(新高考)高考数学二轮复习专题强化训练(十八)立体几何理

(新高考)高考数学二轮复习专题强化训练(十八)立体几何理
(新高考)高考数学二轮复习专题强化训练(十八)立体几何理

(新高考)高考数学二轮复习专题强化训练(十八)立体几何理

专题强化训练(十八) 立体几何

一、选择题

1.[2019·石家庄一模]已知三棱锥P -ABC 中,PC ⊥AB ,△ABC 是边长为2的正三角形,

PB =4,∠PBC =60°;

(1)证明:平面PAC ⊥平面ABC ;

(2)设F 为棱PA 的中点,求二面角P -BC -F 的余弦值.

解:(1)在△PBC 中,∠PBC =60°,BC =2,PB =4,由余弦定理可得PC =23, ∴PC 2

+BC 2

=PB 2

, ∴PC ⊥BC ,

又PC ⊥AB ,AB ∩BC =B ,

∴PC ⊥平面ABC ,∵PC ?平面PAC , ∴平面PAC ⊥平面ABC .

(2)解法一:在平面ABC 中,过点C 作CM ⊥CA ,以CA ,CM ,CP 所在的直线分别为x ,y ,

z 轴建立空间直角坐标系C -xyz .

则C (0,0,0),P (0,0,23),A (2,0,0),B (1,3,0),F (1,0,3). 设平面PBC 的法向量为m =(x 1,y 1,z 1), 则????? CB →·m =x 1+3y 1=0,CP →·m =23z 1=0,

取y 1=-1,则x 1=3,z 1=0,

即m =(3,-1,0)为平面PBC 的一个法向量. 设平面BCF 的法向量为n =(x 2,y 2,z 2), 则?????

CB →·n =x 2+3y 2=0,CF →·n =x 2+3z 2=0,

取x 2=3,则y 2=-1,z 2=-1,即n =(3,-1,-1)为平面BCF 的一个法向量, |cos 〈m ,n 〉|=|m·n ||m ||n |=|3+1+0|2×3+(-1)2+(-1)2=255

由题图可知二面角P -BC -F 为锐角, ∴二面角P -BC -F 的余弦值为25

5

.

解法二:由(1)可知PC ⊥平面ABC ,又PC ?平面PBC , ∴平面PBC ⊥平面ABC ,

∴二面角P -BC -F 的余弦值就是二面角A -BC -F 的正弦值, 作FM ⊥AC 于点M ,则FM ⊥平面ABC , 作MN ⊥BC 于点N ,连接FN ,则FN ⊥BC , ∴∠FNM 为二面角A -BC -F 的平面角. ∵点F 为PA 的中点,∴点M 为AC 的中点, 在Rt △FMN 中,FM =12PC =3,MN =3

2,

∴FN =

152,∴sin ∠FNM =FM FN =25

5

, ∴二面角P -BC -F 的余弦值为25

5

.

2.[2019·郑州质量预测二]如图,等腰直角三角形ABC 中,∠B =90°,平面ABEF ⊥平面ABC,2AF =AB =BE ,∠FAB =60°,AF ∥BE .

(1)求证:BC ⊥BF ;

(2)求二面角F -CE -B 的正弦值.

解:(1)等腰直角三角形ABC 中,∠B =90°,即BC ⊥AB ,

又平面ABC ⊥平面ABEF ,平面ABC ∩平面ABEF =AB ,BC ?平面ABC , ∴BC ⊥平面ABEF ,又BF ?平面ABEF , ∴BC ⊥BF .

(2)由(1)知BC ⊥平面ABEF ,故建立如图所示的空间直角坐标系B -xyz ,

设AF =1,则由已知可得B (0,0,0),C (0,2,0),F ? ????32,0,32,E (-1,0,3),EC →

=(1,2,

-3),

EF →

=? ??

??5

2,0,-

32,BC →

=(0,2,0), 设平面CEF 的法向量为n =(x ,y ,z ),则有 ???

?? n ·EC →=0,n ·EF →=0

??????

x +2y -3z =0,

52

x -3

2z =0,令x =3,则z =5,y =23,即n =(3,

23,5)为平面CEF 的一个法向量.

设平面BCE 的法向量为m =(x 1,y 1,z 1),则有 ???

??

m ·EC →=0,

m ·BC →=0

???

?

x 1+2y 1-3z 1=0,

2y 1=0,

∴y 1=0,x 1=3z 1,令x 1=3,则m =(3,0,1)为平面BCE 的一个法向量.

设二面角F -CE -B 的平面角为θ,则|cos θ|=|m·n |m ||n |=3+52×210=10

5

∴sin θ=

15

5

, ∴二面角F -CE -B 的正弦值为

155

. 3.[2019·太原一模]如图,在五面体ABCDEF 中,四边形ABCD 是直角梯形,AB ∥CD ,

AD ⊥CD ,四边形CDEF 是菱形,∠DCF =60°,CD =2AD =2AB ,AE =5AD .

(1)证明:CE ⊥AF ;

(2)已知点P 在线段BC 上,且CP =λCB ,若二面角A -DF -P 的大小为60°,求实数

λ的值.

解:(1)∵四边形CDEF 是菱形, ∴DE =CD =2AD ,CE ⊥DF ,

∵AE =5AD ,∴AE 2

=5AD 2

=AD 2

+DE 2

, ∴AD ⊥DE ,

∵AD ⊥CD ,∴AD ⊥平面CDEF ,

∴AD ⊥CE ,DF ∩AD =D .

∴CE ⊥平面ADF ,AF ?平面ADF ,∴CE ⊥AF .

(2)由(1)知以D 为坐标原点,DA →的方向为x 轴的正方向,|DA →|为单位长度,DC →

的方向为

y 轴的正方向,建立如图所示的空间直角坐标系D -xyz ,

由题设可知D (0,0,0),A (1,0,0),B (1,1,0),C (0,2,0),E (0,-1,3),F (0,1,3), ∴DF →=(0,1,3),CP →=λCB →

=(λ,-λ,0), ∴DP →=DC →+CP →

=(λ,2-λ,0), 设m =(x ,y ,z )是平面DFP 的法向量,则 ???

??

m ·DF →=0m ·DP →=0

,∴??

?

y +3z =0

λx +(2-λ)y =0

令z =-1,则?????

y =3

x =3? ??

??1-2λ,

∴m =?

??

??3?

??

??1-2λ,3,-1为平面DFP 的一个法向量.

由(1)可知CE →

=(0,-3,3)是平面ADF 的一个法向量, ∵二面角A -DF -P 的大小为60°, ∴cos60°=|m ·CE

|m |·|CE →

|=

|-43|23×

3? ??

??1-2λ

2+4=12,∴λ=23

. 4.[2019·洛阳统考]如图1,平面多边形PABCD 中,PA =PD ,AD =2DC =2BC =4,AD ∥

BC ,AP ⊥PD ,AD ⊥DC ,E 为PD 的中点,现将△APD 沿AD 折起,如图2,使PC =2 2.

图1

图2

(1)证明:CE ∥平面ABP ;

(2)求直线AE 与平面ABP 所成角的正弦值. 解:(1)取PA 的中点H ,连接HE ,BH ,如图.

∵E 为PD 的中点,∴HE 为△APD 的中位线, ∴HE ∥AD ,且AE =1

2

AD .

又AD ∥BC ,BC =1

2AD ,∴HE ∥BC ,HE =BC ,

∴四边形BCEH 为平行四边形,∴CE ∥BH . ∵BH ?平面ABP ,CE ?平面ABP , ∴CE ∥平面ABP .

(2)由题意知△PAD 为等腰直角三角形,四边形ABCD 为直角梯形.取AD 的中点F ,连接

BF ,PF ,∵AD =2BC =4,

∴平面多边形PABCD 中,P ,F ,B 三点共线, 且PF =BF =2,

∴翻折后,PF ⊥AD ,BF ⊥AD ,PF ∩BF =F , ∴DF ⊥平面PBF ,∴BC ⊥平面PBF , ∵PB ?平面PBF ,∴BC ⊥PB .

在直角三角形PBC 中,PC =22,BC =2, ∴PB =2,

∴△PBF 为等边三角形.

取BF 的中点O ,DC 的中点M ,连接PO ,OM ,则PO ⊥BF , ∵DF ⊥平面PBF ,∴DF ⊥PO . 又DF ∩BF =F ,∴PO ⊥平面ABCD .

以O 为原点,OB →,OM →,OP →

的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系, 则B (1,0,0),D (-1,2,0),P (0,0,3),A (-1,-2,0),

∴E ? ????-12,1,32,∴AE →=? ????12,3,32,AB →=(2,2,0),BP →

=(-1,0,3).

设平面ABP 的法向量为n =(x ,y ,z ),则???

??

n ·AB →=0

n ·BP →=0,∴??

?

x +y =0-x +3z =0

故可取n =(3,-3,3)

∴cos 〈n ,AE →

〉=n ·AE →

|n |·|AE →|=-21035,

∴直线AE 与平面ABP 所成角的正弦值为

210

35

. 5.[2019·辽宁高考模拟]如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形

ADEF 为正方形,四边形ABCD 为梯形,且AD ∥BC ,△ABD 是边长为1的等边三角形,M 为线

段BD 中点,BC =3.

(1)求证:AF ⊥BD;

(2)求直线MF 与平面CDE 所成角的正弦值;

(3)线段BD 上是否存在点N ,使得直线CE //平面AFN ?若存在,求BN BD

的值;若不存在,请说明理由.

解:(1)证明:因为ADEF 为正方形, 所以AF ⊥AD .

又因为平面ADEF ⊥平面ABCD ,且平面ADEF ∩平面ABCD =AD , 所以AF ⊥平面ABCD ,BD ?平面ABCD ,所以AF ⊥BD . (2)取AD 中点O ,EF 中点K ,连接OB ,OK , 则在△ABD 中,OB ⊥OD ,在正方形ADEF 中,OK ⊥OD . 又平面ADEF ⊥平面ABCD ,则OB ⊥平面ADEF , 所以OB ⊥OK ,即OB, OD, OK 两两垂直.

分别以OB ,OD ,OK 为x 轴,y 轴,z 轴建立空间直角坐标系(如图),

则B ?

????32,0,0,D ? ????0,12,0,C ? ??

??

32,3,0,

E ?

??

??0,1

2

,1,M ? ????34,14,0,F ?

?

???0,-12,1

所以MF →=? ?

???-34,-34,1,CD →=? ????-32,-52,0,

DE →

=(0,0,1).

设平面CDE 的一个法向量为n =(x ,y ,z ), 则?????

CD →·n =0

DE →·n =0

,即?????

-32

·x -52·y =0

z =0

.

令x =-5,则y =3,则n =(-5,3,0). 设直线MF 与平面CDE 所成角为θ, sin θ=|cos 〈MF →

,n 〉|=|MF →

·n ||MF →||n |=314.

(3) 要使直线CE ∥平面AFN ,只需AN ∥CD . 设BN →=λBD →

,λ∈[0,1], 则? ????x n -

32,y n ,z n =λ? ?

?

??-32,12,0, 所以x n =

32-32λ,y n =12λ,z n =0,N ? ??

??32-32λ,12λ,0, 所以AN →=? ????3

2-32λ,12λ+12,0.

又CD →=(-32,-52,0),由AN →∥CD →

得32-32λ-3

2

=12λ+12-52,解得λ=23∈[0,1],

所以线段BD上存在点N,使得直线CE∥平面AFN,且BN

BD =

2

3

.

6.[2019·福州质量抽测]如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,E为AD的中点,AC交BE于点F,G为△PCD的重心.

(1)求证:FG∥平面PAD;

(2)若PA=AD,点H在线段PD上,且PH=2HD,求二面角H-FG-C的余弦值.

解:(1)因为AE∥BC,

所以△AEF∽△CBF,

因为E为AD的中点,

所以2AE=AD=BC,

所以CF=2AF.

如图,延长CG,交PD于M,连接AM,

因为G为△PCD的重心,

所以M为PD的中点,且CG=2GM,

所以FG∥AM,

因为AM?平面PAD,FG?平面PAD,

所以FG∥平面PAD.

(2)以A为坐标原点,分别以AB,AD,AP所在的直线为x轴,y轴,z轴建立如图所示空间直角坐标系.

设PA=AD=3,则C(3,3,0),D(0,3,0),P(0,0,3),F(1,1,0).

因为PH =2HD ,所以H (0,2,1). 因为G 为△PCD 的重心,所以G (1,2,1).

设平面FGC 的法向量为n 1=(x 1,y 1,z 1).FC →=(2,2,0),FG →

=(0,1,1), 则???

?? n 1·FC →=0

n 1·FG →=0

,所以?

??

??

2x 1+2y 1=0

y 1+z 1=0,

取x 1=1,则y 1=-1,z 1=1,

所以n 1=(1,-1,1)为平面FGC 的一个法向量.

设平面FGH 的法向量为n 2=(x 2,y 2,z 2).FH →

=(-1,1,1), 则???

??

n 2·FH →=0

n 2·FG →=0

,所以?

??

??

-x 2+y 2+z 2=0

y 2+z 2=0,

则x 2=0,取y 2=1,则z 2=-1,

所以n 2=(0,1,-1)为平面FGH 的一个法向量.

所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-6

3

.

由图可知,该二面角为钝角, 所以二面角H -FG -C 的余弦值为-

6

3

. 7.[2019·浙江卷]如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.

(1)证明:EF ⊥BC ;

(2)求直线EF 与平面A 1BC 所成角的余弦值.

解:解法一:(1)如图,连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .

又平面A 1ACC 1⊥平面ABC ,A 1E ?平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥

平面ABC ,则A 1E ⊥BC .

又因为A 1F ∥AB ,∠ABC =90°, 故BC ⊥A 1F .又A 1E ∩A 1F =A 1, 所以BC ⊥平面A 1EF .又EF ?平面A 1EF 因此EF ⊥BC .

(2)取BC 的中点G ,连接EG ,GF , 则四边形EGFA 1是平行四边形.

由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 连接A 1G 交EF 于O ,由(1)得BC ⊥平面EGFA 1, 则平面A 1BC ⊥平面EGFA 1,

所以EF 在平面A 1BC 上的射影在直线A 1G 上. 则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,

A 1E =23,EG = 3.

由于O 为A 1G 的中点,故EO =OG =

A 1G

2

152

, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG =3

5

.

因此,直线EF 与平面A 1BC 所成角的余弦值是3

5.

解法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点, 所以A 1E ⊥AC .

又平面A 1ACC 1⊥平面ABC ,A 1E ?平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .

如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz .

不妨设AC =4,则A 1(0,0,23),B (3,1,0),

F ?

??

??

32,32,23,C (0,2,0).

因此,EF →=? ??

??32,3

2,23,BC →=(-3,1,0).

由EF →·BC →

=0得EF ⊥BC .

(2)设直线EF 与平面A 1BC 所成角为θ.

由(1)可得BC →=(-3,1,0),A 1C →

=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ). 由???

??

BC →·n =0,A 1C →·n =0

,得??

?

-3x +y =0,

y -3z =0.

取n =(1,3,1),故

sin θ=|cos 〈EF →

,n 〉|=|EF →

·n ||EF →|·|n |=45.

因此,直线EF 与平面A 1BC 所成角的余弦值为3

5

.

8.[2019·北京卷]如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA

=AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =1

3

.

(1)求证:CD ⊥平面PAD ; (2)求二面角F -AE -P 的余弦值;

(3)设点G 在PB 上,且PG PB =2

3

.判断直线AG 是否在平面AEF 内,说明理由.

解:(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,PA ∩AD =A ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M . 因为PA ⊥平面ABCD , 所以PA ⊥AM ,PA ⊥AD .

如图建立空间直角坐标系A -xyz ,

则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2). 因为E 为PD 的中点,所以E (0,1,1).

所以AE →=(0,1,1),PC →=(2,2,-2),AP →

=(0,0,2). 所以PF →=13PC →=? ????23,2

3,-23,AF →=AP →+PF →=? ????23,23,43.

设平面AEF 的一个法向量为n =(x ,y ,z ), 则???

??

n ·AE →=0,

n ·AF →=0,

即????

?

y +z =0,23x +23y +4

3

z =0.

令z =1,则y =-1,x =-1. 于是n =(-1,-1,1).

又因为平面PAD 的法向量为p =(1,0,0),

所以cos 〈n ,p 〉=n ·p |n ||p |=-3

3

.

由题知,二面角F -AE -P 为锐二面角,所以其余弦值为3

3

. (3)直线AG 在平面AEF 内.

因为点G 在PB 上,且PG PB =23

,PB →

=(2,-1,-2),

所以PG →=23PB →=? ????4

3,-23,-43,AG →=AP →+PG →=? ????43,-23,23.

由(2)知,平面AEF 的法向量为n =(-1,-1,1). 所以AG →

·n =-43+23+23=0.

所以直线AG 在平面AEF 内.

高考数学理试题分类汇编.doc

高考数学理试题分类汇编----立体几何 一、已给三视图求立体图形的体积/表面积 1、(2016年北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( ) A. B. C. D. 【答案】A 2、(2016年山东高考)有一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为 (A )π3 2+31 (B )π32+ 31 (C )π62+31 (D )π62 +1 【答案】C 3、(2016年全国I 高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径. 若 16131 2 1

该几何体的体积是28π 3 ,则它的表面积是 (A )17π (B )18π (C )20π (D )28π 【答案】A 4、(2016年全国II 高考)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π 【答案】C 5、(2016年全国III 高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该 多面体的表面积为

(A ) (B ) (C ) 90 ( D )81 【答案】B 6、(2016年四川高考)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是__________. 7、(2016年天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则 该四棱锥的体积为_______m 3 . 【答案】2 二.求值 8、(2016年浙江高考)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2 ,体积是 cm 3. 18+54+

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

(完整word版)2019年高考数学理科试卷全国一卷Word版和PDF版。

2019年高考理科数学全国一卷 一、单选题 本大题共12小题,每小题5分,共60分。在每小题给出的4个选项中,有且只有一项是符合题目要求。 1.已知集合M={x |-4<x <2},N={x | -x -6<0},则M∩U = A{x |-4<x <3} B{x |-4<x <-2} C{x |-2<x <2} D{x |2<x <3} 2.设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y),则 A B C D 3.已知a =2.0log 2,b =2.02,c =3 .02 .0,则 A.a <b <c B.a <c <b C.c <a <b D.b <c <a 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐到足底的长度之比是 ??? ? ??≈称之为黄金分割.618.021 -521-5,著名的“断臂维纳斯”便是如此。此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 2 1 -5 。若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是 A.165 cm B.175 cm C.185 cm D.190 cm 5.函数()][ππ,的-cos sin 2 x x x x x f ++= 图像大致为 A B C D 6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“—”和阴爻“- -”,右图就是一重卦。在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A. 165 B.3211 C.3221 D.16 11 7.已知非零向量,满足 ,且 ,则与的夹角为 A. 6π B.3π C.32π D.6 5π

2015高考数学专题复习:函数零点

2015高考数学专题复习:函数零点 函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图像与x 轴交点的横坐标. ()x g x f y -=)(的零点(个数)?函数()x g x f y -=)(的图像与x 轴的交点横坐标(个数) ?方程()()0=-x g x f 即()x g x f =)(的实数根(个数) ?函数)(x f y =与)(x g y =图像的交点横坐标(个数) 1.求下列函数的零点 1.232-+=x x y 2.x y 2log = 3.62 -+=x x y 4.1ln -=x y 5.2 1sin + =x y 2.函数22()(2)(32)f x x x x =--+的零点个数为 3.函数()x f =???>-≤-+) 0(2ln ) 0(322x x x x x 的零点个数为 4.函数() () ???>+-≤-=13.41.44)(2x x x x x x f 的图像和函数()ln g x x =的图像的交点个数是 ( ) .A 1 .B 2 .C 3 .D 4 5.函数5 ()3f x x x =+-的零点所在区间为 ( ) A .[0,1] B .[1,2] C .[2,3] D .[3,4] 6.函数1()44x f x e x -=+-的零点所在区间为 ( ) A. (1,0)- B. (0,1) C. (1,2) D. (2,3) 7.函数()2ln(2)3f x x x =--的零点所在区间为 ( ) A. (2,3) B. (3,4) C. (4,5) D. (5,6) 8.方程2|2|lg x x -=的实数根的个数是 9.函数()lg ()72f x x g x x ==-与图像交点的横坐标所在区间是 ( ) A .()21, B .()32, C .()43, D .()54, 10.若函数2 ()4f x x x a =--的零点个数为3,则a =______

2018届高考数学立体几何(理科)专题02-二面角

2018届高考数学立体几何(理科)专题02 二面角 1.如图,在三棱柱111ABC A B C -中, 1,90A A AB ABC =∠=?侧面11A ABB ⊥底面ABC . (1)求证: 1AB ⊥平面1A BC ; (2)若15360AC BC A AB ==∠=?,,,求二面角11B A C C --的余弦值.

2.如图所示的多面体中,下底面平行四边形与上底面平行,且,,,,平面 平面,点为的中点. (1)过点作一个平面与平面平行,并说明理由; (2)求平面与平面所成锐二面角的余弦值.

3.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形, 2AB AD =, BD =,且PD ⊥底面ABCD . (1)证明:平面PBD ⊥平面PBC ; (2)若Q 为PC 的中点,且1AP BQ ?=u u u v u u u v ,求二面角Q BD C --的大小.

4.如图所示的几何体是由棱台和棱锥拼接而成的组合体,其底面四边形是边长为2的菱形,,平面. (1)求证:; (2)求平面与平面所成锐角二面角的余弦值.

5.在四棱锥P ABCD -中,四边形ABCD 是矩形,平面PAB ⊥平面ABCD ,点E 、F 分别为BC 、AP 中点. (1)求证: //EF 平面PCD ; (2)若0 ,120,AD AP PB APB ==∠=,求平面DEF 与平面PAB 所成锐二面角的余弦值.

6.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形, ,90AD BC ADC ∠=o P ,平面PAD ⊥底面ABCD , Q 为AD 中点, M 是棱PC 上的点, 1 2,1,2 PA PD BC AD CD === ==(Ⅰ)若点M 是棱PC 的中点,求证: PA P 平面BMQ ; (Ⅱ)求证:平面PQB ⊥平面PAD ; (Ⅲ)若二面角M BQ C --为30o ,设PM tMC =,试确定t 的值.

最新-江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

2018年新课标Ⅰ卷高考数学理试题有答案【2020新】

2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1.设1i 2i 1i z -= ++,则||z = A .0 B . 1 2 C .1 D .2 2.已知集合{} 2 20A x x x =-->,则A =R e A .{} 12x x -<< B .{} 12x x -≤≤ C .}{}{ |1|2x x x x <->U D .}{}{ |1|2x x x x ≤-≥U 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍

D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12 5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u r A .3144 AB AC - u u u r u u u r B .1344 AB AC -u u u r u u u r C .3144 AB AC +u u u r u u u r D .1344 AB AC +u u u r u u u r 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.设抛物线C :y 2 =4x 的焦点为F ,过点(–2,0)且斜率为2 3 的直线与C 交于M ,N 两点,则FM FN ?u u u u r u u u r = A .5 B .6 C .7 D .8 9.已知函数e 0()ln 0x x f x x x ?≤=? >?,, ,, ()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径 分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则

2019-2020学年度最新人教版高考数学总复习(各种专题训练)Word版

2019-2020学年度最新人教版高考数学总复习 (各种专题训练)Word版(附参考答案) 一.课标要求: 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 三.要点精讲 1.集合:某些指定的对象集在一起成为集合。 a∈;若b不是集合A的元素,(1)集合中的对象称元素,若a是集合A的元素,记作A b?; 记作A (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A 的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体 (对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排 列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法:

高考数学19个专题分章节大汇编

高考理科数学试题分类汇编:1集合 一、选择题 1 . (普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =, 集合{}=12A , ,{}=23B ,,则()=U A B e( ) A. {}134, , B. {}34, C. {}3 D. {}4 【答案】D 2 . (普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤= ,则 A. ()01, B. (]02, C. ()1,2 D. (]12, 【答案】D 3 . (普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 . (普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意 12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”. 以下集合 对不是“保序同构”的是( ) A. *,A N B N == B. {|13},{|8010}A x x B x x x =-≤≤==-<≤或 C. {|01},A x x B R =<<= D. ,A Z B Q == 【答案】D 5 . (高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 . (普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={} ,x y x A y A -∈∈中元素的个数是

高考数学专题之排列组合综合练习

高考数学专题之排列组 合综合练习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.从中选个不同数字,从中选个不同数字排成一个五位数,则这些五位数中偶数的个数为() A. B. C. D. 2.五个同学排成一排照相,其中甲、乙两人不排两端,则不同的排法种数为()A.33 B.36 C.40 D.48 3.某校从8名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有() A.900种 B.600种 C.300种 D.150种 4.要从甲、乙等8人中选4人在座谈会上发言,若甲、乙都被选中,且他们发言中间恰好间隔一人,那么不同的发言顺序共有__________种(用数字作答). 5.有五名同学站成一排照毕业纪念照,其中甲不能站在最左端,而乙必须站在丙的左侧(不一定相邻),则不同的站法种数为__________.(用数字作答) 6.有个座位连成一排,现有人就坐,则恰有个空位相邻的不同坐法是 __________. 7.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答) 8.(2018年浙江卷)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成___________个没有重复数字的四位数.(用数字作答) 9.由0,1,2,3,4,5这6个数字共可以组成______.个没有重复数字的四位偶数. 10.将四个编号为1,2,3,4的小球放入四个编号为1,2,3,4的盒子中. (1)有多少种放法

2014年高考数学理科分类汇编专题03 导数与应用

1. 【2014江西高考理第8题】若1 2 ()2(),f x x f x dx =+? 则1 ()f x dx =?( ) A. 1- B.13- C.1 3 D.1 2. 【2014江西高考理第14题】若曲线x y e -=上点P 处的切线平行于直线210x y ++=,则点P 的坐标是________. 3. 【2014辽宁高考理第11题】当[2,1]x ∈-时,不等式32 430ax x x -++≥恒成立,则实数a 的取值范围是( ) A .[5,3]-- B .9 [6,]8 -- C .[6,2]-- D .[4,3]--

4. 【2014全国1高考理第11题】已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( ) A .()2,+∞ B .()1,+∞ C .(),2-∞- D .(),1-∞- 5. 【2014高考江苏卷第11题】在平面直角坐标系xoy 中,若曲线2 b y ax x =+(,a b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b += . 【答案】3-

6. 【2014高考广东卷理第10题】曲线25+=-x e y 在点()0,3处的切线方程为 . 7. 【2014全国2高考理第8题】设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( ) A. 0 B. 1 C. 2 D. 3 8. 【2014全国2高考理第12题】设函数()x f x m π=.若存在()f x 的极值点0x 满足 ()2 22 00x f x m +

历年全国理科数学高考试题立体几何部分精选(含答案)

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

(一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ?=?= 即 30 30x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{PB BC ?=?= 可取m=(0,-1,3-) 27cos ,727 m n ==- 故二面角A-PB-C 的余弦值为 27-

(二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 23 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1, DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

2018年全国各地高考数学(理科试卷及答案)

2018年高考数学理科试卷(江苏卷) 数学Ⅰ 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上.. . 1.已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么=?B A . 2.若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为 . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 . 5.函数()1log 2-=x x f 的定义域为 .

6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 . 7.已知函数()??? ??<<-+=22 2sin ππ ?x x y 的图象关于直线3π=x 对称,则?的值 是 . 8.在平面直角坐标系xOy 中,若双曲线()0,0122 22>>=-b a b y a x 的右焦点()0,c F 到一条 渐近线的距离为 c 2 3 ,则其离心率的值是 . 9.函数()x f 满足()()()R x x f x f ∈=+4,且在区间]2,2(-上,()??? ? ???≤<-+≤<=02,2120,2cos x x x x x f π, 则()()15f f 的值为 . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 . 11.若函数()()R a ax x x f ∈+-=122 3 在()+∞,0内有且只有一个零点,则()x f 在[]1,1-上 的最大值与最小值的和为 .

高考数学专题之排列组合小题汇总

2018年11月14日高中数学作业 温馨提示:(每题4分满分100分时间90分钟)姓名________________ 一、单选题 1.某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的 A B C D E F 这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( ) A. 360种 B. 432种 C. 456种 D. 480种 2.甲、乙、丙、丁、戊五位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆电动车只能载两人,其中孩子们表示都不坐自己妈妈的车,甲的小孩一定要坐戊妈妈的车,则她们坐车不同的搭配方式有() A.种 B.种 C.种 D.种 3.已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有()种 A. 19 B. 26 C. 7 D. 124.有张卡片分别写有数字,从中任取张,可排出不同的四位数个数为() A. B. C. D. 5.我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有() A. 300种 B. 150种 C. 120种 D. 90种 6.一只小青蛙位于数轴上的原点处,小青蛙每一次具有只向左或只向右跳动一个单位或者两个单位距离的能力,且每次跳动至少一个单位.若小青蛙经过5次跳动后,停在数轴上实数2位于的点处,则小青蛙不同的跳动方式共有( )种. A. 105 B. 95 C. 85 D. 75 7.中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有() A.种 B.种 C.种 D.种 8.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有() A. 168种 B. 156种 C. 172种 D. 180种 9.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种() A.14400 B.28800 C.38880 D.43200 10.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故 序号123456789101112选项 13141516171819202122232425

2015届高考数学(理)二轮专题配套练习:解析几何(含答案)

解析几何 1.直线的倾斜角与斜率 (1)倾斜角的范围为[0,π). (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1)、P 2(x 2,y 2)的直线的斜率为k =y 1-y 2 x 1-x 2(x 1≠x 2);③直 线的方向向量a =(1,k );④应用:证明三点共线:k AB =k BC . [问题1] (1)直线的倾斜角θ越大,斜率k 就越大,这种说法正确吗? (2)直线x cos θ+3y -2=0的倾斜角的范围是________. 2.直线的方程 (1)点斜式:已知直线过点(x 0,y 0),其斜率为k ,则直线方程为y -y 0=k (x -x 0),它不包括垂直于x 轴的直线. (2)斜截式:已知直线在y 轴上的截距为b ,斜率为k ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线. (3)两点式:已知直线经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,则直线方程为y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标 轴的直线. (4)截距式:已知直线在x 轴和y 轴上的截距为a ,b ,则直线方程为x a +y b =1,它不包括垂直于坐标轴的直 线和过原点的直线. (5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式. [问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________. 3.点到直线的距离及两平行直线间的距离 (1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C | A 2+ B 2; (2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离为d = |C 1-C 2|A 2 +B 2. [问题3] 两平行直线3x +2y -5=0与6x +4y +5=0间的距离为________. 4.两直线的平行与垂直 ①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2?k 1=k 2;l 1⊥l 2?k 1·k 2=-1. ②l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2?A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2?A 1A 2+B 1B 2=0. 特别提醒:(1)A 1A 2=B 1B 2≠C 1C 2、A 1A 2≠B 1B 2、A 1A 2=B 1B 2=C 1 C 2仅是两直线平行、相交、重合的充分不必要条件;(2)在解 析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中提到的两条直线都是指不重合的两条直线. [问题4] 设直线l 1:x +my +6=0和l 2:(m -2)x +3y +2m =0,当m =________时,l 1∥l 2;当m =________时,l 1⊥l 2;当________时l 1与l 2相交;当m =________时,l 1与l 2重合. 5.圆的方程 (1)圆的标准方程:(x -a )2+(y -b )2=r 2. (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F >0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为(-D 2,-E 2),半径为1 2D 2+E 2-4F 的圆. [问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. 6.直线、圆的位置关系 (1)直线与圆的位置关系 直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切.可从代数和几何两个方面来判断: ①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0?相交;Δ<0?相离;Δ=0?相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r ?相离;d =r ?相切. (2)圆与圆的位置关系 已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当|O 1O 2|>r 1+r 2时,两圆外离;②当|O 1O 2|=r 1 +r 2时,两圆外切;③当|r 1-r 2|<|O 1O 2|b >0);焦点在y 轴上,y 2a 2+x 2 b 2=1(a >b >0).

历年江苏高考数学立体几何真题汇编含详解

历年江苏高考数学立体几何真题汇编(含详解) (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ? ??? ?E ,F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)??????? ?? ?CB =CD F 是BD 的中点 ? CF ⊥BD ? ??? ?AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD (2009年第16题) 如图,在直三棱柱ABC —A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上, A 1D ⊥ B 1 C . 求证:(1)EF ∥平面ABC (2)平面A 1FD ⊥平面BB 1C 1C 证明:(1)由E ,F 分别是A 1B ,A 1C 的中点知EF ∥BC , 因为EF ?平面ABC ,BC ?平面ABC ,所以EF ∥平面ABC (2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1, 又A 1D ?平面A 1B 1C 1,故CC 1⊥A 1D , 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , CC 1、B 1C ?平面BB 1C 1C 故A 1D ⊥平面BB 1C 1C ,又A 1D ?平面A 1FD , 故平面A 1FD ⊥平面BB 1C 1C (2010年第16题)

高考数学理科大题公式(最全版)

高考数学17题(1):解三角形 1.正弦定理:______________________ 2.余弦定理:______________________ ______________________ ______________________ 3.三角形面积公式: S=____________________________ 4.三角形中基本关系:A+B+C=_____ sin(A+B)=___________ cos(A+B)=___________ tan(A+B)=___________ 注:基本不等式:若________,则______________ 重要不等式:若________,则______________

高考数学17题(2):数列 1.知S n 求a n:( 这个关系式对任意数列均成立) a n= _________________ 2.等差数列的有关概念 (1)定义:___________(n∈N*,d为常数). (2)等差中项:_____________, (3)通项公式:a n=_____________=______________ (4)前n项和公式:S n=____________=_______________ (5)等差数列性质:若_____________,则__________________3.等比数列的有关概念 (1)定义:___________(n∈N*,q为常数). (2)等比中项:_____________, (3)通项公式:a n=_____________=______________ (4)前n项和公式:S n=____________=_______________ (5)等比数列性质:若_____________,则__________________

相关文档
最新文档