次方程组的解. 8. 解二元一次方程的方法步骤: 二元一次方程组方程.消元是解二元一次方程组的根本思路,方法有 消元和 消元法两种.消元转化2.列方程解应用题的步骤:〔1〕审题:仔细阅读题,弄清题意;〔2〕设未知数:直接设或间接设未知数;〔3〕列方程:把所设未知数当作数,在题目中寻找等量关系,列方程;〔4〕解方程;〔5〕检验:所求的解是否是所列方程的解,是否符合题意;〔6〕答:注意带单位.【典型例题】例1 解方程(1)12733)1(2-=-++x x x 〔2〕21101136x x ++-=(3)2111x x x x ++=+ (4) 0322=--xx .例2解以下方程组:〔1〕{4519323a b a b +=--= 〔2〕{2207441x y x y ++=-=-例3假设方程组{31x y x y +=-=与方程组{84mx ny mx ny +=-=的解一样,求m 、n 的值.例5 〔1〕. 某商品标价为165元,假设降价以九折出售〔即优惠10%〕,仍可获利10%〔相对于进货价〕,那么该商品的进货价是(2). 甲、乙二人投资合办一个企业,并协议按照投资额的比例分配所得利润,甲与乙投资额的比例为3:4,首年的利润为38500元,那么甲、乙二人可获得利润分别为 元和 元(3). 某公司1996年出口创收135万美元,1997年、1998年每年都比上一年增加a %,那么,1998年这个公司出口创汇 万美元例6. A 、B 两地相距64千米,甲骑车比乙骑车每小时少行4千米,•假设甲乙二人分别从A 、B 两地相向而行,甲比乙先行40分钟,两人相遇时所行路程正好相等,•求甲乙二人 的骑车速度.例7.要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am ,另三边用竹篱笆围成,如图,假设篱笆的长为35m ,〔1〕求鸡场的长与宽各为多少?〔2〕题中墙的长度a 对题目的解起着怎样的作用?例8.某工厂第一季度消费甲、乙两种机器共480台.改进消费技术后,方案第二季度消费这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 %.该厂第一季度消费甲、乙两种机器各多少台?【经典练习】 一、选择1、(2022年四川省内江市)假设关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,那么n m -为〔 〕A .1B .3C .5D .22、〔2022年淄博市〕家电下乡是我国应对当前国际金融危机,惠农强农,带开工业消费,促进消费,拉动内需的一项重要举措.国家规定,农民购置家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.从甲商场售出的这20部手机国家共发放了2340元的补贴,假设设该手机的销售价格为x 元,以下方程正确的选项是〔 〕 A .2013%2340x ⋅= B .20234013%x =⨯ C .20(113%)2340x -=D .13%2340x ⋅=3、〔2022年齐齐哈尔市〕一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,假设每个房间都住满,租房方案有〔 〕 A .4种 B .3种 C .2种 D .1种4、〔2022年吉林省〕A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,假设设B 种饮料单价为x 元/瓶,那么下面所列方程正确的选项是〔 〕 A .2(1)313x x -+= B .2(1)313x x ++= C .23(1)13x x ++=D .23(1)13x x +-=5、〔2022年深圳市〕班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,那么班长应付〔 〕 A .45元 B .90元 C .10元 D .100元ABD EF6、〔2022年日照〕假设关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x的解,那么k 的值为 A.43-B.43 C.34D.34-7、〔2022年长沙〕三角形的两边长分别为3cm 和8cm ,那么此三角形的第三边的长可能是〔 〕 A .4cm B .5cm C .6cm D .13cm8、〔2022年台湾〕有10包一样数量的饼干,假设将其中1包饼干平分给23名学生,最少剩3片。

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)知识点1. 解二元一次方程组的思想:消元思想:将方程组中的未知数由多化少,逐一解决的思想。

2. 解二元一次方程组的方法:①代入消元法:将其中一个方程的其中一个未知数用另一个未知数表示出来代入另一个方程中,实现消元,进而求出方程组的解的方法叫做代入消元法。

(通常适用于有未知数的系数是±1的方程组)②加减消元法:当方程组中的两个方程的同一个未知数的系数相同或相反时,则可以利用将两个方程相减或相加的方法消掉这个未知数的方法叫做加减消元法。

专项练习题1、.(2022•株洲)对于二元一次方程组⎩⎨⎧=+−=721y x x y ,将①式代入②式,消去y 可以得到( ) A .x +2x ﹣1=7 B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7 【分析】将①式代入②式,得x +2(x ﹣1)=7,去括号即可.【解答】解:,将①式代入②式,得x +2(x ﹣1)=7,∴x +2x ﹣2=7,故选:B .2、(2022•潍坊)方程组⎩⎨⎧=−=+0231332y x y x 的解为 . 【分析】由第一个方程得4x +6y =26,由第二个方程得9x ﹣6y =0,两个方程相加消去y ,解出x ,再进一步解出y 即可.【解答】解:,由①×2得4x +6y =26③,由②×3得9x ﹣6y =0④,由③+④得13x =26,解得x =2,将x =2代入②得3×2﹣2y =0,解得y =3,所以原方程组的解为. 故答案为:. 3、(2022•沈阳)二元一次方程组⎩⎨⎧==+x y y x 252的解是 . 【分析】用代入消元法解二元一次方程组即可.【解答】解:,将②代入①,得x +4x =5,解得x =1,将x =1代入②,得y =2,∴方程组的解为,故答案为:. 4、(2022•无锡)二元一次方程组⎩⎨⎧=−=+121223y x y x 的解为 .【分析】根据代入消元法求解即可得出答案.【解答】解:,由②得:y =2x ﹣1③,将③代入①得:3x +2(2x ﹣1)=12,解得:x =2,将x =2代入③得:y =3,∴原方程组的解为. 故答案为:. 5、(2022•随州)已知二元一次方程组⎩⎨⎧=+=+5242y x y x ,则x ﹣y 的值为 . 【分析】将第一个方程化为x =4﹣2y ,并代入第二个方程中,可得2(4﹣2y )+y =5,解得y =1,将y =1代入第一个方程中,可得x =2,即可求解.【解答】解:解法一:由x +2y =4可得:x =4﹣2y ,代入第二个方程中,可得:2(4﹣2y )+y =5,解得:y =1,将y =1代入第一个方程中,可得x +2×1=4,解得:x =2,∴x ﹣y =2﹣1=1,故答案为:1;解法二:∵,由②﹣①可得:x﹣y=1,故答案为:1.6、(2022•安顺)若a+2b=8,3a+4b=18,则a+b的值为.【分析】直接利用已知解方程组进而得出答案.【解答】解:方法一、∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.方法二、∵a+2b=8,3a+4b=18,∴2a+2b=10,∴a+b=5,故答案为:5.本课结束。

中考数学专题复习一元二次方程组的综合题附详细答案

中考数学专题复习一元二次方程组的综合题附详细答案

中考数学专题复习一元二次方程组的综合题附详细答案一、一元二次方程1.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k = 当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.2.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点. (1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点,∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0. 则x 1+x 2=2k-1,x 1•x 2=k 2+1,∵=== 32-, 解得:k=-1或k= 13-(舍去), ∴k=﹣13.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.4.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】解:∵90B ∠=,10AC =,6BC =, ∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.5.解方程:(x +1)(x -1)=x.【答案】x 1,x 2 【解析】试题分析:根据方程的特点,根据平方差公式化为一般式,然后可根据公式法求解即可.试题解析:(x +1)(x -1)=x 2-2x-1=0∵a=1,b=-c=-1 ∴△=b 2-4ac=8+4=12>0∴∴x 1x 2.6.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去).∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5. 【解析】 【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可. 【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x<10时,原方程化为x2+x﹣20=0,解得x3=4,x4=﹣5,故原方程的根是x1=4,x2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.7.关于x的一元二次方程.(1).求证:方程总有两个实数根;(2).若方程的两个实数根都是正整数,求m的最小值.【答案】(1)证明见解析;(2)-1.【解析】【分析】(1)根据一元二次方程根的个数情况与根的判别式关系可以证出方程总有两个实数根. (2)根据题意利用十字相乘法解方程,求得,再根据题意两个根都是正整数,从而可以确定的取值范围,即求出吗的最小值.【详解】(1)证明:依题意,得.,∴.∴方程总有两个实数根.由.可化为:得,∵方程的两个实数根都是正整数,∴.∴.∴的最小值为.【点睛】本题主要考查了一元二次方程根的判别式与根的个数关系和利用十字相乘法解含参数的方程,熟知根的判别式大于零方程有两个不相等的实数根,判别式等于零有两个相等的实数根或只有一个实数根,判别式小于零无根和十字相乘法的法则是解题关键.8.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【答案】羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(100﹣4x)米;然后根据矩形的面积公式列出方程.试题解析:设AB的长度为x米,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20考点:一元二次方程的应用.9.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.10.关于x的一元二次方程(k-2)x2-4x+2=0有两个不相等的实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.【答案】(1)k<4且k≠2.(2)m=0或m=8 3 .【解析】分析:(1)由题意,根据一元二次方程的定义和一元二次方程根的判别式列出关于k 的不等式组,解不等式组即可求得对应的k 的取值范围;(2)由(1)得到符合条件的k 的值,代入原方程,解方程求得x 的值,然后把所得x 的值分别代入方程x 2+mx -1=0即可求得对应的m 的值.详解:(1)∵一元二次方程(k-2)x 2-4x+2=0有两个不相等的实数根, ∴△=16-8(k-2)=32-8k >0且k-2≠0. 解得:k <4且k≠2.(2)由(1)可知,符合条件的:k=3,将k=3代入原方程得:方程x 2-4x+3=0,解此方程得:x 1=1,x 2=3.把x=1时,代入方程x 2+mx-1=0,有1+m-1=0,解得m=0. 把x=3时,代入方程x 2+mx-1=0,有9+3m-1=0,解得m=83-.∴m=0或m=83-.点睛:(1)知道“在一元二次方程20?(0)ax bx c a ++=≠中,当△=240b ac ->时,方程有两个不相等的实数根;当△=240b ac -=时,方程有两个相等的实数根;△=240b ac -<时,方程没有实数根”是正确解答第1小题的关键;(2)解第2小题时,需注意相同的根存在两种情况,解题时不要忽略了其中任何一种情况.11.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求没m 的最小整数值; (2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3 【解析】 【分析】(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到12(1)x x m +=-+,212124x x m =-,然后解关于m 的一元二次方程,即可确定m 的值. 【详解】解:(1)∵221(1)204x m x m +++-=有两个实数根,∴221(1)41(2)04m m ∆=+-⨯⨯-≥,∴290m +≥, ∴92m ≥-; ∴m 的最小整数值为:4m =-;(2)由根与系数的关系得:12(1)x x m +=-+,212124x x m =-, 由22212121184x x x x m ++=-得: ()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭∴22150m m +-=, 解得:3m =或5m =-;∵92m ≥-, ∴3m =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,则12bx x a +=-,12c x x a=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系和根的判别式.12.解方程:(x 2+x )2+(x 2+x )=6. 【答案】x 1=﹣2,x 2=1 【解析】 【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0, 解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0, ∵△=12﹣4×1×3=1﹣12=﹣11<0, ∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1. 【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.13.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解:22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+= 22()(4)0m n n ∴-+-=, 0,40m n n ∴-=-=, 4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值. 【答案】(1)2(2)6(3)7 【解析】 【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值. 【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0 ∴(x +y )2+(y +1)2=0 ∴x +y =0 y +1=0 解得:x =1,y =﹣1 ∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0 ∴(a ﹣3)2+(b ﹣4)2=0 ∴a ﹣3=0,b ﹣4=0 解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b+c=2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.14.如图,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,若点P从点A沿AB边向B点以1 cm/s的速度移动,点Q从B点沿BC边向点C以2 cm/s的速度移动,两点同时出发.(1)问几秒后,△PBQ的面积为8cm²?(2)出发几秒后,线段PQ的长为cm ?(3)△PBQ的面积能否为10 cm2?若能,求出时间;若不能,请说明理由.【答案】(1) 2或4秒 cm;(3)见解析.【解析】【分析】(1)由题意,可设P、Q经过t秒,使△PBQ的面积为8cm2,则PB=6-t,BQ=2t,根据三角形面积的计算公式,S△PBQ=12BP×BQ,列出表达式,解答出即可;(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.【详解】(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,则PB=6-t,BQ=2t,∵∠B=90°,∴12(6-t)× 2t=8,解得t1=2,t2=4,∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;(2)设x秒后,PQ= cm,由题意,得(6-x)2+4x2=32,解得x1=25,x2=2,故经过25秒或2秒后,线段PQ的长为 cm;(3)设经过y秒,△PBQ的面积等于10 cm2,S △PBQ =12×(6-y)× 2y =10, 即y 2-6y +10=0,∵Δ=b 2-4ac =36-4× 10=-4< 0, ∴△PBQ 的面积不会等于10 cm 2. 【点睛】本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.15.阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式。

中考数学与一元二次方程组有关的压轴题附详细答案

中考数学与一元二次方程组有关的压轴题附详细答案一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P ﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得1(舍去)或x=1,∴点P(1,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321xyx=-,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x.【详解】解:设321xyx=-,则原方程变形为y2-2y-3=0.解这个方程,得y1=-1,y2=3,∴3121xx=--或3321xx=-.解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.5.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.6.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.7.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值.【答案】(1)m 的最小整数值为4-;(2)3m = 【解析】 【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题. 【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯-⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥-∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m ≥-3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.8.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1. 【解析】 【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况. (2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.10.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米 【解析】 【分析】(1)设未知数,根据题目中的的量关系列出方程; (2)可以通过平移,也可以通过面积法,列出方程解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.11.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.12.已知关于x的方程x2-(m+2)x+(2m-1)=0。

人教版九年级数学第二单元《方程(组)与不等式(组)》中考知识点梳理

第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。

中考数学专题题库∶一元二次方程组的综合题附详细答案

中考数学专题题库∶一元二次方程组的综合题附详细答案一、一元二次方程 1.解下列方程:(1)x 2﹣3x=1. (2)12(y+2)2﹣6=0. 【答案】(1)12313313,22x x +-==;(2)12223,223y y =-+=-- 【解析】试题分析:(1)利用公式法求解即可; (2)利用直接开方法解即可;试题解析:解:(1)将原方程化为一般式,得x 2﹣3x ﹣1=0, ∵b 2﹣4ac=13>0 ∴.∴12313313,22x x +-==.(2)(y+2)2=12, ∴或,∴12223,223y y =-+=--2.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.()1求k 的取值范围;()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.【答案】(1)134k ≤;(2)2k =-. 【解析】 【分析】()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得. ()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍. 【详解】解:()1Q 关于x 的一元二次方程()222130x k x k --+-=有两个实数根,0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥,解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,()222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+, 221223x x +=Q ,224723k k ∴-+=,解得4k =,或2k =-,134k ≤Q , 4k ∴=舍去, 2k ∴=-. 【点睛】本题考查了一元二次方程2ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.3.解方程:2332302121x x x x ⎛⎫⎛⎫--= ⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1 【解析】 【分析】设321xy x =-,则原方程变形为y 2-2y-3=0, 解这个一元二次方程求y ,再求x . 【详解】解:设321xy x =-,则原方程变形为y 2-2y-3=0. 解这个方程,得y 1=-1,y 2=3,∴3121x x =--或3321xx =-. 解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.4.图1是李晨在一次课外活动中所做的问题研究:他用硬纸片做了两个三角形,分别为△ABC和△DEF,其中∠B=90°,∠A=45°,BC=,∠F=90°,∠EDF=30°, EF=2.将△DEF 的斜边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).(1)请回答李晨的问题:若CD=10,则AD= ;(2)如图2,李晨同学连接FC,编制了如下问题,请你回答:①∠FCD的最大度数为;②当FC∥AB时,AD= ;③当以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边时,AD= ;④△FCD的面积s的取值范围是 .【答案】(1)2;(2)① 60°;②;③;④.【解析】试题分析:(1)根据等腰直角三角形的性质,求出AC的长,即可得到AD的长.(2)①当点E与点C重合时,∠FCD的角度最大,据此求解即可.②过点F作FH⊥AC于点H,应用等腰直角三角形的判定和性质,含30度角直角三角形的性质求解即可.③过点F作FH⊥AC于点H,AD=x,应用含30度角直角三角形的性质把FC用x来表示,根据勾股定理列式求解.④设AD=x,把△FCD的面积s表示为x的函数,根据x的取值范围来确定s的取值范围.试题解析:(1)∵∠B=90°,∠A=45°,BC=,∴AC=12.∵CD=10,∴AD=2.(2)①∵∠F=90°,∠EDF=30°,∴∠DEF=60°.∵当点E与点C重合时,∠FCD的角度最大,∴∠FCD的最大度数=∠DEF="60°."② 如图,过点F作FH⊥AC于点H,∵∠EDF=30°, EF=2,∴DF=. ∴DH=3,FH=.∵FC∥AB,∠A=45°,∴∠FCH="45°." ∴HC=. ∴DC=DH+HC=.∵AC=12,∴AD=.③如图,过点F作FH⊥AC于点H,设AD=x,由②知DH=3,FH=,则HC=.在Rt△CFH中,根据勾股定理,得.∵以线段AD、FC、BC的长度为三边长的三角形是直角三角形,且FC为斜边,∴,即,解得.④设AD=x,易知,即.而,当时,;当时,.∴△FCD的面积s的取值范围是.考点:1.面动平移问题;2.等腰直角三角形的判定和性质;3.平行的性质;4.含30度角直角三角形的性质;5.勾股定理;6.由实际问题列函数关系式;7.求函数值.5.由图看出,用水量在m吨之内,水费按每吨1.7元收取,超过m吨,需要加收.6.已知为正整数,二次方程的两根为,求下式的值:【答案】【解析】由韦达定理,有,.于是,对正整数,有原式=7.观察下列一组方程:20x x -=①;2320x x -+=②;2560x x -+=③;27120x x -+=④;⋯它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.()1若2560x kx ++=也是“连根一元二次方程”,写出k 的值,并解这个一元二次方程; ()2请写出第n 个方程和它的根.【答案】(1)x 1=7,x 2=8.(2)x 1=n -1,x 2=n . 【解析】 【分析】(1)根据十字相乘的方法和“连根一元二次方程”的定义,找到56是7与8的乘积,确定k 值即可解题,(2)找到规律,十字相乘的方法即可求解. 【详解】解:(1)由题意可得k =-15,则原方程为x 2-15x +56=0,则(x -7)·(x -8)=0,解得x 1=7,x 2=8.(2)第n 个方程为x 2-(2n -1)x +n(n -1)=0,(x -n)(x -n +1)=0,解得x 1=n -1,x 2=n. 【点睛】本题考查了用因式分解法求解一元二次方程,与十字相乘联系密切,连根一元二次方程是特殊的十字相乘,中等难度,会用十字相乘解题是解题关键.8.已知关于x 的一元二次方程()2204mmx m x -++=. (1)当m 取什么值时,方程有两个不相等的实数根;(2)当4m =时,求方程的解.【答案】(1)当1m >-且0m ≠时,方程有两个不相等的实数根;(2)1354x +=,2354x =. 【解析】 【分析】(1)方程有两个不相等的实数根,>0∆,代入求m 取值范围即可,注意二次项系数≠0;(2)将4m =代入原方程,求解即可. 【详解】(1)由题意得:24b ac ∆=- =()22404mm m +->g g,解得1m >-. 因为0m ≠,即当1m >-且0m ≠时,方程有两个不相等的实数根.(2)把4m =带入得24610x x -+=,解得1x =,2x =. 【点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是加大本题的关键.9.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.校园空地上有一面墙,长度为20m ,用长为32m 的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.【答案】(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.【解析】【分析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.11.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.12.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.【解析】分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;(1)第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,(2)代入271,列方程,方程有解则存在这样的点阵.详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=17个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=60个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:60,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.13.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人.设九(1)班共有x人去旅游,则人均费用为[100﹣2(x﹣30)]元,由题意得:x[100﹣2(x﹣30)]=3150,整理得x2﹣80x+1575=0,解得x1=35,x2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动. 考点:一元二次方程的应用.14.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280()2因为1020020002625⨯=<.因此参加人比10人多, 设在10人基础上再增加x 人,由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,经检验 15x =是方程的解且符合题意,225x =(舍去).1010515x +=+=答:该单位共有15名员工参加旅游. 【点睛】本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.15.利民商店经销甲、乙两种商品.现有如下信息 信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a 元,在不考虑其他因素的条件下,当a 定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据给定的三个信息,可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据总利润=单件利润⨯销售数量,即可得出关于a 的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.。

中考数学复习指导:不等式组与方程组的完美结合


答:每个书包的的价格为 28 元,每本词典的价格为 20 元. (2)设购买书包 y 个,则购买词典(40-y)本,根据题意,得
1000-[28y+20(40-y)]≥100 1000-[28y+20(40-y)]≤120
解得 10≤y≤12.5, 因为 y 为整数,所以 y 的值为 10 或 11 或 12. 所以有三种购买方案,分别是: ①书包 10 个,词典 30 本;②书包 11 个,词典 29 本;③书包 12 个,词典 28 本.
用超过 15000 元而不超过 15080 元.请你通过计算为青扬公司设计购买方案. 分析:第 1 问较简单,可利用一元一次方程或二元一次方程组求解,第 2 问购买产品的 费用由两部分组成,一是 A 种产品的费用,二是 B 种产品的费用,根据题意可列出不等式 组,进而设计方案. 解:(1)设乙车间每天生产 x 件 B 种产品,则甲车间每天生产(x+2)件 A 种产品. 根据题意 3(x+2)=4x 解得 x=6
案? 分析:(1)每个书包和每本词典的价格,可根据问题中的相等关系,列出方程组进行求 出;(2)求共有几种方案,则需要根据“ 余下不少于 100 元且不超过 120 元的钱购买体育用 品”中所包含的不等关系列不等式组. 设每个书包的价格为 x 元,每本词典的价格为 y 元,根据题意,得
x+y=8 3x+2y=124 x=28 解这个方程组,得 y=20
点击不等式 点击不等式( 不等式(组)决策题
学习了一元一次不等式(组)以后,可以利用一元一次不等式(组)解决许多与生 活密切相关的实际问题,特别是经营决策问题,下面分类举例说明,供同学们参考. 一、最优决策 例 1. 某服装店欲购甲、乙两种新款运动服,甲款每套进价 350 元,乙款每套进价 200 元,该店计划用不低于 7600 元且不高于 8000 元的资金订购 30 套甲、乙两款运动服。 (1) 该店订购这两款运动服,共有哪几种方案? (2) 若该店以甲款每套 400 元,乙款每套 300 元的价格全部出售,哪种方案获利最大? 分析:(1) 设该店订购甲款运动服 x 套,根据资金不低于 7600 元且不高于 8000 元列不 等式组求整数解.(2)根据 3 种方案的获利数比较确定. [解] 设该店订购甲款运动服 x 套,则订购乙款运动服(30−x)套,由题意,得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档