2016年辽宁省沈阳市中考数学试卷【含解析】
【真卷】2016年辽宁省朝阳市中考数学试卷及解析PDF

2016年辽宁省朝阳市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.(3分)在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣12.(3分)“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×1083.(3分)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.4.(3分)方程2x2=3x的解为()A.0 B.C.D.0,5.(3分)如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40°B.50°C.150° D.140°6.(3分)若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.17.(3分)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则A.B.3πC.D.2π8.(3分)如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.69.(3分)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.710.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.(3分)函数y=的自变量x的取值范围是.12.(3分)已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为.13.(3分)若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是.14.(3分)如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若OA=8,CF=4,则点E的坐标是.15.(3分)通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac≥0时有两个实数根:x1=,x2=,于是:x1+x2=,x1•x2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x的一元二次方程x2+kx+k+1=0的两实数根分别为x1,x2,且x12+x22=1,则k的值为.16.(3分)如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;=CG2;(4)S四边形BCDG(5)若AF=2DF,则BF=7GF.其中正确结论的序号为.三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(5分)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.18.(6分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.19.(7分)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.20.(7分)如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)21.(8分)为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图,请根据以上信息,完成下列问题:(1)m=,n=,并将条形统计图补充完整;(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.22.(8分)如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.23.(9分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)24.(10分)小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC 的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.25.(12分)如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.2016年辽宁省朝阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的.1.(3分)在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣1【解答】解:|﹣3|=3,||=,|0|=0,|2|=2,|﹣1|=1,∵3>2>>1>0,∴绝对值最小的数是0,故选:B.2.(3分)“互联网+”已全面进入人们的日常生活,据有关部门统计,目前全国4G用户数达到4.62亿,其中4.62亿用科学记数法表示为()A.4.62×104B.4.62×106C.4.62×108D.0.462×108【解答】解:将4.62亿用科学记数法表示为:4.62×108.故选:C.3.(3分)如图是由四个大小相同的正方体组成的几何体,那么它的主视图是()A.B.C.D.【解答】解:根据题意的主视图为:,故选B4.(3分)方程2x2=3x的解为()A.0 B.C.D.0,【解答】解:方程整理得:2x2﹣3x=0,分解因式得:x(2x﹣3)=0,解得:x=0或x=,故选D5.(3分)如图,已知a∥b,∠1=50°,∠2=90°,则∠3的度数为()A.40°B.50°C.150° D.140°【解答】解:作c∥a,∵a∥b,∴c∥b.∴∠1=∠5=50°,∴∠4=90°﹣50°=40°,∴∠6=∠4=40°,∴∠3=180°﹣40°=140°.故选D.6.(3分)若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.1【解答】解:(1)将这组数据从小到大的顺序排列为2,3,4,5,x,处于中间位置的数是4,∴中位数是4,平均数为(2+3+4+5+x)÷5,∴4=(2+3+4+5+x)÷5,解得x=6;符合排列顺序;(2)将这组数据从小到大的顺序排列后2,3,4,x,5,中位数是4,此时平均数是(2+3+4+5+x)÷5=4,解得x=6,不符合排列顺序;(3)将这组数据从小到大的顺序排列后2,3,x,4,5,中位数是x,平均数(2+3+4+5+x)÷5=x,解得x=3.5,符合排列顺序;(4)将这组数据从小到大的顺序排列后2,x,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,不符合排列顺序;(5)将这组数据从小到大的顺序排列后x,2,3,4,5,中位数是3,平均数(2+3+4+5+x)÷5=3,解得x=1,符合排列顺序;∴x的值为6、3.5或1.故选C.7.(3分)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π【解答】解:n边形的内角和(n﹣2)×180°,圆形的空白部分的面积之和S==π=π=π.所以图中阴影部分的面积之和为:5πr2﹣π=5π﹣π=π.故选:C.8.(3分)如图,直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3)、B两点,过点B作BC⊥x轴于点C,连接AC,则△ABC的面积为()A.3 B.1.5 C.4.5 D.6【解答】解:∵直线y=mx(m≠0)与双曲线y=相交于A(﹣1,3),∴﹣m=3,,∴m=﹣3,n=﹣3,∴直线的解析式为:y=﹣3x,双曲线的解析式为:y=﹣解方程组得:,则点A的坐标为(﹣1,3),点B的坐标为(1,﹣3)∴点C的坐标为(1,0)=×1×(3+3)=3∴S△ABC故:选A9.(3分)如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为()A.4 B.5 C.6 D.7【解答】解:∵AF∥BC,∴∠FAD=∠ADB,∵∠BAC=∠FAD,∴∠BAC=∠ADB,∵∠B=∠B,∴△BAC∽△BDA,∴=,∴=,∴BD=9,∴CD=BD﹣BC=9﹣4=5,故选B.10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:(1)b2﹣4ac>0;(2)2a=b;(3)点(﹣,y1)、(﹣,y2)、(,y3)是该抛物线上的点,则y1<y2<y3;(4)3b+2c<0;(5)t(at+b)≤a﹣b(t为任意实数).其中正确结论的个数是()A.2 B.3 C.4 D.5【解答】解:(1)由函数图象可知,抛物线与x轴有两个不同的交点,∴关于x的方程ax2+bx+c=0有两个不相等的实数根,∴△=b2﹣4ac>0,∴(1)正确;(2)∵抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,∴﹣=﹣1,∴2a=b,∴(2)正确;(3)∵抛物线的对称轴为x=﹣1,点(,y3)在抛物线上,∴(﹣,y3).∵﹣<﹣<﹣,且抛物线对称轴左边图象y值随x的增大而增大,∴y1<y3<y2.∴(3)错误;(4)∵当x=﹣3时,y=9a﹣3b+c<0,且b=2a,∴9a﹣3×2a+c=3a+c<0,∴6a+2c=3b+2c<0,∴(4)正确;(5)∵b=2a,∴方程at2+bt+a=0中△=b2﹣4a•a=0,∴抛物线y=at2+bt+a与x轴只有一个交点,∵图中抛物线开口向下,∴a<0,∴y=at2+bt+a≤0,即at2+bt≤﹣a=a﹣b.∴(5)正确.故选C.二、填空题:本大题共6个小题,每小题3分,共18分.只需要将结果直接填写在答题卡对应题号处的横线上,不必写出解答过程,不填、错填,一律得0分.11.(3分)函数y=的自变量x的取值范围是x≥2且x≠3.【解答】解:由题意得,,解得x≥2且x≠3,故答案为x≥2且x≠3.12.(3分)已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为(1,2)或(﹣1,﹣2).【解答】解:∵点B的坐标为(﹣2,﹣4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(﹣1,﹣2),故答案为:(1,2)或(﹣1,﹣2).13.(3分)若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是a<m<n<b.【解答】解:∵(x﹣m)(x﹣n)=3,∴可得或,∵m<n,∴可解得x>n或x<m,∵方程的两根为a和b,∴可得到a>n或a<m,b>n或b<m,又a <b ,综合可得a <m <n <b , 故答案为:a <m <n <b .14.(3分)如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA=8,CF=4,则点E 的坐标是 (﹣10,3) .【解答】解:设CE=a ,则BE=8﹣a , 由题意可得,EF=BE=8﹣a , ∵∠ECF=90°,CF=4, ∴a 2+42=(8﹣a )2, 解得,a=3, 设OF=b ,∵△ECF ∽△FOA , ∴, 即,得b=6,即CO=CF +OF=10,∴点E 的坐标为(﹣10,3), 故答案为(﹣10,3).15.(3分)通过学习,爱好思考的小明发现,一元二次方程的根完全由它的系数确定,即一元二次方程ax 2+bx +c=0(a ≠0),当b 2﹣4ac ≥0时有两个实数根:x 1=,x 2=,于是:x 1+x 2=,x 1•x 2=、这就是著名的韦达定理.请你运用上述结论解决下列问题:关于x 的一元二次方程x 2+kx +k +1=0的两实数根分别为x 1,x 2,且x 12+x 22=1,则k 的值为 ﹣1 . 【解答】解:∵x 1,x 2为一元二次方程x 2+kx +k +1=0的两实数根,∴△=k2﹣4(k+1)≥0,且x1+x2=﹣k,x1x2=k+1,解得:k≤2﹣2或k≥2+2,又∵x12+x22=1,即(x1+x2)2﹣2x1x2=1,∴(﹣k)2﹣2(k+1)=1,即k2﹣2k﹣3=0,解得:k=﹣1或k=3(舍),故答案为:﹣1.16.(3分)如图,在菱形ABCD中,tanA=,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,给出如下几个结论:(1)△AED≌△DFB;(2)CG与BD一定不垂直;(3)∠BGE的大小为定值;=CG2;(4)S四边形BCDG(5)若AF=2DF,则BF=7GF.其中正确结论的序号为(1)(3)(4)(5).【解答】解:(1)∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,在△AED和△DFB中,,∴△AED≌△DFB,故本小题正确;(2)当点E,F分别是AB,AD中点时(如图1),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;(3)∵△AED≌△DFB,∴∠ADE=∠DBF,∴∠BGE=∠BDG+∠DBG=∠BDG+∠ADE=60°,故本选项正确.(4)∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.(如图2)则△CBM≌△CDN,(AAS)=S四边形CMGN,∴S四边形BCDGS四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,=2S△CMG=2××CG×CG=CG2,故本小题正确;∴S四边形CMGN(5)过点F作FP∥AE于P点.(如图3)∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF,∴BF=7GF,故本小题正确.综上所述,正确的结论有(1)(3)(4)(5).故答案为:(1)(3)(4)(5).三、解答题:本大题共9小题,共72分,解答应写出必要的步骤,文字说明或证明过程.17.(5分)(﹣1)2016+2•cos60°﹣(﹣)﹣2+()0.【解答】解:原式=1+2×﹣4+1=1+1﹣4+1=﹣1.18.(6分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.【解答】解:原式=÷=•=,由﹣1≤x<3,x为整数,得到x=﹣1,0,1,2,经检验x=﹣1,0,1不合题意,舍去,则当x=2时,原式=4.19.(7分)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.20.(7分)如图,一渔船自西向东追赶鱼群,在A处测得某无名小岛C在北偏东60°方向上,前进2海里到达B点,此时测得无名小岛C在东北方向上.已知无名小岛周围2.5海里内有暗礁,问渔船继续追赶鱼群有无触礁危险?(参考数据:)【解答】解:作CD⊥AB于D,根据题意,∠CAD=30°,∠CBD=45°,在Rt△ACD中,AD==CD,在Rt△BCD中,BD==CD,∵AB=AD﹣BD,∴CD﹣CD=2(海里),解得:CD=+1≈2.732>2.5,答:渔船继续追赶鱼群没有触礁危险.21.(8分)为全面开展“大课间”活动,某校准备成立“足球”、“篮球”、“跳绳”、“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图,请根据以上信息,完成下列问题:(1)m=25,n=108,并将条形统计图补充完整;(2)试问全校2000人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解答】解:(1)调查的总人数=15÷15%=100(人),所以m%=×100%=25%,即m=25,参加跳绳活动小组的人数=100﹣30﹣25﹣15=30(人),所以n°=×360°=108°,即n=108,如图,故答案为:25,108;(2)2000×=600,所以全校2000人中,大约有600人报名参加足球活动小组;(3)画树状图为:共有12种等可能的结果数,其中一男一女两名同学的结果数为8,所以恰好选中一男一女两名同学的概率==.22.(8分)如图,Rt△ABC中,∠ACB=90°,AD为∠BAC的平分线,以AB上一点O为圆心的半圆经过A、D两点,交AB于E,连接OC交AD于点F.(1)判断BC与⊙O的位置关系,并说明理由;(2)若OF:FC=2:3,CD=3,求BE的长.【解答】解:(1)BC是⊙O的切线,理由:如图,连接OD,∵AD为∠BAC的平分线,∴∠BAC=2∠BAD,∵∠DOE=2∠BAD,∴∠DOE=∠BAC,∴OD∥AC,∴∠ODB=∠ACB=90°,∵点D在⊙O上,∴BC是⊙O的切线.(2)如图2,连接OD,由(1)知,OD∥AC,∴,∵,∴,∵OD∥AC,∴,∴∵CD=3,∴DB=6,过点D作DH⊥AB,∵AD是∠BAC的角平分线,∠ACB=90°,∴DH=CD=3,在Rt△BDH中,DH=3,BD=6,∴sin∠B==,∴∠B=30°,BO===4,∴∠BOD=60°,在Rt△ODB中,sin∠DOH=,∴,∴OD=2,∴BE═OB﹣OE=OB﹣OD=4﹣2=2.23.(9分)为备战2016年里约奥运会,中国女排的姑娘们刻苦训练,为国争光,如图,已知排球场的长度OD为18米,位于球场中线处球网的高度AB为2.43米,一队员站在点O处发球,排球从点O的正上方1.8米的C点向正前方飞出,当排球运行至离点O的水平距离OE为7米时,到达最高点G建立如图所示的平面直角坐标系.(1)当球上升的最大高度为3.2米时,求排球飞行的高度y(单位:米)与水平距离x(单位:米)的函数关系式.(不要求写自变量x的取值范围).(2)在(1)的条件下,对方距球网0.5米的点F处有一队员,他起跳后的最大高度为3.1米,问这次她是否可以拦网成功?请通过计算说明.(3)若队员发球既要过球网,又不出边界,问排球飞行的最大高度h的取值范围是多少?(排球压线属于没出界)【解答】解:(1)根据题意知此时抛物线的顶点G的坐标为(7,3.2),设抛物线解析式为y=a(x﹣7)2+3.2,将点C(0,1.8)代入,得:49a+3.2=1.8,解得:a=﹣,∴排球飞行的高度y与水平距离x的函数关系式为y=﹣(x﹣7)2+;(2)由题意当x=9.5时,y=﹣(9.5﹣7)2+≈3.02<3.1,故这次她可以拦网成功;(3)设抛物线解析式为y=a(x﹣7)2+h,将点C(0,1.8)代入,得:49a+h=1.8,即a=,∴此时抛物线解析式为y=(x﹣7)2+h,根据题意,得:,解得:h≥3.025,答:排球飞行的最大高度h的取值范围是h≥3.025.24.(10分)小颖在学习“两点之间线段最短”查阅资料时发现:△ABC内总存在一点P与三个顶点的连线的夹角相等,此时该点到三个顶点的距离之和最小.【特例】如图1,点P为等边△ABC的中心,将△ACP绕点A逆时针旋转60°得到△ADE,从而有DE=PC,连接PD得到PD=PA,同时∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,故PA+PB+PC=PD+PB+DE=BE.在△ABC中,另取一点P′,易知点P′与三个顶点连线的夹角不相等,可证明B、P′、D′、E四点不共线,所以P′A+P′B+P′C>PA+PB+PC,即点P到三个顶点距离之和最小.【探究】(1)如图2,P为△ABC内一点,∠APB=∠BPC=120°,证明PA+PB+PC 的值最小;【拓展】(2)如图3,△ABC中,AC=6,BC=8,∠ACB=30°,且点P为△ABC内一点,求点P到三个顶点的距离之和的最小值.【解答】解:(1)如图1,将△ACP绕点A逆时针旋转60°得到△ADE,∴∠PAD=60°,△PAC≌△DAE,∴PA=DA、PC=DE、∠APC=∠ADE=120°,∴△APD为等边三角形,∴PA=PD,∠APD=∠ADP=60°,∴∠APB+∠APD=120°+60°=180°,∠ADP+∠ADE=180°,即B、P、D、E四点共线,∴PA+PB+PC=PD+PB+DE=BE.∴PA+PB+PC的值最小.(2)方法一:如图2,分别以AB、BC为边在△ABC外作等边三角形,连接CD、AE交于点P,∴AB=DB、BE=BC=8、∠ABD=∠EBC=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,∵,∴△ABE≌△DBC(SAS),∴CD=AE、∠BAE=∠BDC,又∵∠AOP=∠BOD,∴∠APO=∠OBD=60°,在DO上截取DQ=AP,连接BQ,在△ABP和△DBQ中,∵,∴△ABP≌△DBQ(SAS),∴BP=BQ,∠PBA=∠QBD,又∵∠QBD+∠QBA=60°,∴∠PBA+∠QBA=60°,即∠PBQ=60°,∴△PBQ为等边三角形,∴PB=PQ,则PA+PB+PC=DQ+PQ+PC=CD=AE,在Rt△ACE中,∵AC=6、CE=8,∴AE=CD=10,故点P到三个顶点的距离之和的最小值为10.方法二:如图3,由(2)知,当∠APB=∠APC=∠BPC=120°时,AP+BP+PC的值最小,把△CPB绕点C逆时针旋转60°得△CP′B′,由(2)知A、P、P′、B′共线,且AP+BP+P C=AB′,∠PCB=∠P′CB,∴∠PCB+∠PCA=∠P′CB+∠PCA=30°,∴∠ACB′=90°,∴AB′===1025.(12分)如图1,已知抛物线y=(x﹣2)(x+a)(a>0)与x轴从左至右交于A,B两点,与y轴交于点C.(1)若抛物线过点T(1,﹣),求抛物线的解析式;(2)在第二象限内的抛物线上是否存在点D,使得以A、B、D三点为顶点的三角形与△ABC相似?若存在,求a的值;若不存在,请说明理由.(3)如图2,在(1)的条件下,点P的坐标为(﹣1,1),点Q(6,t)是抛物线上的点,在x轴上,从左至右有M、N两点,且MN=2,问MN在x轴上移动到何处时,四边形PQNM的周长最小?请直接写出符合条件的点M的坐标.【解答】解:(1)如图1,把T(1,﹣)代入抛物线y=(x﹣2)(x+a)得:﹣=(1﹣2)(1+a),解得:a=4,∴抛物线的解析式为:y=x2+x﹣2;(2)当x=0时,y=×(﹣2)×a=﹣2,∴C(0,﹣2),当y=0时,(x﹣2)(x+a)=0,x1=2,x2=﹣a,∴A(﹣a,0)、B(2,0),如图2,过D作DE⊥x轴于E,设D(m,n),∵点D在第二象限,∠DAB为钝角,∴分两种情况:①如图2,当△BDA∽△ABC时,∠BAC=∠ABD,∴tan∠BAC=tan∠ABD,即,∴,n=,则,解得:m=﹣2﹣a或2,∴E(﹣2﹣a,0),由勾股定理得:AC=,∵,∴==,BD=,∵△BDA∽△ABC,∴,∴AB2=AC•BD,即(a+2)2=•,解得:0=16,此方程无解;②当△DBA∽△ABC时,如图3,∠ABC=∠ABD,∵B(2,0),C(0,﹣2),∴OB=OC=2,∴△OBC是等腰直角三角形,有BC=2,∴∠OCB=∠OBC=45°,∴∠ABC=∠ABD=45°,∴DE=BE,n=﹣m+2,∴BD=,∵△DBA∽△ABC,∴,∴AB2=BD•BC,∴(a+2)2=•2=4n,则,解得:,则a=2+2;(3)当x=6时,y=(6﹣2)(6+4)=10,∴Q(6,10),如图4,作P关于x轴的对称点P′,过P′作P′G∥x轴,且P′G=2,连接GQ交x 轴于N,过P′作P′M∥GN,交x轴于M,此时,QG就是MP+NQ的最小值,由于PQ、NM为定值,所以此时,四边形PMNQ的周长最小,∵P(﹣1,1),∴P′(﹣1,﹣1),∵P′G∥MN,P′M∥GN,∴四边形P′GNM是平行四边形,∴MN=P′G=2,NG=P′M=PM,∴G(1,﹣1),设GQ的解析式为:y=kx+b,把G(1,﹣1)和Q(6,10)代入得:,解得:,∴GQ的解析式为:y=x﹣,当y=0时,x=,∴N(,0),∵MN=2,∴M(﹣,0).。
2016-2019沈阳中考数学真题分析

分数比重 20% 15% 40% 10% 15%
六
解答题
1
10
七
解答题1Biblioteka 12八解答题
1
12
九
合计
25
23.(1)一次函数解析式;★★ 10 (2)一次函数点的坐标、平行四边形性质、勾股定理、三角形面积、三角形中位线、一元二次
方程;★★★★
24.(1)全等三角形;★★ 12 (2)几何旋转、全等三角形、等腰直角三角形、勾股定理、30°直角三角形特性;★★★★
★易 ★★较易 ★★★中等 ★★★★较难 ★★★★★难
7.相似三角形性质;★(图形的相似)
8.一次函数性质;★(平面直角坐标系与一次函数、反比例函数)
9.圆周角定理及解直角三角形;★(圆的有关概念、性质与圆有关的位置关系,特殊三角形)
10.二次函数性质;★★★(二次函数)
二
填空题
6
3
11.因式分解;★(整式与因式分解)
12.解二元一次方程;★(方程与不等式)
18
13.概率概念;★★(统计与概率) 14.三角形中位线性质;★★(三角形性质)
15.反比例函数、一次函数、三角形面积;★★★
16.正方形、相似三角形、解直角三角形;★★★★★
三
解答题
3
17题6分, 18、19题各8分
17.实数的混合运算,负指数幂、特殊角三角函数、绝对值、零指数幂混合运算;★★ 22 18.概率基本概念及算法:★★★(统计与概率)
19.平行相交线判定性质、全等三角形判定性质、解直角三角形;★★★
四
解答题
2
8
16
20.统计、阅读图表;★★★(统计与概率) 21.分式方程、一元一次不等式:★★★
2016届辽宁沈阳沈河区中考二模数学试卷(带解析)

绝密★启用前2016届辽宁沈阳沈河区中考二模数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:137分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、如图是一次函数y=kx+b 的图象,当y <2时,x 的取值范围是( )A .x <1B .x >1C .x <3D .x >3【答案】C . 【解析】试题解析:一次函数y=kx+b 经过点(3,2),且函数值y 随x 的增大而增大, ∴当y <2时,x 的取值范围是x <3. 故选C .考点:一次函数与不等式(组)的关系.试卷第2页,共24页2、上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是( ) A .168(1+a )2=128 B .168(1-a%)2=128 C .168(1-2a%)="128"D .168(1-a 2%)=128【答案】B . 【解析】试题解析:当商品第一次降价a%时,其售价为168-168a%=168(1-a%); 当商品第二次降价a%后,其售价为168(1-a%)-168(1-a%)a%=168(1-a%)2. ∴168(1-a%)2=128. 故选B .考点:一元二次方程的应用.3、计算一组数据:8,9,10,11,12的方差为( ) A .1B .2C .3D .4【答案】B . 【解析】试题解析:样本8、11、9、10、12的平均数=(8+11+9+10+12)÷5=10,∴S 2=×(4+1+1+0+4)=2.故选B . 考点:方差.4、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3等于( )A .55°B .60°C .65°D .70°【答案】 【解析】 试题解析:如图:∵直线l 1∥l 2,∠1=40°,∠2=75°, ∴∠1=∠4=40°,∠2=∠5=75°, ∴∠3=65°. 故选C .考点:1.三角形内角和定理;2..对顶角、邻补角;3.平行线的性质. 5、下列事件是确定事件的是( ) A .任买一张电影票,座位是偶数B .在一个装有红球和白球的箱子中,任摸一个球是红色的C .随意掷一枚均匀的硬币,正面朝上D .三根长度分别为2cm 、3cm 、5cm 的木棒能摆成三角形【答案】D . 【解析】试题解析:任买一张电影票,座位是偶数是随机事件,A 错误;在一个装有红球和白球的箱子中,任摸一个球是红色的是随机事件,B 错误; 随意掷一枚均匀的硬币,正面朝上是随机事件,C 错误;三根长度分别为2cm 、3cm 、5cm 的木棒能摆成三角形是不可能事件,D 正确, 故选D . 考点:随机事件.6、不等式组的解集在数轴上表示正确的是( )【答案】C . 【解析】试题解析:由2x+1>3,解得x >1, 3x-2≤4,解得x≤2, 不等式组的解集为1<x≤2,试卷第4页,共24页故选C .考点:在数轴上表示不等式的解集.7、下列几何体的主视图既是中心对称图形又是轴对称图形的是( )【答案】D . 【解析】试题解析:A 、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误; B 、主视图是等腰三角形,是轴对称图形,不是中心对称图形,故错误; C 、主视图是等腰梯形,是轴对称图形,不是中心对称图形,故错误; D 、主视图是矩形,是轴对称图形,也是中心对称图形,故正确. 故选D .考点:1.简单几何体的三视图;2.中心对称图形;3.轴对称图形. 8、如图,在数轴上标注了四段范围,则表示的点落在( )A .①段B .②段C .③段D .④段【答案】C . 【解析】 试题解析:∵,∴表示的点落在③段,故选C .考点:实数与数轴. 9、 A .-2B .2C .-3D .3【答案】A【解析】试题解析:|-2|=2,所以,|-2|的绝对值的相反数是-2.故选A.考点:1.绝对值;2.相反数.10、生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10-5B.4.32×10-6C.4.32×10-7D.43.2×10-7【答案】B.【解析】试题解析:0.00000432=4.32×10-6,故选B.考点:科学记数法--表示较小的数试卷第6页,共24页第II 卷(非选择题)二、填空题(题型注释)11、用配方法求抛物线y=x 2-4x+1的顶点坐标,配方后的结果是 .【答案】y=(x-2)2-3. 【解析】试题解析:y=x 2-4x+1=(x-2)2-3,即y=(x-2)2-3. 考点:二次函数的解析式的三种形式.12、一个多边形的每一个外角都等于36°,则该多边形的内角和等于 度.【答案】1440. 【解析】试题解析:∵任何多边形的外角和等于360°, ∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10-2)180°=1440°. 考点:多边形内角与外角.13、如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点P ,若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为 .【答案】2a+b=-1. 【解析】试题解析:根据作图方法可得点P 在第二象限的角平分线上,因此2a+b+1=0, 即:2a+b=-1. 考点:作图--基本作图.14、如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC=2,则cosD= .【答案】.【解析】试题解析:连接BC ,∴∠D=∠A ,∵AB 是⊙O 的直径,∴∠ACB=90°, ∵AB=3×2=6,AC=2,∴cosD=cosA=.考点:1.圆周角定理;2.解直角三角形. 15、分解因式:2x 2-4x+2= .【答案】2(x-1)2. 【解析】试题解析:2x 2-4x+2, =2(x 2-2x+1), =2(x-1)2.考点:提公因式法和公式法的综合运用.试卷第8页,共24页16、如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是 .【答案】cm【解析】试题解析:∵四边形ABCD 是菱形,∴CO=AC=3cm ,BO=BD=4cm ,AO ⊥BO ,∴BC==5cm ,∴S 菱形ABCD ==×6×8=24cm 2,∵S 菱形ABCD =BC×AE , ∴BC×AE=24,∴AE=cm .考点:菱形的性质.三、计算题(题型注释)17、已知:如图,抛物线y=ax 2+bx+2与x 轴交于点A (4,0)、E (-2,0)两点,连结AB ,过点A 作直线AK ⊥AB ,动点P 从A 点出发以每秒个单位长度的速度沿射线AK 运动,设运动时间为t 秒,过点P 作PC ⊥x 轴,垂足为C ,把△ACP 沿AP 对折,使点C 落在点D 处. (1)求抛物线的解析式;(2)当点D 在△ABP 的内部时,△ABP 与△ADP 不重叠部分的面积为S ,求S 与t 之间的函数关系式,并直接写出t 的取值范围;(3)若线段AC 的长是线段BP 长的,请直接写出此时t 的值;(4)是否存在这样的时刻,使动点D 到点O 的距离最小?若存在请直接写出这个最小距离;若不存在,说明理由.【答案】(1)y=-x 2+x+2,(2)S=-t 2+5t (0<t <4)(3)t=;(4).【解析】试题分析:(1)用待定系数法求出抛物线解析式;(2)先根据点D 在△APB 内部,求出t 的范围,然后用△APB 减去△APC 面积求出不重叠的部分面积;(3)根据两点间的距离公式表示出BP ,根据条件建立方程,求出时间;(4)先判断出点D 到点O 的距离最小时的位置,然后用三角函数和勾股定理计算. 试题解析:(1)将A ,B ,E 三点代入抛物线解析式中,得,∴∴y=-x 2+x+2,(2)∵A (4,0),B (0,2)∴直线AB 解析式为y=-x+2,∵AB ⊥AK ,∴直线AK 解析式为y=2x+8,试卷第10页,共24页∴tan ∠PAC==2,∵AP=t ,∴AC=t ,PC=2t , ∵D 在△ABP 内部, ∴∠APB >∠APC , ∴tan ∠APB >tan ∠APC ,∴,∴,∴t <4, ∴0<t <4,∴S=S △APB -S △APD =S △APB -S △APC=×AB×AP-×AC×PC=×2×t-×t×2t=-t 2+5t (0<t <4) (3)∵P (t+4,2t ), ∴BP=,∵线段AC 的长是线段BP 长的,∴t=,∴t=-(舍)t=(4)要使点D 到O 的距离最小,则有点D 在OP 上,此时记作D 1在Rt △OCP 中,tan ∠POC=,试卷第11页,共24页在Rt △OCP 中,tan ∠AOC=,∴,∴OD 1=,根据勾股定理得,OD 12+AD 12=OA 2,∴()2+t 2=16,∴t=-4(舍)t=,∴AD 1==.考点:二次函数综合题.18、计算:()-2-6sin30°-()0++||.【答案】.【解析】试题分析:直接利用负整数指数幂的性质以及特殊角的三角函数值和绝对值的性质以及零指数幂的性质分别化简各数,进而求出答案.试题解析:()-2-6sin30°-()0++||.=4-6×-1++-=.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.四、解答题(题型注释)试卷第12页,共24页19、已知:如图1,在矩形ABCD 中,AB=5,AD=,AE ⊥BD ,垂足为E ,点F 是点E 关于AB 的对称点,连接AF ,BF . (1)AE 的长为 ,BE 的长为 ;(2)如图2,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A′BF′.①在旋转过程中,当A′F′与AE 垂直于点H ,如图3,设BA′所在直线交AD 于点M ,请求出DM 的长;②在旋转过程中,设A′F′所在的直线与直线AD 交于点P ,与直线BD 交于点Q ,是否存在这样的P 、Q 两点,使△DPQ 为以PQ 为底的等腰三角形?请直接写出DQ 的长.【答案】(1)4;3;(2)①;②DQ=3-,DQ=-,DQ=-5=【解析】试题分析:(1)由勾股定理求得BD 的长,根据三角形面积公式求出AE 的长,再应用勾股定理即可求得BE 的长.(2)①先用tan ∠ADB=,设出MG ,表示出DG ,DM ,求出BG=BD-DG=-4x ,再用tan ∠MBD=,建立方程求出x ,即可;②分DP=DQ (考虑点Q 在线段BD 的延长线和点Q 在线段BD 上两种情况),PD=PQ 两种情况求解即可.试题解析:(1)∵AB=5,AD=,∴由勾股定理得BD=.∵S △ABD =AB×AD=BD×AE ,试卷第13页,共24页∴×5×=××AE ,∴AE=4. ∴BE==3,(2)①作MG ⊥BD ,A′N ⊥BD ,∴tan ∠ADB=,设MG=3x ,则DG=4x ,DM=5x ,∴BG=BD-DG=-4x ,∵A′F′⊥AE ,AE ⊥BD ,A′N ⊥BD ,A′F′⊥BF′, ∴四边形BF′A′N 是矩形, ∴A′N=BF′=3,BN=A′F′=AE=4,∵tan ∠MBD=,∴,∴x=,∴DM=5x=;②存在,理由如下:Ⅰ、当DP=DQ 时,若点Q 在线段BD 的延长线上时,如图1,有∠Q=∠1,则∠2=∠1+∠Q=2∠Q . ∵∠3=∠4+∠Q ,∠3=∠2,试卷第14页,共24页∴∠4+∠Q=2∠Q . ∴∠4=∠Q . ∴A′Q=A′B=5.∴F′Q=A′F′+A′Q=4+5=9.在Rt △BF′Q 中,81+9=(+DQ )2∴DQ=3-或DQ=-3-(舍去).若点Q 在线段BD 上时,如图2,有∠QPD=∠PQD=∠BQA′, ∵∠DPQ=∠BMQ , ∴∠BMQ=∠BQM .∵∠BMQ=∠A′BM+∠A′,∠A′=∠CBD , ∴∠BMQ=∠A′BM+∠CBD=∠A′BQ . ∴∠BQM=∠∠A′BQ . ∴A′Q=A′B=5. ∴F′Q=A′Q -A′F′=5-4=1. ∴BQ==∴DQ=BD-BQ=-Ⅱ、当PD=PQ 时,如图4,试卷第15页,共24页有∠ADB=∠DQP=∠BQA′, ∵∠ADB=∠A′, ∴∠BQA′=∠A′. ∴BQ=A′B=5.∴DQ=BD-BQ=-5=综上所述,当△DPQ 为等腰三角形时,DQ 的长为DQ=3-,DQ=-,DQ=-5=考点:四边形综合题.20、一辆客车从甲地出发前往乙地,平均速度v (千米/小时)与所用时间t (小时)的函数关系如图所示,其中60≤v≤120. (1)直接写出v 与t 的函数关系式;(2)若一辆货车同时从乙地出发前往甲地,客车比货车平均每小时多行驶20千米,3小时后两车相遇. ①求两车的平均速度;②甲、乙两地间有两个加油站A 、B ,它们相距200千米,当客车进入B 加油站时,货车恰好进入A 加油站(两车加油的时间忽略不计),求甲地与B 加油站的距离.【答案】(1)v 与t 的函数关系式为v=(5≤t≤10);(2)①客车和货车的平均速度分别为110千米/小时和90千米/小时;②甲地与B 加油站的距离为220或440千米. 【解析】试题分析:(1)利用时间t 与速度v 成反比例可以得到反比例函数的解析式; (2)①由客车的平均速度为每小时v 千米,得到货车的平均速度为每小时(v-20)千米,根据一辆客车从甲地出发前往乙地,一辆货车同时从乙地出发前往甲地,3小时后试卷第16页,共24页两车相遇列出方程,解方程即可;②分两种情况进行讨论:当A 加油站在甲地和B 加油站之间时;当B 加油站在甲地和A 加油站之间时;都可以根据甲、乙两地间有两个加油站A 、B ,它们相距200千米列出方程,解方程即可.试题解析:(1)设函数关系式为v=,∵t=5,v=120, ∴k=120×5=600,∴v 与t 的函数关系式为v=(5≤t≤10);(2)①依题意,得 3(v+v-20)=600, 解得v=110,经检验,v=110符合题意. 当v=110时,v-20=90.答:客车和货车的平均速度分别为110千米/小时和90千米/小时; ②当A 加油站在甲地和B 加油站之间时, 110t-(600-90t )=200,解得t=4,此时110t=110×4=440; 当B 加油站在甲地和A 加油站之间时, 110t+200+90t=600,解得t=2,此时110t=110×2=220.答:甲地与B 加油站的距离为220或440千米. 考点:反比例函数的应用.21、已知:在△ABC 中,以AC 边为直径的⊙O 交BC 于点D ,在劣弧上取一点E使∠EBC=∠DEC ,延长BE 依次交AC 于点G ,交⊙O 于H . (1)求证:AC ⊥BH ;试卷第17页,共24页(2)若∠ABC=45°,⊙O 的直径等于10,BD=8,求CE 的长.【答案】(1)证明见解析;(2).【解析】试题分析:(1)连接AD ,由圆周角定理即可得出∠DAC=∠DEC ,∠ADC=90°,再根据直角三角形的性质即可得出结论;(2)由∠BDA=180°-∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC 的长,进而求出BC 的长,由已知的一对角线段和公共角,根据两对对应角相等的两三角形相似可得三角形BCE 与三角形EDC 相似,由相似得比例即可求出CE 的长.试题解析:(1)连接AD ,∵∠DAC=∠DEC ,∠EBC=∠DEC , ∴∠DAC=∠EBC , ∵AC 是⊙O 的直径, ∴∠ADC=90°, ∴∠DCA+∠DAC=90°, ∴∠EBC+∠DCA=90°,∴∠BGC=180°-(∠EBC+∠DCA )=180°-90°=90°, ∴AC ⊥BH ;(2)∵∠BDA=180°-∠ADC=90°,∠ABC=45°, ∴∠BAD=45°, ∴BD=AD , ∵BD=8,∴AD=8,试卷第18页,共24页在直角三角形ADC 中,AD=8,AC=10, 根据勾股定理得:DC=6,则BC=BD+DC=14, ∵∠EBC=∠DEC ,∠BCE=∠ECD , ∴△BCE ∽△ECD ,∴,即CE 2=BCCD=14×6=84,∴CE==.考点:1.圆周角定理,2.相似三角形的判定与性质;3.勾股定理.22、某校为了进一步开展“阳光体育”活动,计划用2000元购买乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?(1)根据题意,甲和乙两同学都先假设该校购买的乒乓球拍与羽毛球拍的数量能相同,并分别列出的方程如下:甲:;乙:,根据两位同学所列的方程,请你分别指出未知数x ,y 表示的意义: 甲:x 表示 ;乙:y 表示 ;(2)该校购买的乒乓球拍与羽毛球拍的数量能相同吗?说明理由(写出完整的解答过程).【答案】(1)乒乓球拍的单价;羽毛球拍的数量;(2)该校购买的乒乓球拍与羽毛球拍的数量不能相同. 【解析】试题分析:(1)甲:的等量关系是“校购买的乒乓球拍与羽毛球拍的数量能相同”;乙:的等量关系是“一副羽毛球拍比一副乒乓球拍贵14元”;(2)假设能相等,设乒乓球拍每一个x 元,羽毛球拍就是x+14,得方程,进而求出x=35,再利用2000÷35不是一个整数,得出答案即可.试题解析:(1)根据题意知,x 表示乒乓球拍的单价,y 表示羽毛球拍的数量; (2)答:不能相同.试卷第19页,共24页理由如下:假设能相等,设乒乓球拍每一个x 元,羽毛球拍就是(x+14)元.根据题意得方程:,解得:x=35.经检验得出,x=35是原方程的解,但是当x=35时,2000÷35不是一个整数,这不符合实际情况,所以不可能. 答:该校购买的乒乓球拍与羽毛球拍的数量不能相同. 考点:分式方程的应用.23、如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB=∠ACB=37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)【答案】小桌板桌面的宽度BC 约为37.5cm . 【解析】试题分析:延长CB 交AO 于点D .则CD ⊥OA ,在Rt △OBD 中根据正弦函数求得BD ,根据余弦函数求得OD ,在Rt △ACD 中,根据正切函数求得AD ,然后根据AD+OD=OA=75,列出关于x 的方程,解方程即可求得. 试题解析:延长CB 交AO 于点D .试卷第20页,共24页∴CD ⊥OA ,设BC=x ,则OB=75-x ,在Rt △OBD 中,OD=OBcos ∠AOB ,BD=OBsin ∠AOB , ∴OD=(75-x )cos37°=0.8(75-x )=60-0.8x , BD=(75-x )sin37°=0.6(75-x )=45-0.6x , 在Rt △ACD 中,AD=DCtan ∠ACB ,∴AD=(x+45-0.6x )tan37°=0.75(0.4x+45)=0.3x+33.75, ∵AD+OD=OA=75, ∴0.3x+33.75+60-0.8x=75, 解得x=37.5. ∴BC=37.5;故小桌板桌面的宽度BC 约为37.5cm . 考点:解直角三角形的应用24、为了解学生的课余生活,某中学在全校范围内随机抽取部分学生进行问卷调查,问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类.调查后将数据绘制成扇形统计图和条形统计图(如图所示). (1)请根据所给的扇形图和条形图,直接填写出扇形图中缺失的数据,并把条形图补充完整;(2)在扇形统计图中,音乐类选项所在的扇形的圆心角的大小为 °; (3)这所中学共有学生1200人,求喜欢音乐和美术类的课余生活共有多少人? (4)在问卷调查中,小丁和小李分别选择了音乐类和美术类,校学生会要从选择音乐类和美术类的学生中分别抽取一名学生参加活动,用列表或画树状图的方法求小丁和小李恰好都被选中的概率.【答案】(1)补图见解析;(2)57.6°,(3)336人(4).【解析】试题分析:(1)根据扇形统计图所给的数据,直接进行相减即可求出体育所占的百分比,再根据抽取体育的人数,即可求出抽取的总人数,再根据其他类所占的比例,即可求出答案.(2)音乐类人数所占百分比乘以360°可得音乐类选项所在的扇形的圆心角的大小.(3)根据学生中最喜欢音乐和美术类的学生所占的百分比,再乘以总数即可求出答案.(4)首先由(1)可得音乐类的有4人,选择美术类的有3人.然后记选择音乐类的4人分别是A1,A2,A3,小丁;选择美术类的3人分别是B1,B2,小李.则可根据题意画出树状图,由树状图求得所有等可能的结果与小丁和小李恰好都被选中的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据题意得:体育所占的百分比是:1-32%-12%-16%=40%,抽取的总人数是:10÷40%=25(人),其他类的人数是:25×32%=8(人).如图所示:(2)音乐类选项所在的扇形的圆心角的大小为360°×16%=57.6°, (3)1200×(16%+12%)=336(人), 答:喜欢音乐和美术类的课余生活共有336人.(4)选择音乐类的有4人,选择美术类的有3人,记选择音乐类的4人分别为A1、A2、A3、小丁,选择美术类的3人分别是B1、B2、小李, 列表如下:由表中可知共有12种选取方法,选中小丁、小李的情况只有1种,∴小丁和小李恰好都被选中的概率为.考点:1.条形统计图;2.扇形统计图;3.用列表法或树状图法求概率. 25、如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE=AF . (1)求证:CE=CF .(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM=OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.【答案】(1)证明见解析;(2)四边形AEMF 是菱形,理由见解析. 【解析】试题分析:(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE ≌△ADF ; (2)由于四边形ABCD 是正方形,易得∠ECO=∠FCO=45°,BC=CD ;联立(1)的结论,可证得EC=CF ,根据等腰三角形三线合一的性质可证得OC (即AM )垂直平分EF ;已知OA=OM ,则EF 、AM 互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF 是菱形.试题解析:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∠B=∠D=90°, 在Rt △ABE 和Rt △ADF 中,,∴Rt △ADF ≌Rt △ABE (HL ) ∴BE=DF , ∵BC=DC , ∴CE=CF ;(2)四边形AEMF 是菱形,理由为: 证明:∵四边形ABCD 是正方形, ∴∠BCA=∠DCA=45°, BC=DC , ∵BE=DF , ∴BC-BE=DC-DF , 即CE=CF ,在△COE 和△COF 中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形,∵AE=AF,∴平行四边形AEMF是菱形.考点:1.正方形的性质,2.平行四边形的判定,3.菱形的判定,4.平行线分线段成比例定理。
2023年辽宁省沈阳市中考数学真题试卷(解析版)

2023年辽宁省沈阳市中考数学真题试卷及答案一、选择题(本大题共10小题,共20)1. 2的相反数是()A. 2B. -2C.D.【答案】B【解析】2的相反数是-2.故选:B.2. 如图是由个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中;解:此几何体的主视图从左往右分列,小正方形的个数分别是,,.故选:A【点拨】本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图3. 我国自主研发的口径球面射电望远镜()有“中国天眼”之称,它的反射面面积约为用科学记数法表示数据为()A. B. C. D.【答案】D【解析】科学记数法的表示形式为的形式,其中为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数;解:,故选:D【点拨】此题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中为整数,表示时关键要正确确定a的值以及n的值4. 下列计算结果正确的是()A. B. C. D.【答案】D【解析】根据整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算即可求解.解:、,故此选项错误,不符合题意;B.,故此选项错误,不符合题意;C.,故此选项错误,不符合题意;D.,正确,符合题意.故选:.【点拨】本题主要考查整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算,掌握整式的混合运算是解题的关键.5. 不等式的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】根据在数轴上表示不等式解集的方法求解即可.解:∵,∴1处是实心原点,且折线向右.故选:C.【点拨】题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6. 某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包为此,活动负责人征求了班内同学的意向,得到了如下数据:容量人数则双肩包容量的众数是()A. B. C. D.【答案】C【解析】根据众数的定义求解即可.解:出现次,出现次数最多,众数是,故选:C.【点拨】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.7. 下列说法正确的是()A. 将油滴入水中,油会浮在水面上是不可能事件B. 抛出的篮球会下落是随机事件C. 了解一批圆珠笔芯的使用寿命,采用普查的方式D. 若甲、乙两组数据的平均数相同,,,则甲组数据较稳定【答案】D【解析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.解:、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B.抛出的篮球会下落是必然事件,故B不符合题意;C.了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;D.若甲、乙两组数据的平均数相同,,,则甲组数据较稳定,故D符合题意;故选:.【点拨】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.8. 已知一次函数的图象如图所示,则,的取值范围是()A. ,B. ,C. ,D. ,【答案】A【解析】根据一次函数图象进行判断.解:一次函数的图象经过第一、三、四象限,,.故选:A.【点拨】本题考查一次函数的图象和性质,熟知一次函数的图象与系数的关系是解题的关键.9. 二次函数图象的顶点所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】根据抛物线,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限.解:,顶点坐标为,顶点在第二象限.故选:.【点拨】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10. 如图,四边形内接于,的半径为,,则的长是()A. B. C. D.【答案】C【解析】根据圆内接四边形的性质得到,由圆周角定理得到,根据弧长的公式即可得到结论.解:四边形内接于,,,,的长.故选:.【点拨】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(本大题共6小题,共18分)11. 因式分解:__________.【答案】a(a+1)2【解析】先提取公因式a,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a±2ab+b=(a±b):a3+2a2+a,=a(a2+2a+1),=a(a+1)2.【点拨】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键12. 当时,代数式的值为______ .【答案】2【解析】先将原式去括号,然后合并同类项可得,再把前两项提取,然后把的值代入可得结果.解:当时,原式,故答案为:.【点拨】此题主要是考查了整式化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13. 若点和点都在反比例函数的图象上,则______ .(用“”“”或“”填空)【答案】【解析】把和分别代入反比例函数中计算y的值,即可做出判断.解:∵点和点都在反比例函数的图象上,∴令,则;令,则,,,故答案为:.【点拨】本题考查了反比例函数图像上点的坐标特征,计算y的值是解题的关键.14. 如图,直线,直线分别与,交于点,,小明同学利用尺规按以下步骤作图:(1)点为圆心,以任意长为半径作弧交射线于点,交射线于点;(2)分别以点,为圆心,以大于的长为半径作弧,两弧在内交于点;(3)作射线交直线于点;若,则______度.【答案】58【解析】由作图得平分,再根据平行线的性质“两直线平行,内错角相等”易得,即可获得答案.解:由作图得:平分,∴,∵,∴,∴.故答案为:.【点拨】本题主要考查了尺规作图-基本作图以及平行线的性质,由作图得到平分是解题关键.15. 如图,王叔叔想用长为的栅栏,再借助房屋的外墙围成一个矩形羊圈,已知房屋外墙足够长,当矩形的边______ 时,羊圈的面积最大.【答案】15【解析】设为,则,根据矩形的面积公式可得关于x的二次函数关系式,配方后即可解.解:设为,面积为,由题意可得:,当时,取得最大值,即时,羊圈的面积最大,故答案为:.【点拨】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在时取得.16. 如图,在中,,,点在直线上,,过点作直线于点,连接,点是线段的中点,连接,则的长为______ .【答案】或【解析】分两种情况当在延长线上和当在上讨论,画出图形,连接,过点作于,利用勾股定理解题即可解:当在线段上时,连接,过点作于,当在线段上时,,,,,点是线段的中点,,,,,,,,,,当在延长线上时,则,是线段的中点,,,,,,,,,,,,的长为或.故答案为:或.【点拨】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.三、解答题(本大题共9小题,共82)17. 计算:.【答案】10【解析】根据零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,进行计算即可.解:.【点拨】本题主要考查了实数混合运算,解题的关键是熟练掌握零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,准确计算.18. 为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用,,依次表示这三类比赛内容).现将正面写有,,的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.【答案】图见解析,【解析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可;解:用树状图法表示所有等可能出现的结果如下:共有种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有种,所以小明和小梅抽到同一类比赛内容的概率为.【点拨】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键19. 如图,在中,,是边上的中线,点在的延长线上,连接,过点作交的延长线于点,连接、,求证:四边形是菱形.【答案】证明见解析【解析】先根据等腰三角形的性质,得到垂直平分,进而得到,,,再利用平行线的性质,证明,得到,进而得到,即可证明四边形是菱形.证明:,是边上的中线,垂直平分,,,,,,,在和中,,,,,四边形是菱形.【点拨】本题考查了等腰三角形的性质,垂直平分线的性质,全等三角形的判定和性质,菱形的判定,灵活运用相关知识点解决问题是解题关键.20. “书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查问卷设置了五种选项:“艺术类”,“文学类”,“科普类”,“体育类”,“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______ 名;(2)请直接补全条形统计图;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是______ 度;(4)据抽样调查结果,请你估计该校名学生中,有多少名学生最喜爱“科普类”图书.【答案】(1)100 (2)见解析(3)36 (4)720名【解析】(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可;(1)此次被调查的学生人数为:名,故答案为:;(2)类的人数为:名,补全条形统计图如下:;(3)在扇形统计图中,“艺术类”所对应的圆心角度数是:,故答案为:;(4)(名),答:估计该校名学生中,大约有名学生最喜爱“科普类”图书.【点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小21. 甲、乙两人加工同一种零件,每小时甲比乙多加工个这种零件,甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工个这种零件.【解析】设乙每小时加工个这种零件,则甲每小时加工个这种零件,利用“甲加工个这种零件所用的时间与乙加工个这种零件所用的时间相等”列分式方程即可求解.解:设乙每小时加工个这种零件,则甲每小时加工个这种零件,根据题意得:,解得:,经检验,是所列方程的解,且符合题意.答:乙每小时加工个这种零件.【点拨】本题主要考查了分式方程的应用,解题的关键在于能够根据题意找到等量关系列出方程进行求解.22. 如图,是的直径,点是上的一点(点不与点,重合),连接、,点是上的一点,,交的延长线于点,且.(1)求证:是的切线;(2)若的半径为,,则的长为______ .【答案】(1)证明见解析(2)8【解析】(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到设, 则, 利用x的代数式表示出线段,再利用勾股定理列出关于x的方程,解方程即可得出结论.(1)证明:是的直径,,,,,,,,,,,即.为的直径,是的切线;(2)解:,,,设,则,,,,,是的直径,,,,解得:不合题意,舍去或..故答案为:.【点拨】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23. 如图,在平面直角坐标系中,一次函数的图象交轴于点,交轴于点直线与轴交于点,与直线交于点点是线段上的一个动点(点不与点重合),过点作轴的垂线交直线于点设点的横坐标为.(1)求的值和直线的函数表达式;(2)以线段,为邻边作▱,直线与轴交于点.①当时,设线段的长度为,求与之间的关系式;②连接,,当面积为时,请直接写出的值.【答案】(1),(2)①;②或【解析】(1)根据直线的解析式求出点C的坐标,用待定系数法求出直线的解析式即可;(2)①用含m的代数式表示出的长,再根据得出结论即可;②根据面积得出l的值,然后根据①的关系式的出m的值.(1)点在直线上,,一次函数的图象过点和点,,解得,直线解析式为;(2)①点在直线上,且的横坐标为,的纵坐标为:,点在直线上,且点的横坐标为,点的纵坐标为:,,点,线段的长度为,,,,即;②的面积为,,即,解得,由①知,,,解得,即的值为或.【点拨】本题考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式是解题的关键.24. 如图,在纸片中,,,,点为边上的一点(点不与点重合),连接,将纸片沿所在直线折叠,点,的对应点分别为、,射线与射线交于点.(1)求证:;(2)如图,当时,的长为______ ;(3)如图,当时,过点作,垂足为点,延长交于点,连接、,求的面积.【答案】(1)证明见解析;(2);(3)【解析】(1)根据平行四边形的性质和平行线的性质,得到,再根据折叠的性质,得到,然后结合邻补角的性质,推出,即可证明;(2)作,交的延长线于,先证明四边形是正方形,再利用特殊角的三角函数值,求出,进而得到,即可求出的长;(3)作,交的延长线于,作于,交的延长线于,作于,解直角三角形,依次求出、、、的值,进而求得的值,根据和,求得、,进而得出的值,解直角三角形,求出的值,进而得出的值,根据,得出,从而设,,进而表示出,最后根据,列出,求出,根据,得出,进而得到,即可求出的面积.(1)证明:四边形是平行四边形,,,由折叠性质可知,,,,,;(2)解:如图,作,交的延长线于,,,,,,,,四边形是矩形,由(1)可知:,矩形是正方形,,,,,,,故答案为:;(3)解:如图,作,交的延长线于,作于,交的延长线于,作于,四边形是平行四边形,,,,,,在中,,,,在中,,由(1)可知:,,,又纸片沿所在直线折叠,点,的对应点分别为,,,,,,,,,,,,,,在中,,,,,,,,,,设,,,,,,,,,,,,,,,,,,.【点拨】本题考查了平行四边形的性质,正方形的判定和性质,等腰三角形的性质,解直角三角形、轴对称的性质等知识,正确作辅助线,熟练解直角三角形是解题关键.25. 如图,在平面直角坐标系中,二次函数的图象经过点,与轴的交点为点和点.(1)求这个二次函数的表达式;(2)点,在轴正半轴上,,点在线段上,以线段,为邻边作矩形,连接,设.连接,当与相似时,求的值;当点与点重合时,将线段绕点按逆时针方向旋转后得到线段,连接,,将绕点按顺时针方向旋转后得到,点,对应点分别为、,连接当的边与线段垂直时,请直接写出点的横坐标.【答案】(1)(2)①或;②或或【解析】(1)利用待定系数法解答即可;(2)①利用已知条件用含a的代数式表示出点E,D,F,G的坐标,进而得到线段的长度,利用分类讨论的思想方法和相似三角形的性质,列出关于a的方程,解方程即可得出结论;②利用已知条件,点的坐标的特征,平行四边形的判定与性质,旋转的性质,全等三角形的判定与性质求得,和的长,利用分类讨论的思想方法分三种情形讨论解答利用旋转的性质,直角三角形的边角关系定理,勾股定理求得相应线段的长度即可得出结论;(1)二次函数的图象经过点,与轴的交点为点,解得:此抛物线的解析式为(2)令,则解得:或,∴.∵,∴四边形为矩形,∴∴∴Ⅰ当时,∴∴∴Ⅱ当时,∴∴∴综上,当与相似时,的值为或;点与点重合,∴∴∴四边形为平行四边形,和中,Ⅰ、当所在直线与垂直时,如图,,,三点在一条直线上,过点作轴于点,则∴此时点的横坐标为Ⅱ当所在直线与垂直时,如图,,,设的延长线交于点,过点作,交的延长线于点,过点作,交的延长线于点,则轴,.,,.,.,,此时点的横坐标为;Ⅲ当所在直线与垂直时,如图,,,,,,三点在一条直线上,则,过点作,交的延长线于点,,此时点的横坐标为.综上,当的边与线段垂直时,点的横坐标为或或.【点拨】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,利用点的坐标表示出相应线段的长度和正确利用分类讨论的思想方法是解题的关键。
【真卷】2016年辽宁省大连市中考数学试卷及解析PDF

2016年辽宁省大连市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.(3分)﹣3的相反数是()A.B.C.3 D.﹣32.(3分)在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=24.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°5.(3分)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<16.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.7.(3分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2 C.100(1+x2) D.100(1+2x)8.(3分)如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2二、填空题:本大题共8小题,每小题3分,共24分9.(3分)因式分解:x2﹣3x=.10.(3分)若反比例函数y=的图象经过点(1,﹣6),则k的值为.11.(3分)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.12.(3分)下表是某校女子排球队队员的年龄分布则该校女子排球队队员的平均年龄是岁.13.(3分)如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.(3分)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是.15.(3分)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B 处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).16.(3分)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.(9分)计算:(+1)(﹣1)+(﹣2)0﹣.18.(9分)先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.19.(9分)如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.20.(12分)为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是%;(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是%;(3)家庭用水量的中位数落在组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.(9分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.22.(9分)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.23.(10分)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.(11分)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤1,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.25.(12分)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).26.(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2016年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.(3分)﹣3的相反数是()A.B.C.3 D.﹣3【解答】解:(﹣3)+3=0.故选C.2.(3分)在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(1,5)所在的象限是第一象限.故选A.3.(3分)方程2x+3=7的解是()A.x=5 B.x=4 C.x=3.5 D.x=2【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选D4.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选B.5.(3分)不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<1【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选D.6.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选C.7.(3分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2 C.100(1+x2) D.100(1+2x)【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故选:B.8.(3分)如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为10÷2=5cm,故表面积=πrl+πr2=π×5×8+π×52=65πcm2.故选:B.二、填空题:本大题共8小题,每小题3分,共24分9.(3分)因式分解:x2﹣3x=x(x﹣3).【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)10.(3分)若反比例函数y=的图象经过点(1,﹣6),则k的值为﹣6.【解答】解:∵反比例函数y=的图象经过点(1,﹣6),∴k=1×(﹣6)=﹣6.故答案为:﹣6.11.(3分)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.12.(3分)下表是某校女子排球队队员的年龄分布则该校女子排球队队员的平均年龄是15岁.【解答】解:根据题意得:(13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15岁.故答案为:15.13.(3分)如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24.【解答】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO==3,故BD=6,则菱形的面积是:×6×8=24.故答案为:24.14.(3分)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是a>﹣.【解答】解:∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,∴△=12﹣4×2×(﹣a)=1+8a>0,解得:a>﹣.故答案为:a>﹣.15.(3分)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B 处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.16.(3分)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.(9分)计算:(+1)(﹣1)+(﹣2)0﹣.【解答】解:(+1)(﹣1)+(﹣2)0﹣=5﹣1+1﹣3=2.18.(9分)先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.【解答】解:原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2.19.(9分)如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.20.(12分)为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;(3)家庭用水量的中位数落在C组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.【解答】解:(1)观察表格可得4.0<x≤6.5的家庭有13户,6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比为30%;(2)调查的家庭数为:13÷26%=50,6.5<x≤9.0 的家庭数为:50×30%=15,D组9.0<x≤11.5 的家庭数为:50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤11.5 的百分比是:9÷50×100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)13,30;(2)50,18;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,=128(户),答:该月用水量不超过9.0吨的家庭数为128户.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.(9分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.22.(9分)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=1>0,===,∴当m=﹣=时,d最大∴D点的坐标为(,﹣).23.(10分)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解:连接BD,过D作DH⊥BF于H,延长DO交⊙O于G,连接BG,则∠G=∠DCB,∵∠G+∠GDB=90°,∵DE与⊙O相切,∴∠GDB+∠BDE=90°,∴∠G=∠BDE,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,∵∠AFC=∠DFB,∴△FDB是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.(11分)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中0<x≤1,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是3;(2)求S关于x的函数关系式,并写出x的取值范围.【解答】解;(1)由图象可知BC=3. 故答案为3.(2)①如图1中,当0≤x ≤1时,作DM ⊥AB 于M , 由题意BC=3,AC=2,∠C=90°,∴AB==,∵∠B=∠B ,∠DMB=∠C=90°, ∴△BMD ∽△BCA ,∴==, ∴DM=,BM=,∵BD=DF ,DM ⊥BF , ∴BM=MF ,∴S △BDF =x 2,∵EG ∥AC , ∴=, ∴=,∴EG=(x +2),∴S 四边形ECAG =[2+(x +2)]•(1﹣x ),∴S=S △ABC ﹣S △BDF ﹣S 四边形ECAG =3﹣x 2﹣[2+(x +2)]•(1﹣x )=﹣x 2+x +.②如图②中,作AN ∥DF 交BC 于N ,设BN=AN=x , 在RT △ANC 中,∵AN 2=CN 2+AC 2, ∴x 2=22+(3﹣x )2, ∴x=,∴当1<x ≤时,S=S △ABC ﹣S △BDF =3﹣x 2,③如图3中,当<x ≤3时,∵DM ∥AN , ∴=, ∴=,∴CM=(3﹣x ),∴S=CD•CM=(3﹣x )2,综上所述S=.25.(12分)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∵AN=ka,∴AE=NE﹣AN=2ak(3k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.26.(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是(0,);(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.【解答】解:(1)∵抛物线y=x2+与y轴相交于点A,∴A(0,),∵点B与点O关于点A对称,∴BA=OA=,∴OB=,即B点坐标为(0,),故答案为:(0,);(2)∵B点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PC=+,∴P点坐标为(﹣,+),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,。
2016年辽宁中考数学模拟考卷及答案

2016年辽宁中考数学模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,既是奇函数又是增函数的是()A. y=x^3B. y=x^2C. y=2xD. y=2x2. 在三角形ABC中,若a=8, b=10, sinA=3/5,则三角形ABC的面积S为()A. 12B. 24C. 36D. 483. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √14. 下列等式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (ab)^2 = a^2 b^2C. (a+b)(ab) = a^2 b^2D. (a+b)^2 = a^2 + 2ab + b^25. 已知一组数据的方差是9,那么这组数据的标准差是()A. 3B. 6C. 9D. 81二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()2. 两条平行线的斜率相等。
()3. 一元二次方程的解一定是实数。
()4. 相似三角形的面积比等于边长比的平方。
()5. 互为相反数的两个数的和为0。
()三、填空题(每题1分,共5分)1. 若a=3,b=2,则a+b=______。
2. 已知平行四边形的对角线互相平分,若一条对角线长度为10,另一条对角线长度为12,则平行四边形的面积是______。
3. 函数y=2x+1的图象是一条______线。
4. 在直角坐标系中,点(3, 4)关于x轴的对称点是______。
5. 三个连续的奇数分别为2n1、2n+1、2n+3,则它们的和为______。
四、简答题(每题2分,共10分)1. 简述勾股定理。
2. 请写出三角形面积的两个计算公式。
3. 什么是无理数?请举例说明。
4. 请列举两种解一元二次方程的方法。
5. 简述概率的基本性质。
五、应用题(每题2分,共10分)1. 某商品原价为200元,打折后售价为160元,求打折折扣。
2. 甲、乙两地相距600公里,一辆汽车从甲地出发,以每小时80公里的速度行驶,求汽车到达乙地所需时间。
【全国百强校】辽宁省沈阳市第二中学2016届高三上学期期中考试文数试题解析(解析版)
说明:1.测试时间:120分钟 总分:150分2.客观题涂在答题纸上,主观题答在答题纸的相应位置上第Ⅰ卷 (60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求 的.1. 已知全集U R =,{}|21x A y y ==+,}0ln |{<=x x B ,则=B A C U )(( )A .φ B.}121|{≤<x x C.}1|{<x x D.}10|{<<x x 【答案】D考点:1.指数函数、对数函数的性质;2.集合的运算. 2. 设复数i z +=1(i 是虚数单位),则复数zz 1+的虚部是( ) A .21B .i 21 C .23 D .i 23 【答案】A 【解析】 试题分析:11131111222i z i i i z i -+=++=++=++,其虚部为12,故选A. 考点:1.复数的运算;2.复数相关概念.3.设0.520152,log 2016,sin1830a b c -=== ,则,,a b c 的大小关系是( ) A. a b c >> B. a c b >> C. b c a >> D. b a c >>【答案】D 【解析】试题分析:120.51212a -⎛⎫===< ⎪⎝⎭,20152015log 2016log 20151b =>=,1sin1830sin(536030)sin 302c =︒=⨯︒+︒=︒=<所以b a c >>,故选D. 考点:1.指数函数与对数函数的性质;2.诱导公式与特殊三角函数值.4. 已知向量(1,1),(2,2)m n λλ=+=+ ,若()()m n m n +⊥-,则λ= ( )A .-4B .-3C .-2D .-1 【答案】B考点:向量的坐标运算.5. 设α,β是两个不同的平面, m 是直线且α⊂m .“m β∥” 是“αβ∥”的( ) A .充分而不必要条件 B. 充分必要条件 C .必要而不充分条件 D.既不充分也不必要条件 【答案】C 【解析】试题分析:当αβ∥时,又因为α⊂m ,所以//m β;当//m β,α⊂m /⇒αβ∥,所以“m β∥” 是“αβ∥”的必要不充分条件,故选C. 考点:线面、面面平行的判定与性质.6. 已知n S 是等差数列{}n a 的前n 项和,若739a a =,则95S S =( ) A .185B .5C . 9D .925【答案】C 【解析】试题分析:设等差数列{}n a 的公差为d ,则716a a d =+,312a a d =+,由739a a =得,116918a d a d +=+,所以132a d =-,所以1915119839936936452295435105551022a d d d S a d S a d a d d d ⨯+-⨯++=====⨯++-⨯+,故选C. 考点:1.等差数列的性质;2.等差数列的求和公式. 7. 将函数sin(4)6y x π=-图象上各点的横坐标伸长到原的2倍,再向左平移4π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是( ) A. 12x π=B. 6x π=C. 3x π=D. 12x π=-【答案】A考点:1.正弦函数的图象与性质;2.函数图象的伸缩变换与平移变换. 8. 某几何体的三视图如图所示,则这个几何体的体积为( ) A. 4B.203C.263D. 8【答案】B 【解析】试题分析:由三视图可知,该几何体为如下图所示的多面体ABCDFE ,可以将该几何体分割为四棱锥A CDFE -与三棱锥E ABC -两个几何体求其体积,所以所求几何体的体积为111202242223323A CDFE E ABC V V V --=+=⨯⨯⨯+⨯⨯⨯⨯=,故选B. A考点:1.三视图;2.多面体体积. 9. 函数xxy 24cos =的图象大致是() 【答案】A考点:函数的奇偶性与图象性质.10. 在△ABC 中,,,a b c 分别为∠A ,∠B ,∠C 的对边,且c b a >>,若向量(,1)m a b =- 和(,1)m b c =-平行,且sin B =45,当△ABC 的面积为 32 时,则b =( )A.1+32 B .2 C .4 D .2+3【答案】B 【解析】A B CD考点:1.向量共线的条件;2.正、余弦定理解三角形.11. 定义在R 上的奇函数()f x ,当0x ≥时,[)[)13log (1),0,2()14,2,x x f x x x ⎧+∈⎪=⎨⎪--∈+∞⎩,则关于x 的函数()()(01)F x f x a a =-<<的所有零点之和为( )A .31a -B .13a -C .31a-- D .13a --【答案】B 【解析】试题分析:求函数()()(01)F x f x a a =-<<的零点即求函数()y f x =与(01)y a a =<<交点的横坐标,在同一坐标系内作出两个函数的图象(如下图所示),由图象可知,共有5个零点,其中G 与B 关于直线4x =-对称,所以有8G B x x +=-,同理8E F x x +=,又由13log (1)x a --+=得,13a C x =-,所以这五个零点之和为881313a a G B E F C x x x x x ++++=-++-=-,故选B.考点:1.函数与方程;2.数形结合;3.对数函数性质;4.绝对值的意义.【方法点睛】本题主要考查函数与方程思想、数形结合思想,属难题.判断函数零点个数的常用方法有: 1.解方程法:令()0f x =,如能求出解,则有几个解就有几个零点;2.零点存在性定理法:利用定理不仅要求函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定有多少个零点或零点值所具有的性质;3.数形结合法:转化为两个函数图象的交点的个数问题,先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.12. 如图,正五边形ABCDE 的边长为2,甲同学在ABC ∆中用余弦定理解得AC 同学在Rt ACH ∆中解得1cos 72AC =,据此可得cos 72 的值所在区间为( )A .()0.1,0.2B .()0.2,0.3C .()0.3,0.4D .()0.4,0.5 【答案】C考点:1.诱导公式;2.函数与方程;3.零点存在定理.【名师点睛】本题主要考查零点存在定理、函数与方程思想以用诱导公式,属难题.求方程解所在区间通常转化为求函数零点所在区间问题求解,解决函数零点所在区间是通过零点存在定理来实现的,需要注意的是零点存在定理只能解决变号零点的问题.本题由求一个数的了以值区间问题转化为求一个方程的近似解的问题,进一步转化为求函数零点所在区间,体现数学中的转化转化思想.第Ⅱ卷 (90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13. 设sin 2sin αα=-,(,)2παπ∈,则tan α的值是________.【答案】考点:1.二倍角公式;2.同角三角函数关系;3.三角函数性质.14. 已知变量,x y 满足240220x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩,则32x y x +++的取值范围是 .【答案】55,42⎡⎤⎢⎥⎣⎦【解析】试题分析:32111222x y x y y x x x ++++++==++++,令12y k x +=+,则k 表示点(,)P x y 与点(2,1)A --两点连线的斜率,作出可行域如下图所示,由图可知,当点P 为可行域内点(2,0)D 时有最小值011224k +==+,当点P 为可行域内点C(0,2)时有最大值213022k +==+,所以k 的取值范围为13,42⎡⎤⎢⎥⎣⎦,所以32x y x +++的取值范围为55,42⎡⎤⎢⎥⎣⎦.考点:1.线性规划;2.斜率的几何意义.【名师点睛】本题主要考查线性规划以及斜率的几何意义,属中档题.线性规划是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离;也可能是给出目标函数的最值,求约束条件中的参数的值,解决此类问题常利用数形结合,准确作出图形是解决问题的关键. 15. 如下数表,为一组等式:123451,235,45615,7891034,111213141565,s s s s s ==+==++==+++==++++=某学生根据上表猜测221(21)()n S n an bn c -=-++,老师回答正确,则a b c -+= . 【答案】5考点:合情推理与演绎推理.【名师点睛】本题主要考查合情推理与演绎推理,属中档题.高考对归纳推理的考查常有以下几个角度: 1.归纳推理与不等式“共舞”问题; 2.归纳推理与“数列”牵手问题; 3.归纳推理与图形变化“相融”问题.本题是归纳推理与“数列”牵手问题,即先求出几个特殊现象,归纳所得结论是尚属未知的一般现象,是由特殊推广到一般结论的推理.16. 在直角梯形ABCD 中,AB ⊥AD ,DC ∥AB ,AD=DC=1,AB=2,E ,F 分别为AB ,BC 的中点,点P在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示)。
2023年辽宁省沈阳市中考数学真题及答案
2023年辽宁省沈阳市中考数学试卷一、选择题(本大题共10小题,共20)1.2的相反数是()A.2B.-2C.12D.12-【答案】B【解析】【详解】2的相反数是-2.故选:B.2.如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.【答案】A【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中;【详解】解:此几何体的主视图从左往右分3列,小正方形的个数分别是1,2,1.故选:A【点睛】本题考查了简单组合体的三视图,主视图是从物体的正面看得到的视图3.我国自主研发的500m 口径球面射电望远镜(FAST )有“中国天眼”之称,它的反射面面积约为22500000m .用科学记数法表示数据250000为()A.60.2510⨯ B.42510⨯ C.42.510⨯ D.52.510⨯【答案】D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10,a n ≤<为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数;【详解】解:5250000 2.510=⨯,故选:D【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1||10,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值4.下列计算结果正确的是()A.824a a a ÷= B.523-=ab ab C.222()a b a b -=- D.3226()ab a b -=【答案】D【解析】【分析】根据整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算即可求解.【详解】解:A 、826a a a ÷=,故此选项错误,不符合题意;B 、523ab ab ab -=,故此选项错误,不符合题意;C 、222()2a b a ab b -=-+,故此选项错误,不符合题意;D 、3226()ab a b -=,正确,符合题意.故选:D .【点睛】本题主要考查整式的加减运算法则,同底数幂的运算,完全平方公式,积的乘方运算,掌握整式的混合运算是解题的关键.5.不等式1x ≥的解集在数轴上表示正确的是()A. B.C. D.【答案】A【解析】【分析】根据在数轴上表示不等式解集的方法求解即可.【详解】解:∵x ≥1,∴1处是实心原点,且折线向右.故选:A .【点睛】本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.6.某班级准备利用暑假去研学旅行,他们准备定做一批容量一致的双肩包.为此,活动负责人征求了班内同学的意向,得到了如下数据:容量/L232527293133人数3252122则双肩包容量的众数是()A .21L B.23L C.29L D.33L【答案】C【解析】【分析】根据众数的定义求解即可.【详解】解:29L 出现21次,出现次数最多,∴众数是29L ,故选:C .【点睛】本题考查了众数的定义,众数是一组数据中出现次数最多的数,众数可能没有,可能有1个,也可能有多个.7.下列说法正确的是()A.将油滴入水中,油会浮在水面上是不可能事件B.抛出的篮球会下落是随机事件C.了解一批圆珠笔芯的使用寿命,采用普查的方式D.若甲、乙两组数据的平均数相同,22S 甲=,22.5S =乙,则甲组数据较稳定【答案】D【解析】【分析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.【详解】解:A 、将油滴入水中,油会浮在水面上是必然事件,故A 不符合题意;B 、抛出的篮球会下落是必然事件,故B 不符合题意;C 、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C 不符合题意;D 、若甲、乙两组数据的平均数相同,22S =甲,2 2.5S =乙,则甲组数据较稳定,故D 符合题意;故选:D .【点睛】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.8.已知一次函数y kx b =+的图象如图所示,则k ,b 的取值范围是()A.0k >,0b <B.0k <,0b <C.0k <,0b >D.0k >,0b >【答案】A【解析】【分析】根据一次函数图象进行判断.【详解】解: 一次函数y kx b =+的图象经过第一、三、四象限,0k ∴>,0b <.故选:A .【点睛】本题考查一次函数的图象和性质,熟知一次函数的图象与系数的关系是解题的关键.9.二次函数2(1)2y x =-++图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【详解】根据抛物线2(1)2y x =-++,可以写出该抛物线的顶点坐标,从而可以得到顶点在第几象限.解:2(1)2y x =-++ ,∴顶点坐标为()1,2-,∴顶点在第二象限.故选:B .【点睛】本题主要考查了二次函数的性质,掌握二次函数的性质是解题的关键.10.如图,四边形ABCD 内接于O ,O 的半径为3,120D ∠=︒,则 AC 的长是()A.πB.23πC.2πD.4π【答案】C【解析】【分析】根据圆内接四边形的性质得到=60B ∠︒,由圆周角定理得到120AOC ∠=︒,根据弧长的公式即可得到结论.【详解】解: 四边形ABCD 内接于O ,120D ∠=︒,60B ∴∠=︒,2120AOC B ∴∠=∠=︒,AC ∴的长12032180ππ⨯==.故选:C .【点睛】本题考查的是弧长的计算,圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.二、填空题(本大题共6小题,共18分)11.因式分解:322a a a ++=__________.【答案】a (a+1)2【解析】【分析】先提取公因式a ,再对余下的项利用完全平方公式继续分解因式.完全平方公式:a 2±2ab+b 2=(a±b )2【详解】:a 3+2a 2+a ,=a (a 2+2a+1),=a (a+1)2.【点睛】此题考查提公因式法与公式法的综合运用,掌握运算法则是解题关键12.当3a b +=时,代数式2(2)(35)5a b a b +-++的值为______.【答案】2【解析】【分析】先将原式去括号,然后合并同类项可得5a b --+,再把前两项提取1-,然后把3a b +=的值代入可得结果.【详解】解:2(2)(35)5a b a b +-++24355a b a b =+--+5a b =--+()5a b =-++当3a b +=时,原式352=-+=,故答案为:2.【点睛】此题主要是考查了整式的化简求值,能够熟练运用去括号法则,合并同类项法则化简是解题的关键.13.若点()12,A y -和点()21,B y -都在反比例函数2y x=的图象上,则1y ______2y .(用“<”“>”或“=”填空)【答案】>【解析】【分析】把2x =-和=1x -分别代入反比例函数2y x =中计算y 的值,即可做出判断.【详解】解:∵点()12,A y -和点()21,B y -都在反比例函数2y x =的图象上,∴令2x =-,则1212y ==--;令=1x -,则2221y ==--,12 ->-,12y y ∴>,故答案为:>.【点睛】本题考查了反比例函数图像上点的坐标特征,计算y 的值是解题的关键.14.如图,直线AB CD ∥,直线EF 分别与AB ,CD 交于点E ,F ,小明同学利用尺规按以下步骤作图:(1)点E 为圆心,以任意长为半径作弧交射线EB 于点M ,交射线EF 于点N ;(2)分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在BEF ∠内交于点P ;(3)作射线EP 交直线CD 于点G ;若29EGF ∠=︒,则BEF ∠=______度.【答案】58【解析】【分析】由作图得EG 平分BEF ∠,再根据平行线的性质“两直线平行,内错角相等”易得29BEG EGF ∠=∠=︒,即可获得答案.【详解】解:由作图得:EG 平分BEF ∠,∴2BEF BEG ∠=∠,∵AB CD ∥,∴29BEG EGF ∠=∠=︒,∴258BEF BEG ∠=∠=︒.故答案为:58.【点睛】本题主要考查了尺规作图-基本作图以及平行线的性质,由作图得到EG 平分BEF ∠是解题关键.15.如图,王叔叔想用长为60m 的栅栏,再借助房屋的外墙围成一个矩形羊圈ABCD ,已知房屋外墙足够长,当矩形ABCD 的边AB =______m 时,羊圈的面积最大.【答案】15【解析】【分析】设AB 为m x ,则()602m BC x =-,根据矩形的面积公式可得关于x 的二次函数关系式,配方后即可解.【详解】解:设AB 为m x ,面积为2m S ,由题意可得:()26022(15)450S x x x =-=--+,∴当15x =时,S 取得最大值,即15m AB =时,羊圈的面积最大,故答案为:15.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大面积的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在2b x a=-时取得.16.如图,在Rt ABC 中,90ACB ∠=︒,3AC BC ==,点D 在直线AC 上,1AD =,过点D 作DE AB ∥直线BC 于点E ,连接BD ,点O 是线段BD 的中点,连接OE ,则OE 的长为______.【答案】或412【解析】【分析】分两种情况当D 在CA 延长线上和当D 在CA 上讨论,画出图形,连接OC ,过点O 作ON BC ⊥于N ,利用勾股定理解题即可【详解】解:当在线段上时,连接OC ,过点O 作ON BC ⊥于N ,①当D 在线段AC 上时,1AD = ,2CD AC AD ∴=-=,90BCD ∠=︒ ,BD ∴===,点O 是线段BD 的中点,11322OC OB OD BD ∴====,ON BC ⊥ ,1322CN BN BC ∴===,AB DE ,45COE A CBA CED ∴∠=∠=∠=∠=︒,2CE CD ∴==,31222NE ∴=-=,1ON == ,2OE ∴===,②当D 在CA 延长线上时,则4CD AD AC =+=,O 是线段BD 的中点,90BCD ∠=︒,12OC OB OD BD ∴===,ON BC ⊥ ,1322CN BN BC ∴===,OB OD = ,122ON CD ∴==,AB DE ,45CAB COE CBA CED ∴∠=∠=∠=∠=︒,4CE CD ∴==,35422EN CE CN ∴=-=-=,2OE ∴===,OE ∴或412.或412.【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,正确作出辅助线是解题的关键.三、解答题(本大题共9小题,共82)17.计算:()20120234sin 303p -⎛⎫-+-︒ ⎪⎝⎭.【答案】10【解析】【分析】根据零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,进行计算即可.【详解】解:()20120234sin 303p -⎛⎫--︒ ⎪⎝⎭2112342=++-⨯392=+-10=.【点睛】本题主要考查了实数混合运算,解题的关键是熟练掌握零指数幂和负整数指数幂运算法则,二次根式性质,特殊角的三角函数值,准确计算.18.为弘扬中华优秀传统文化,学校举办“经典诵读”比赛,将比赛内容分为“唐诗”“宋词”“元曲”三类(分别用A ,B ,C 依次表示这三类比赛内容).现将正面写有A ,B ,C 的三张完全相同的卡片背面朝上洗匀,由选手抽取卡片确定比赛内容.选手小明先从三张卡片中随机抽取一张,记下字母后放回洗匀,选手小梅再随机抽取一张,记下字母.请用画树状图或列表的方法,求小明和小梅抽到同一类比赛内容的概率.【答案】图见解析,13【解析】【分析】用树状图法列举出所有等可能出现的结果,再根据概率的定义进行计算即可;【详解】解:用树状图法表示所有等可能出现的结果如下:共有9种等可能出现的结果,其中小明和小梅抽到同一类比赛内容的有3种,所以小明和小梅抽到同一类比赛内容的概率为3193=.【点睛】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的关键19.如图,在ABC 中,AB AC =,AD 是BC 边上的中线,点E 在DA 的延长线上,连接BE ,过点C 作CF BE ∥交AD 的延长线于点F ,连接BF 、CE ,求证:四边形BECF是菱形.【答案】证明见解析【解析】【分析】先根据等腰三角形的性质,得到AD 垂直平分BC ,进而得到EB EC =,FB FC =,BD CD =,再利用平行线的性质,证明()AAS EBD FCD ≌,得到BE FC =,进而得到EB BF FC EC ===,即可证明四边形BECF 是菱形.【详解】证明:AB AC = ,AD 是BC 边上的中线,AD ∴垂直平分BC ,EB EC ∴=,FB FC =,BD CD =,CF BE ∥ ,BED CFD ∴∠=∠,EBD FCD ∠=∠,在EBD △和FCD 中,BED CFD EBD FCD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS EBD FCD ∴ ≌,BE FC ∴=,EB BF FC EC ∴===,∴四边形EBFC 是菱形.【点睛】本题考查了等腰三角形的性质,垂直平分线的性质,全等三角形的判定和性质,菱形的判定,灵活运用相关知识点解决问题是解题关键.20.“书香润沈城,阅读向未来”,沈阳市第十五届全民读书季启动之际.某中学准备购进一批图书供学生阅读,为了合理配备各类图书,从全体学生中随机抽取了部分学生进行了问卷调查.问卷设置了五种选项:A“艺术类”,B“文学类”,C“科普类”,D“体育类”,E“其他类”,每名学生必须且只能选择其中最喜爱的一类图书,将调查结果整理绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)此次被调查的学生人数为______名;(2)请直接补全条形统计图;(3)在扇形统计图中,A“艺术类”所对应的圆心角度数是______度;(4)据抽样调查结果,请你估计该校1800名学生中,有多少名学生最喜爱C“科普类”图书.【答案】(1)100(2)见解析(3)36(4)720名【解析】【分析】(1)用B的人数除以对应百分比可得样本容量;(2)用样本容量减去其它四类的人数可得D类的人数,进而补全条形统计图;(3)用360乘A“艺术类”所占百分比可得对应的圆心角度数;(4)用总人数乘样本中C类所占百分比即可;【小问1详解】÷=名),此次被调查的学生人数为:2020%100(故答案为:100;【小问2详解】----=名),D类的人数为:100102040525(补全条形统计图如下:;【小问3详解】在扇形统计图中,A “艺术类”所对应的圆心角度数是:10360100%36100︒⨯⨯=︒,故答案为:36;【小问4详解】401800100%720100⨯⨯=(名),答:估计该校1800名学生中,大约有720名学生最喜爱C “科普类”图书.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小21.甲、乙两人加工同一种零件,每小时甲比乙多加工2个这种零件,甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等,求乙每小时加工多少个这种零件.【答案】乙每小时加工8个这种零件.【解析】【分析】设乙每小时加工x 个这种零件,则甲每小时加工()2x +个这种零件,利用“甲加工25个这种零件所用的时间与乙加工20个这种零件所用的时间相等”列分式方程即可求解.【详解】解:设乙每小时加工x 个这种零件,则甲每小时加工()2x +个这种零件,根据题意得:25202x x=+,解得:8x =,经检验,8x =是所列方程的解,且符合题意.答:乙每小时加工8个这种零件.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够根据题意找到等量关系列出方程进行求解.22.如图,AB 是O 的直径,点C 是O 上的一点(点C 不与点A ,B 重合),连接AC 、BC ,点D 是AB 上的一点,AC AD =,BE 交CD 的延长线于点E ,且BE BC =.(1)求证:BE 是O 的切线;(2)若O 的半径为5,1tan 2E =,则BE 的长为______.【答案】(1)证明见解析(2)8【解析】【分析】(1)利用圆周角定理,等腰三角形的性质定理,对顶角相等,三角形的内角和定理和圆的切线的判定定理解答即可得出结论;(2)利用直角三角形的边角关系定理得到1,2DB BE =设DB x =,则2BE x =,利用x 的代数式表示出线段AC BC ,,再利用勾股定理列出关于x 的方程,解方程即可得出结论.【小问1详解】证明:AB 是O 的直径,90ACB ∴∠=︒,90ACD BCD ∴∠+∠=︒,AC AD = ,ACD ADC ∴∠=∠,ADC BDE ∠=∠ ,ACD BDE ∴∠=∠,BE BC = ,BCD E ∴∠=∠,90BDE E ∴∠+∠=︒,()18090DBE BDE E ∴∠=︒-∠+∠=︒,即OB BE ⊥.AB 为O 的直径,BE ∴是O 的切线;【小问2详解】解:1tan 2E =,tan DB E BE=,12DB BE ∴=,设DB x =,则2BE x =,2BC BE x ∴==,10AD AB BD x =-=-,AC AD = ,10AC x ∴=-,AB 是O 的直径,90ACB ∴∠=︒,222AC BC AB ∴+=,222(10)(2)10x x ∴-+=,解得:0(x =不合题意,舍去)或4x =.28BE x ∴==.故答案为:8.【点睛】本题主要考查了圆的有关性质,圆周角定理,等腰三角形的性质,三角形的内角和定理,圆的切线的判定定理,勾股定理,直角三角形的边角关系定理,熟练掌握圆周角定理是解题的关键.23.如图,在平面直角坐标系中,一次函数y kx b =+的图象交x 轴于点()8,0A ,交y 轴于点B .直线1322y x =-与y 轴交于点D ,与直线AB 交于点()6,C a .点M 是线段BC 上的一个动点(点M 不与点C 重合),过点M 作x 轴的垂线交直线CD 于点N .设点M 的横坐标为m .(1)求a 的值和直线AB 的函数表达式;(2)以线段MN ,MC 为邻边作▱MNQC ,直线QC 与x 轴交于点E .①当2405m ≤<时,设线段EQ 的长度为l ,求l 与m 之间的关系式;②连接OQ ,AQ ,当AOQ △的面积为3时,请直接写出m 的值.【答案】(1)32a =,364y x =-+(2)①13524l m =-;②235【解析】【分析】(1)根据直线1322y x =-的解析式求出点C 的坐标,用待定系数法求出直线AB 的解析式即可;(2)①用含m 的代数式表示出MN 的长,再根据MN CQ =得出结论即可;②根据面积得出l 的值,然后根据①的关系式的出m 的值.【小问1详解】点()6,C a 在直线1322y x =-上,1336222a ∴=⨯-=, 一次函数y kxb =+的图象过点()8,0A 和点36,2C ⎛⎫ ⎪⎝⎭,80362k b k b +=⎧⎪∴⎨+=⎪⎩,解得346k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为364y x =-+;【小问2详解】①M 点在直线364y x =-+上,且M 的横坐标为m ,M ∴的纵坐标为:364m -+,N Q 点在直线1322y x =-上,且N 点的横坐标为m ,N ∴点的纵坐标为:1232m -,313155642224MN m m m ∴=-+-+=-,点36,2C ⎛⎫ ⎪⎝⎭,线段EQ 的长度为l ,32CQ l ∴=+,MN CQ = ,1553242m l ∴-=+,即13524l m =-;②AOQ△的面积为3,132OA EQ ∴⋅=,即1832EQ ⨯⨯=,解得34EQ =,由①知,13524EQ m =-,1353244m ∴-=,解得235m =,即m 的值为235.【点睛】本题考查一次函数的知识,熟练掌握一次函数的图象和性质,待定系数法求解析式是解题的关键.24.如图1,在ABCD Y 纸片中,10AB =,6AD =,60DAB ∠=︒,点E 为BC 边上的一点(点E 不与点C 重合),连接AE ,将ABCD Y 纸片沿AE 所在直线折叠,点C ,D 的对应点分别为C '、D ¢,射线C E '与射线AD 交于点F .(1)求证:AF EF =;(2)如图2,当EF AF ⊥时,DF 的长为______;(3)如图3,当2CE =时,过点F 作FM AE ⊥,垂足为点M ,延长FM 交C D ''于点N ,连接AN 、EN ,求ANE 的面积.【答案】(1)证明见解析;(2)6-;(3)【解析】【分析】(1)根据平行四边形的性质和平行线的性质,得到180FAE AEC ∠+∠=︒,再根据折叠的性质,得到AEC AEC '∠=∠,然后结合邻补角的性质,推出=∠∠FAE AEF ,即可证明AF EF =;(2)作AG CB ⊥,交CB 的延长线于G ,先证明四边形AGEF 是正方形,再利用特殊角的三角函数值,求出AG =AF =,即可求出DF 的长;(3)作AQ CB ⊥,交CB 的延长线于Q ,作MT AF ⊥于T ,交HD 的延长线于G ,作HR MT ⊥于R ,解直角三角形ABQ ,依次求出BQ 、AQ 、EQ 、AE 的值,进而求得AM 的值,根据cos cos DAE AEQ ∠=∠和sin sin DAE AEQ ∠=∠,求得92AT =、532MT =,进而得出DT 的值,解直角三角形DGT ,求出GT的值,进而得出MG 的值,根据tan tan FMT AEQ ∠=∠,得出HR RM =HR =,9RM k =,进而表示出15GR k ==,最后根据GR RM MG +=,列出159k k +=,求出36k =,根据sin sin FMT AEQ ∠=∠,得出MN =,进而得到MN =,即可求出ANE 的面积.【小问1详解】证明: 四边形ABCD 是平行四边形,AD BC ∴∥,180FAE AEC ∴∠+∠=︒,由折叠性质可知,AEC AEC '∠=∠,180FAE AEC '∴∠+∠=︒,180AEF AEC '∠+∠=︒ ,FAE AEF ∴∠=∠,AF EF ∴=;【小问2详解】解:如图1,作AG CB ⊥,交CB 的延长线于G ,AD BC ∥ ,60DAB ∠=︒,60ABG DAB ∴∠=∠=︒,18090FEG F ∠=︒-∠=︒,AG CB ⊥ ,90AGB ∴∠=︒,90AGB FEG F ∴∠=∠=∠=︒,∴四边形AGEF 是矩形,由(1)可知:AF EF =,∴矩形AGFE 是正方形,sin sin 60AG ABG AB∠=︒= ,10AB =,sin60102AG AB ∴=⋅︒=⨯=,AF AG ∴==,6AD = ,6DF AF AD ∴=-=,故答案为:6-;【小问3详解】解:如图2,作AQ CB ⊥,交CB 的延长线于Q ,作MT AF ⊥于T ,交HD 的延长线于G ,作HR MT ⊥于R ,四边形ABCD 是平行四边形,10AB CD ∴==,6AD BC ==,AB CD ∥,CB AD ∥,60ABQ DAB ∴∠=∠=︒,在Rt AQB 中,1cos 601052BQ AB =⋅︒=⨯=,3sin 60103AQ AB =⋅︒=⨯2CE = 6529EQ BC BQ CE ∴=+-=+-=,在Rt AQE V 中,2222(53)9239AE AQ EQ =+=+=由(1)可知:AF EF =,FM AE ⊥ ,1392AM EM AE ∴===,又 ABCD Y 纸片沿AE 所在直线折叠,点C ,D 的对应点分别为C ',D ¢,HM MN ∴=,AD BC ∥ ,DAE AEQ ∴∠=∠,cos cos DAE AEQ ∴∠=∠,sin sin DAE AEQ ∠=∠,AT EQAM AE ∴=,MTAQAM AE =939239=5339239MT =92AT ∴=,532MT =,93622DT AD AT ∴=-=-=,AB CD ∥ ,60GDT DAB ∴∠=∠=︒,在Rt DGT 中,tan tan 60GTGDT DT ∠=︒=,33tan 602GT DT ∴=⋅︒=,335322MG GT MT ∴=+=+=90FMT AMT ∠+∠=︒ ,18090DAE AMT ATM ∠+∠=︒-∠=︒,FMT DAE ∴∠=∠,FMT AEQ ∴∠=∠,tan tan FMT AEQ ∠=∠ ,539HRAQRM EQ ∴==,∴设HR =,9RM k =,MG AF ⊥ ,HG MG ⊥,HR AF ∴∥,60GHR GDT ∴∠=∠=︒,tan tan GHR GDT ∴∠=∠,tan 60GRHR ∴=︒=,15GR k ∴===,GR RM MG += ,159k k ∴+=,6k ∴=,52HR ∴==,sin sin FMT AEQ ∠=∠ ,HRAQHM AE ∴=,52HM ∴=HM ∴=,MN ∴=1122ANE S AE MN ∴=⋅=⨯= .【点睛】本题考查了平行四边形的性质,正方形的判定和性质,等腰三角形的性质,解直角三角形、轴对称的性质等知识,正确作辅助线,熟练解直角三角形是解题关键.25.如图,在平面直角坐标系中,二次函数213y x bx c =++的图象经过点()0,2A ,与x 轴的交点为点)B 和点C .(1)求这个二次函数的表达式;(2)点E ,G 在y 轴正半轴上,2OG OE =,点D 在线段OC 上,OD =.以线段OD ,OE 为邻边作矩形ODFE ,连接GD ,设OE a =.①连接FC ,当GOD 与FDC △相似时,求a 的值;②当点D 与点C 重合时,将线段GD 绕点G 按逆时针方向旋转60︒后得到线段GH ,连接FH ,FG ,将GFH 绕点F 按顺时针方向旋转(0180)αα︒<≤︒后得到G FH ''V ,点G ,H 的对应点分别为G '、H ',连接DE .当G FH ''V 的边与线段DE 垂直时,请直接写出点H '的横坐标.【答案】(1)2123y x =-+(2)①32或65;②3或377+【解析】【分析】(1)利用待定系数法解答即可;(2)①利用已知条件用含a 的代数式表示出点E ,D ,F ,G 的坐标,进而得到线段CD 的长度,利用分类讨论的思想方法和相似三角形的性质,列出关于a 的方程,解方程即可得出结论;②利用已知条件,点的坐标的特征,平行四边形的判定与性质,旋转的性质,全等三角形的判定与性质求得FH OD ==,90GOD GFH ∠=∠=︒和GH 的长,利用分类讨论的思想方法分三种情形讨论解答利用旋转的性质,直角三角形的边角关系定理,勾股定理求得相应线段的长度即可得出结论;【小问1详解】二次函数213y x bx c =++的图象经过点()0,2A ,与x轴的交点为点)B,2,120c =⎧⎪∴⎨++=⎪⎩解得:2b c ⎧=⎪⎨=⎪⎩∴此抛物线的解析式为2123y x =-+【小问2详解】①令0y =,则21203x -+=解得:x =x =∴C OC ∴=.∵,2,OE a OG OE OD ===,∴2,OG a OD == 四边形ODFE 为矩形,∴,EF OD FD OE a====∴(0,),,0),,),(0,2)E a DF aG a∴CD OC OD =-=Ⅰ.当GOD FDC ∽时,∴OG FD OD CD==∴32a =Ⅱ.当GOD CDF ∽时,∴OG CD OD FD =∴22333a a aa -=∴65a =综上,当GOD 与FDC △相似时,a 的值为32或65;②点D 与点C 重合,∴23OD OC ==∴2,24,23,2OE OG OE EF OD DF OE =======∴2EG OE ==2,EG DF ∴==,EG DF ∥ ∴四边形GEDF 为平行四边形,22222(23)4,FG DE OE OD ∴==+=+=30,GFE ∴∠=︒60,EGF ∴∠=︒60,DGH ∠=︒ ,EGF DGH ∴∠=∠.OGD FGH ∴∠=∠在GOD 和GFH 中,4,GO GF OGD FGH GD GH==⎧⎪∠=∠⎨⎪=⎩(),GOD GFH SAS ∴ ≌23,90.FH OD GOD GFH ∴==∠=∠=︒22224(23)27.GH GF FH ∴=+=+=Ⅰ、当'G F 所在直线与DE 垂直时,如图,90,GFH ∠=︒ ,GF DE ∥''90,G FH ∴∠=︒G ∴,F ,H '三点在一条直线上,423.GH GF FH FG FH ∴'=+'=+=+过点H '作H K y '⊥轴于点K ,则H K FE'∥30,KH G EFG ∴∠'=∠=︒3cos30(423)233,2H K H G ∴'='⋅︒=⨯+=+∴此时点H '的横坐标为233+Ⅱ.当''G H 所在直线与DE 垂直时,如图,GF DE ∥ ,''G H GF ∴⊥,设GF 的延长线交''G H 于点M ,过点M 作MP EF ⊥,交EF 的延长线于点P ,过点'H 作'H N MP ⊥,交PM 的延长线于点N ,则H N PF x '∥∥轴,30PFM EFG ∠=∠=︒.''11''''22FG H S G H FM FH FG =⋅=⋅ ,437FM ∴⨯=,4217FM ∴=.cos30727FP FM ∴=⋅︒=⨯=,677PE PF EF ∴=+=.67'7H M ==,37''sin307H N H M ∴=⋅︒=,∴此时点'H 的横坐标为'777PE H N -=+-=;Ⅲ.当'FH 所在直线与DE 垂直时,如图,''90H FG ∠=︒ ,GF DE ∥,'90GFH ∴∠=︒,H ∴,F ,'H 三点在一条直线上,则'30H FD ∠=︒,过点'H 作'H L DF ⊥,交FD 的延长线于点L ,1''sin302H L H F =⋅︒==,∴此时点'H 的横坐标为'EF H L -=.综上,当''G FH 的边与线段DE 垂直时,点'H 的横坐标为3+或377【点睛】本题主要考查了二次函数的图象与性质,抛物线上点的坐标的特征,矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,利用点的坐标表示出相应线段的长度和正确利用分类讨论的思想方法是解题的关键。
沈阳市2016年初中学业水平考试 数学试题及答案(教师版)
沈阳市2016年初中学业水平考试数学试题一、选择题(下列各题的备选答案中,只有一个答案是正确的。
每小题2分,共20分)1.(2分)下列各数是无理数的是(C)A.0 B.﹣1 C. D.2.(2分)如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是(A)A. B. C.D.3.(2分)在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为(C)A.0.54×107 B.54×105 C.5.4×106 D.5.4×1074.(2分)如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为(A)A.3 B.﹣3 C. D.﹣5.(2分)“射击运动员射击一次,命中靶心”这个事件是(D)A.确定事件 B.必然事件C.不可能事件D.不确定事件6.(2分)下列计算正确的是(C)A.x4+x4=2x8 B.x3•x2=x6 C.(x2y)3=x6y3 D.(x﹣y)(y﹣x)=x2﹣y2 7.(2分)已知一组数据:3,4,6,7,8,8,下列说法正确的是(B)A.众数是2 B.众数是8 C.中位数是6 D.中位数是78.(2分)一元二次方程x2﹣4x=12的根是(B)A.x1=2,x2=﹣6 B.x1=﹣2,x2=6 C.x1=﹣2,x2=﹣6 D.x1=2,x2=69.(2分)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是(D)A.B.4 C.8 D.410.(2分)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是(D)A.y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4二、填空题(每小题3分,共18分)11.(3分)分解因式:2x2﹣4x+2= 2(x﹣1)2.12.(3分)若一个多边形的内角和是540°,则这个多边形是五边形.13.(3分)化简:(1﹣)•(m+1)= m.14.(3分)三个连续整数中,n是最大的一个,这三个数的和为3n﹣3.15.(3分)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.16.(3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是或.三、解答题17.(6分)计算:(π﹣4)0+|3﹣tan60°|﹣()﹣2+.解:原式=1+3﹣﹣4+3=218.(8分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;∵诵读材料有《论语》,《三字经》,《弟子规》三种∴小明诵读《论语》的概率=故答案为:(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.列表得:小明A B C小亮A (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=.19.(8分)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.证明:(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2)∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.20.(8分)我市某中学决定在学生中开展丢沙包、打篮球、跳大绳和踢毽球四种项目的活动,为了解学生对四种项目的喜欢情况,随机调查了该校m名学生最喜欢的一种项目(每名学生必选且只能选择四种活动项目的一种),并将调查结果绘制成如下的不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比丢沙包20 10%打篮球60 p%跳大绳n 40%踢毽球40 20%根据图表中提供的信息,解答下列问题:(1)m= 200 ,n= 80 ,p= 30 ;(2)请根据以上信息直接补全条形统计图;(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.(1)m=20÷10%=200;n=200×40%=80,60÷200=30%,p=30,故答案为:200,80,30;(2)如图,(3)2000×40%=800(人),答:估计该校2000名学生中有800名学生最喜欢跳大绳.21.(8分)如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).(1)证明:连接OD,如图所示.∵DF是⊙O的切线,D为切点,∴OD⊥DF,∴∠ODF=90°.∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:∵∠CDF=30°,由(1)得∠ODF=90°,∴∠ODB=180°﹣∠CDF﹣∠ODF=60°.∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴的长===π.22.(10分)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(2)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.23.(10分)如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD1,CE1,设点E1的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.解:(1)∵点A的坐标为(4,0),点B的坐标为(0,1),∴OA=4,OB=1,∵∠AOB=90°,∴AB==,∵点C为边AB的中点,∴OC=AB=;故答案为:.(2)证明:∵∠AOB=90°,点C是AB的中点,∴OC=BC=AB,∴∠CBO=∠COB,∵四边形OBDE是正方形,∴BD=OE,∠DBO=∠EOB=90°,∴∠CBD=∠COE,在△CBD和△COE中,,∴△CBD≌△COE(SAS);(3)①解:过点C作CH⊥D1E1于点H,∵C是AB边的中点,∴点C的坐标为:(2,)∵点E1的坐标为(a,0),1<a<2,∴CH=2﹣a,∴S=D1E1•CH=×1×(2﹣a)=﹣a+1;②当1<a<2时,S=﹣a+1=,解得:a=;当a>2时,同理:CH=a﹣2,∴S=D1E1•CH=×1×(a﹣2)=a﹣1,∴S=a﹣1=,解得:a=,综上可得:当S=时,a=或.24.(12分)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.25.(12分)如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(10、0),BK的长是8,CK的长是10;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G 作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S 1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.解:(1)如图1中,①∵抛物线y=x2﹣3x+m的对称轴x=﹣=10,∴点B坐标(10,0),∵四边形OBKC是矩形,∴CK=OB=10,KB=OC=8,故答案分别为10,0,8,10.②在RT△FBK中,∵∠FKB=90°,BF=OB=10,BK=OC=8,∴FK==6,∴CF=CK﹣FK=4,∴点F坐标(4,8).③设OA=AF=x,在RT△ACF中,∵AC2+CF2=AF2,∴(8﹣x)2+42=x2,∴x=5,∴点A坐标(0,5),代入抛物线y=x2﹣3x+m得m=5,∴抛物线为y=x2﹣3x+5.(2)不变.S1•S2=289.理由:如图2中,在RT△EDG中,∵GE=EO=17,ED=8,∴DG===15,∴CG=CD﹣DG=2,∴OG===2,∵GP⊥OM,MH⊥OG,∴∠NPM=∠NHG=90°,∵∠HNG+∠HGN=90°,∠PNM+∠PMN=90°,∠HNG=∠PNM,∴∠HGN=∠NMP,∵∠NMP=∠HMG,∠GHN=∠GHM,∴△GHN∽△MHG,∴=,∴GH2=HN•HM,∵GH=OH=,∴HN•HM=17,∵S1•S2=•OG•HN••OG•HM=(•2)2•17=289.沈阳市2016年初中学业水平考试数学试题参考答案一、选择题(下列各题的备选答案中,只有一个答案是正确的。
2016年辽宁省大连市中考数学试卷(含解析版)
2016年辽宁省大连市中考数学试卷一、选择题:本大题共8小题,每小题3分,共24分1.(3分)﹣3的相反数是()A.B.C.3D.﹣32.(3分)在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)方程2x+3=7的解是()A.x=5B.x=4C.x=3.5D.x=24.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°5.(3分)不等式组的解集是()A.x>﹣2B.x<1C.﹣1<x<2D.﹣2<x<1 6.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.7.(3分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)8.(3分)如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2二、填空题:本大题共8小题,每小题3分,共24分9.(3分)因式分解:x2﹣3x=.10.(3分)若反比例函数y=的图象经过点(1,﹣6),则k的值为.11.(3分)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.12.(3分)下表是某校女子排球队队员的年龄分布则该校女子排球队队员的平均年龄是岁.13.(3分)如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是.14.(3分)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是.15.(3分)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).16.(3分)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.(9分)计算:(+1)(﹣1)+(﹣2)0﹣.18.(9分)先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.19.(9分)如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.20.(12分)为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是%;(2)本次调查的家庭数为户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是%;(3)家庭用水量的中位数落在组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.(9分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.22.(9分)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.23.(10分)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E 在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.(11分)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S 关于x的函数图象如图2所示(其中0<x≤1,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是;(2)求S关于x的函数关系式,并写出x的取值范围.25.(12分)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).26.(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2016年辽宁省大连市中考数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分1.(3分)﹣3的相反数是()A.B.C.3D.﹣3【考点】14:相反数.【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.2.(3分)在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(1,5)所在的象限是第一象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)方程2x+3=7的解是()A.x=5B.x=4C.x=3.5D.x=2【考点】85:一元一次方程的解.【专题】11:计算题;521:一次方程(组)及应用.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:2x+3=7,移项合并得:2x=4,解得:x=2,故选:D.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是()A.40°B.70°C.80°D.140°【考点】JA:平行线的性质.【分析】先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数.【解答】解:∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,故选:B.【点评】本题考查了平行线的性质和角平分线的定义,比较简单;做好本题要熟练掌握两直线平行①内错角相等,②同位角相等,③同旁内角互补;并会书写角平分线定义的三种表达式:若AP平分∠BAC,则①∠BAP=∠PAC,②∠BAP=∠BAC,③∠BAC=2∠BAP.5.(3分)不等式组的解集是()A.x>﹣2B.x<1C.﹣1<x<2D.﹣2<x<1【考点】CB:解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>﹣2,解②得x<1,则不等式组的解集是:﹣2<x<1.故选:D.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.6.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4随机摸出一个小球,不放回,再随机摸出一个小球,两次摸出的小球标号的积小于4的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号的积小于4的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号的积小于4的有4种情况,∴两次摸出的小球标号的积小于4的概率是:=.故选:C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是()A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)【考点】AC:由实际问题抽象出一元二次方程.【专题】123:增长率问题.【分析】设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2,据此列方程即可.【解答】解:若月平均增长率为x,则该文具店五月份销售铅笔的支数是:100(1+x)2,故选:B.【点评】本题考查数量平均变化率问题,解题的关键是正确列出一元二次方程.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“﹣”.8.(3分)如图,按照三视图确定该几何体的全面积是(图中尺寸单位:cm)()A.40πcm2B.65πcm2C.80πcm2D.105πcm2【考点】U3:由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为8cm,底面半径为10÷2=5cm,故表面积=πrl+πr2=π×5×8+π×52=65πcm2.故选:B.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题:本大题共8小题,每小题3分,共24分9.(3分)因式分解:x2﹣3x=x(x﹣3).【考点】53:因式分解﹣提公因式法.【专题】44:因式分解.【分析】确定公因式是x,然后提取公因式即可.【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.10.(3分)若反比例函数y=的图象经过点(1,﹣6),则k的值为﹣6.【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点(1,﹣6)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,﹣6),∴k=1×(﹣6)=﹣6.故答案为:﹣6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.11.(3分)如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.【考点】R2:旋转的性质.【分析】由旋转的性质得:AB=AD=1,∠BAD=∠CAE=90°,再根据勾股定理即可求出BD.【解答】解:∵将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,∴AB=AD=1,∠BAD=∠CAE=90°,∴BD===.故答案为.【点评】本题考查了旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.也考查了勾股定理,掌握旋转的性质是解决问题的关键.12.(3分)下表是某校女子排球队队员的年龄分布则该校女子排球队队员的平均年龄是15岁.【考点】V6:频数与频率;W2:加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13×1+14×1+15×7+16×3)÷12=15(岁),即该校女子排球队队员的平均年龄为15岁.故答案为:15.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键.13.(3分)如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24.【考点】L8:菱形的性质.【分析】直接利用菱形的性质结合勾股定理得出BD的长,再利用菱形面积求法得出答案.【解答】解:连接BD,交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO==3,故BD=6,则菱形的面积是:×6×8=24.故答案为:24.【点评】此题主要考查了菱形的性质以及勾股定理,正确求出BD的长是解题关键.14.(3分)若关于x的方程2x2+x﹣a=0有两个不相等的实数根,则实数a的取值范围是a>﹣.【考点】AA:根的判别式;C6:解一元一次不等式.【分析】由方程有两个不相等的实数根结合根的判别式,可以得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵关于x的方程2x2+x﹣a=0有两个不相等的实数根,∴△=12﹣4×2×(﹣a)=1+8a>0,解得:a>﹣.故答案为:a>﹣.【点评】本题考查了根的判别式以及解一元一次不等式,解题的关键是找出1+8a>0.本题属于基础题,难度不大,解决该题型题目时,根据根的个数结合根的判别式得出不等式(不等式组或方程)是关键.15.(3分)如图,一艘渔船位于灯塔P的北偏东30°方向,距离灯塔18海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东55°方向上的B处,此时渔船与灯塔P的距离约为11海里(结果取整数)(参考数据:sin55°≈0.8,cos55°≈0.6,tan55°≈1.4).【考点】TB:解直角三角形的应用﹣方向角问题.【分析】作PC⊥AB于C,先解Rt△PAC,得出PC=PA=9,再解Rt△PBC,得出PB=≈11.【解答】解:如图,作PC⊥AB于C,在Rt△PAC中,∵PA=18,∠A=30°,∴PC=PA=×18=9,在Rt△PBC中,∵PC=9,∠B=55°,∴PB=≈≈11,答:此时渔船与灯塔P的距离约为11海里.故答案为11.【点评】本题考查了解直角三角形的应用﹣方向角问题,含30°角的直角三角形的性质,锐角三角函数定义.解一般三角形的问题可以转化为解直角三角形的问题,解决的方法就是作高线.16.(3分)如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是(﹣2,0).【考点】HA:抛物线与x轴的交点.【分析】根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.【解答】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=﹣2,即A点坐标为(﹣2,0),故答案为:(﹣2,0).【点评】本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.三、解答题:本大题共4小题,17、18、19各9分20题12分,共39分17.(9分)计算:(+1)(﹣1)+(﹣2)0﹣.【考点】2C:实数的运算;6E:零指数幂.【分析】本题涉及平方差公式、零指数幂、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(+1)(﹣1)+(﹣2)0﹣=5﹣1+1﹣3=2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方差公式、零指数幂、三次根式等考点的运算.18.(9分)先化简,再求值:(2a+b)2﹣a(4a+3b),其中a=1,b=.【考点】4J:整式的混合运算—化简求值.【专题】11:计算题;512:整式.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣4a2﹣3ab=ab+b2,当a=1,b=时,原式=+2.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(9分)如图,BD是▱ABCD的对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:AE=CF.【考点】L5:平行四边形的性质.【专题】14:证明题.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,根据平行线的性质得出∠ABE=∠CDF,求出∠AEB=∠CFD=90°,根据AAS推出△ABE≌△CDF,得出对应边相等即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用;证明△ABE≌△CDF是解决问题的关键.20.(12分)为了解某小区某月家庭用水量的情况,从该小区随机抽取部分家庭进行调查,以下是根据调查数据绘制的统计图表的一部分根据以上信息,解答下列问题(1)家庭用水量在4.0<x≤6.5范围内的家庭有13户,在6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比是30%;(2)本次调查的家庭数为50户,家庭用水量在9.0<x≤11.5范围内的家庭数占被调查家庭数的百分比是18%;(3)家庭用水量的中位数落在C组;(4)若该小区共有200户家庭,请估计该月用水量不超过9.0吨的家庭数.【考点】V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图;W4:中位数.【分析】(1)观察表格和扇形统计图就可以得出结果;(2)利用C组所占百分比及户数可算出调查家庭的总数,从而算出D组的百分比;(3)从第二问知道调查户数为50,则中位数为第25、26户的平均数,由表格可得知落在C组;(4)计算调查户中用水量不超过9.0吨的百分比,再乘以小区内的家庭数就可以算出.【解答】解:(1)观察表格可得4.0<x≤6.5的家庭有13户,6.5<x≤9.0范围内的家庭数占被调查家庭数的百分比为30%;(2)调查的家庭数为:13÷26%=50,6.5<x≤9.0 的家庭数为:50×30%=15,D组9.0<x≤11.5 的家庭数为:50﹣4﹣13﹣6﹣3﹣15=9,9.0<x≤11.5 的百分比是:9÷50×100%=18%;(3)调查的家庭数为50户,则中位数为第25、26户的平均数,从表格观察都落在C组;故答案为:(1)13,30;(2)50,18;(3)C;(4)调查家庭中不超过9.0吨的户数有:4+13+15=32,=128(户),答:该月用水量不超过9.0吨的家庭数为128户.【点评】本题考查了扇形统计图、统计表,解题的关键是要明确题意,找出所求问题需要的条件.四、解答题:本大题共3小题,21、22各9分23题10分,共28分21.(9分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【考点】B7:分式方程的应用.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.22.(9分)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【考点】H3:二次函数的性质;HA:抛物线与x轴的交点.【分析】(1)利用坐标轴上点的特点求出A、B、C点的坐标,再用待定系数法求得直线BC的解析式;(2)设点D的横坐标为m,则纵坐标为(m,),E点的坐标为(m,),可得两点间的距离为d=,利用二次函数的最值可得m,可得点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,===,∴当m=﹣=时,d最大∴D点的坐标为(,﹣).【点评】此题主要考查了二次函数的性质及其图象与坐标轴的交点,设出D的坐标,利用二次函数最值得D点坐标是解答此题的关键.23.(10分)如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E 在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.【考点】MD:切线的判定.【分析】(1)连接OD,由AB是⊙O的直径,得到∠ACB=90°,求得∠A+∠ABC=90°,等量代换得到∠BOD=∠A,推出∠ODE=90°,即可得到结论;(2)连接BD,过D作DH⊥BF于H,由弦切角定理得到∠BDE=∠BCD,推出△ACF与△FDB都是等腰三角形,根据等腰直角三角形的性质得到FH=BH= BF=1,则FH=1,根据勾股定理得到HD==3,然后根据勾股定理列方程即可得到结论.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵∠BOD=2∠BCD,∠A=2∠BCD,∴∠BOD=∠A,∵∠AED=∠ABC,∴∠BOD+∠AED=90°,∴∠ODE=90°,即OD⊥DE,∴DE与⊙O相切;(2)解法一:连接BD,过D作DH⊥BF于H,延长DO交⊙O于G,连接BG,则∠G=∠DCB,∵∠G+∠GDB=90°,∵DE与⊙O相切,∴∠GDB+∠BDE=90°,∴∠G=∠BDE,∴∠BDE=∠BCD,∵∠AED=∠ABC,∴∠AFC=∠DBF,而∠AFC=∠ABC+∠BCD,∠DBF=∠AED+∠BDE,∵∠AFC=∠DFB,∴△FDB是等腰三角形,∴FH=BH=BF=1,则FH=1,∴HD==3,在Rt△ODH中,OH2+DH2=OD2,即(OD﹣1)2+32=OD2,∴OD=5,∴⊙O的半径是5.解法二:连接BD,OD,∵∠A=2∠BCD,∴∠BOD=∠BDF,∵∠OBD=∠DBF,∴△BOD∽△BDF,∴==,∵OB=OD,∴BD=DF=,∴OD===5.【点评】本题考查了切线的判定和性质,等腰三角形的判定,直角三角形的性质,勾股定理,正确的作出辅助线是解题的关键.五、解答题:本大题共3小题,24题11分,25、26各12分,共35分24.(11分)如图1,△ABC中,∠C=90°,线段DE在射线BC上,且DE=AC,线段DE沿射线BC运动,开始时,点D与点B重合,点D到达点C时运动停止,过点D作DF=DB,与射线BA相交于点F,过点E作BC的垂线,与射线BA相交于点G.设BD=x,四边形DEGF与△ABC重叠部分的面积为S,S 关于x的函数图象如图2所示(其中0<x≤1,1<x≤m,m<x≤3时,函数的解析式不同)(1)填空:BC的长是3;(2)求S关于x的函数关系式,并写出x的取值范围.【考点】LO:四边形综合题.【分析】(1)由图象即可解决问题.(2)分三种情形①如图1中,当0≤x≤1时,作DM⊥AB于M,根据S=S△ABC﹣S△BDF ﹣S四边形ECAG即可解决.②如图2中,作AN∥DF交BC于N,设BN=AN=x,在RT△ANC中,利用勾股定理求出x,再根据S=S△ABC ﹣S△BDF﹣S四边形ECAG即可解决.③如图3中,根据S=CD•CM,求出CM即可解决问题.【解答】解;(1)由图象可知BC=3.故答案为3.(2)①如图1中,当0≤x≤1时,作DM⊥AB于M,由题意BC=3,AC=2,∠C=90°,∴AB==,∵∠B=∠B,∠DMB=∠C=90°,∴△BMD ∽△BCA ,∴==,∴DM=,BM=, ∵BD=DF ,DM ⊥BF ,∴BM=MF ,∴S △BDF =x 2,∵EG ∥AC ,∴=, ∴=,∴EG=(x +2),∴S 四边形ECAG =[2+(x +2)]•(1﹣x ),∴S=S △ABC ﹣S △BDF ﹣S四边形ECAG =3﹣x 2﹣[2+(x +2)]•(1﹣x )=﹣x 2+x +.②如图②中,作AN ∥DF 交BC 于N ,设BN=AN=x ,在RT △ANC 中,∵AN 2=CN 2+AC 2,∴x 2=22+(3﹣x )2,∴x=,∴当1<x ≤时,S=S △ABC ﹣S △BDF =3﹣x 2, ③如图3中,当<x ≤3时, ∵DM ∥AN ,∴=,∴=, ∴CM=(3﹣x ),∴S=CD•CM=(3﹣x)2,综上所述S=.【点评】本题考查四边形综合题、等腰三角形的性质、相似三角形的性质、勾股定理等知识,解题的关键是学会分类讨论,正确画出图形,属于中考压轴题.25.(12分)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).【考点】SO:相似形综合题.【专题】15:综合题.【分析】(1)作AF⊥BC,判断出△ABF≌△BAE(AAS),得出BF=AE,即可;(2)先求出tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,最后用△DCG∽△ACE求出AC;(3)构造含30°角的直角三角形,设出DG,在Rt△ABH,Rt△ADN,Rt△ABH 中分别用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE===,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∵AN=ka,∴AE=NE﹣AN=2ak(3k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴=.【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的性质和判定,等腰三角形的性质,等腰直角三角形的性质,中点的定义,解本题的关键是作出辅助线,也是本题的难点.26.(12分)如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是(0,);(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.【考点】HF:二次函数综合题.【分析】(1)由抛物线解析式可求得A点坐标,再利用对称可求得B点坐标;(2)可先用k表示出C点坐标,过B作BD⊥l于点D,条件可知P点在x轴上方,设P点纵坐标为y,可表示出PD、PB的长,在Rt△PBD中,利用勾股定理可求得y,则可求出PB的长,此时可得出P点坐标,代入抛物线解析式可判断P点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC的长,代入抛物线解析式可求得P点坐标.【解答】解:(1)∵抛物线y=x2+与y轴相交于点A,∴A(0,),∵点B与点O关于点A对称,∴BA=OA=,∴OB=,即B点坐标为(0,),故答案为:(0,);(2)∵B点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PC=PB=+,∴P点坐标为(﹣,+),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).【点评】本题为二次函数的综合应用,涉及知识点有轴对称的性质、平行线的性质、勾股定理、等腰三角形的性质、二次函数的性质等.在(2)中构造直角三角形,利用勾股定理得到关于PC的长的方程是解题的关键,在(3)中求得∠OBC=∠CBP=∠C′BP=60°是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B.4C.8 D.4
10.(2分)(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )
A.3B.﹣3C. D.﹣
【解答】解:∵点P是反比例函数y= (x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,
∴矩形OAPB的面积S=|k|=3,
解得k=±3.
又∵反比例函数的图象在第一象限,
∴k=3.
故选A.
5.(2分)(2016•沈阳)“射击运动员射击一次,命中靶心”这个事件是( )
学生最喜欢的活动项目的人数统计表
项目
学生数(名)
百分比
丢沙包
20
10%
打篮球
60
p%
跳大绳
n
40%
踢毽球
40
20%
根据图表中提供的信息,解答下列问题:
(1)m=,n=,p=;
(2)请根据以上信息直接补全条形统计图;
(3)根据抽样调查结果,请你估计该校2000名学生中有多少名学生最喜欢跳大绳.
21.(8分)(2016•沈阳)如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
2016年辽宁省沈阳市中考数学试卷
参考答案与试题解析
一、选择题(下列各题的备选答案中,只有一个答案是正确的。每小题2分,共20分)
1.(2分)(2016•沈阳)下列各数是无理数的是( )
A.0B.﹣1C. D.
【解答】解:0,﹣1, 是有理数, 是无理数,
B、无法确定点A、B离对称轴x=﹣1的远近,故无法判断y1与y2的大小,故本选项错误;
C、y的最小值是﹣4,故本选项错误;
D、y的最小值是﹣4,故本选项正确.
故选:D.
二、填空题(每小题3分,共18分)
7.(2分)(2016•沈阳)已知一组数据:3,4,6,7,8,8,下列说法正确的是( )
A.众数是2B.众数是8C.中Байду номын сангаас数是6D.中位数是7
8.(2分)(2016•沈阳)一元二次方程x2﹣4x=12的根是( )
A.x1=2,x2=﹣6B.x1=﹣2,x2=6C.x1=﹣2,x2=﹣6D.x1=2,x2=6
(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.
①点B的坐标为(、),BK的长是,CK的长是;
②求点F的坐标;
③请直接写出抛物线的函数表达式;
(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.
②在平移过程中,当S= 时,请直接写出a的值.
24.(12分)(2016•沈阳)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
14.(3分)(2016•沈阳)三个连续整数中,n是最大的一个,这三个数的和为.
15.(3分)(2016•沈阳)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图表示,当甲车出发h时,两车相距350km.
A.0.54×107B.54×105C.5.4×106D.5.4×107
【解答】解:5400000用科学记数法表示为5.4×106,
故选:C.
4.(2分)(2016•沈阳)如图,在平面直角坐标系中,点P是反比例函数y= (x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为( )
A.y1<y2B.y1>y2
C.y的最小值是﹣3D.y的最小值是﹣4
二、填空题(每小题3分,共18分)
11.(3分)(2016•沈阳)分解因式:2x2﹣4x+2=.
12.(3分)(2016•沈阳)若一个多边形的内角和是540°,则这个多边形是边形.
13.(3分)(2016•沈阳)化简:(1﹣ )•(m+1)=.
16.(3分)(2016•沈阳)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.
三、解答题
17.(6分)(2016•沈阳)计算:(π﹣4)0+|3﹣tan60°|﹣( )﹣2+ .
(1)求证:DF⊥AC;
(2)若⊙O的半径为5,∠CDF=30°,求 的长(结果保留π).
22.(10分)(2016•沈阳)倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.
(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.
25.(12分)(2016•沈阳)如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y= x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.
(1)线段OC的长为;
(2)求证:△CBD≌△COE;
(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD1,CE1,设点E1的坐标为(a,0),其中a≠2,△CD1E1的面积为S.
①当1<a<2时,请直接写出S与a之间的函数表达式;
3.(2分)(2016•沈阳)在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为( )
A.0.54×107B.54×105C.5.4×106D.5.4×107
4.(2分)(2016•沈阳)如图,在平面直角坐标系中,点P是反比例函数y= (x>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为( )
A. B.4C.8 D.4
【解答】解:∵在Rt△ABC中,∠C=90°,∠B=30°,AB=8,
cosB= ,
即cos30°= ,
∴BC=8× =4 ;
故选:D.
10.(2分)(2016•沈阳)在平面直角坐标系中,二次函数y=x2+2x﹣3的图象如图所示,点A(x1,y1),B(x2,y2)是该二次函数图象上的两点,其中﹣3≤x1<x2≤0,则下列结论正确的是( )
A.3B.﹣3C. D.﹣
5.(2分)(2016•沈阳)“射击运动员射击一次,命中靶心”这个事件是( )
A.确定事件B.必然事件C.不可能事件D.不确定事件
6.(2分)(2016•沈阳)下列计算正确的是( )
A.x4+x4=2x8B.x3•x2=x6C.(x2y)3=x6y3D.(x﹣y)(y﹣x)=x2﹣y2
∵x3•x2=x5,故选项B错误;
∵(x2y)3=x6y3,故选项C正确;
∵(x﹣y)(y﹣x)=﹣x2+2xy﹣y2,故选项D错误;
故选C.
7.(2分)(2016•沈阳)已知一组数据:3,4,6,7,8,8,下列说法正确的是( )
A.众数是2B.众数是8C.中位数是6D.中位数是7
【解答】解:数据:3,4,6,7,8,8的众数为8,中为数为6.5.
2016年辽宁省沈阳市中考数学试卷
一、选择题(下列各题的备选答案中,只有一个答案是正确的。每小题2分,共20分)
1.(2分)(2016•沈阳)下列各数是无理数的是( )
A.0B.﹣1C. D.
2.(2分)(2016•沈阳)如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( )
A. B. C. D.
(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?
23.(10分)(2016•沈阳)如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.
故选:C.
2.(2分)(2016•沈阳)如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是( )