2018年广东省揭阳市普宁市中考数学模拟试卷(4月份)和解析
广东省揭阳市普宁市2023-2024届中考一模数学模拟试题(附答案)

A.赵爽弦图B.莱洛三角形C.科克曲线D.谢尔宾斯基三角形A. B.BEA ∠CEA∠A. B. C. D.14.如图所示的衣架可以近似看成一个等腰三角形15.一商场先用3200元购进一批防紫外线太阳伞,很快就销售一空求的度数.DME ∠②把抛物线在x 轴下方图象沿x 轴翻折得到新图象(如图3中的“W ”形254y ax bx =++曲线).当直线与新图象有两个公共点时,请直接写出n 的取值范围.y mx n =+20.(本小题满分6分)(2)证明:四边形 ABCD ,//AD BC ∴AEB ∴∠=∠又,.(6分)BE EB = (ASA)BAE EFB ∴△≌△21.(本小题满分8分)解:(1)甲的平均数(分),(21(67788889910)810m =⨯+++++++++=分)乙服务质量得分为4、5、5、6、6、7、8、9、10、10,其中位数(分);(4分)676.52n +==(2)甲;(6分)(3)选择乙公司,从配送速度角度,甲公司的配送速度的平均数小于乙公司,所以选择乙公司(答案不唯一).(8分)22.(本小题满分10分)解:(1)设小明所在班级胜了x 场,负了y 场,依题意得,(3分)529x y x y +=⎧⎨+=⎩解得,41x y =⎧⎨=⎩小明所在班级胜了4场,负了1场;(6分)∴(2)设小明所在班级在剩下的比赛中还要胜m 场,依题意,得,(8分)29(95)15m m ++-->解得,2m >为正整数,,m 3m ∴≥小明所在班级在剩下的比赛中至少还要胜3场.(10分)∴23.(本小题满分10分)(1)证明:四边形是正方形,,(1分)ABCD 90BAD ∴∠=︒由折叠的性质得:,(2分)11904522BAC DAC BAD ∠=∠=∠︒=⨯=︒(3分)114522.522BAE EAF BAC ∠=∠=∠=⨯=︒︒(2)四边形是正方形,ABCD图2当直线平移后与抛物线只有一个交点时,BC 23151222y x x ⎛⎫⎛⎫=--+<< ⎪ ⎪⎝⎭⎝⎭,2754024n ⎛⎫⎛⎫∆=--⨯+= ⎪ ⎪⎝⎭⎝⎭解得:,2916n =当直线平移后经过点时,得BC 1,02A ⎛⎫⎪⎝⎭14n =当直线与新图象有两个公共点时,n 的取值范围为或.∴y mx n =+1544n <<2916n >。
广东省揭阳市普宁市中考二模数学考试卷(解析版)(初三)中考模拟.doc

广东省揭阳市普宁市中考二模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】8的立方根是()A.2 B.±2C.±2 D.2【答案】D【解析】试题分析:根据立方根的定义,由23=8,可得8的立方根是2.故选:D.考点:立方根【题文】下列运算中,正确的是()A.x3·x=x4 B.(﹣3x)2=6x2 C.3x3﹣2x2=x D.x6÷x2=x3【答案】A【解析】试题分析: A、利用同底数幂的乘法法则,原式=x4,正确;B、利用积的乘方运算法则,原式=9x2,错误;C、原式不是同类项,不能合并,错误;D、利用同底数幂的除法法则,原式=x4,错误,故选A考点:1、同底数幂的乘除法,2、合并同类项,3、幂的乘方与积的乘方【题文】图中几何体的主视图是()A. B. C. D.【答案】A【解析】评卷人得分试题分析:找到从正面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.如图所示:几何体的主视图是:.故选:A.考点:几何体的三视图【题文】如图,点O在直线AB上且OC⊥OD.若∠COA=36°,则∠DOB的大小为()A.36° B.54° C.64° D.72°【答案】B【解析】试题分析:首先由OC⊥OD,根据垂直的定义,得出∠COD=90°,然后由平角的定义,知∠AOC+∠COD+∠DOB=180°,从而得出∠DOB=180°﹣36°﹣90°=54°.故选:B.考点:垂直及平角的定义【题文】已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A. B.C. D.【答案】A【解析】试题分析:设甲车的速度为x千米/时,则乙车的速度为(x+15)千米/时,根据甲车行驶30千米与乙车行驶40千米所用时间相同,列方程.故选A.考点:分式方程【题文】2016年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.1000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【答案】C【解析】试题分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.因此1000名考生的数学成绩是总体的一个样本,故A错误;B、1000是样本容量,故B错误;C、每位考生的数学成绩是个体,故C正确;D、9万多名考生的数学成绩是总体,故D错误;故选:C.考点:1、总体,2、个体,3、样本,4、样本容量【题文】如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对 B.2对 C.3对 D.4对【答案】C【解析】试题分析:在△ABC和△ADC中,根据全等三角形的判定SSS可得△ABC≌△ADC(SSS),根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,在△ABO和△ADO中,可得△ABO≌△ADO(SAS),然后在△BOC和△DOC中,可得△BOC≌△DOC(SAS),故选:C.考点:全等三角形的判定与性质l故选A.考点:圆周角定理【题文】如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90° B.顺时针旋转45°C.逆时针旋转90° D.逆时针旋转45°【答案】C【解析】试题分析:因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA.故选:C.考点:旋转的性质【题文】如图,若△ABC和△DEF的面积分别为S1,S2,则()A. B. C. D.S1=S2【答案】D【解析】试题分析:作AM⊥BC于M,DN⊥EF于N,如图,在Rt△ABM中利用正弦的定义得到AM=3sin50°,利用三角形面积公式得到S1=BCAM=sin50°,同样在Rt△DEN中得到DN=7sin50°,则S2=EFDN=sin50°,于是可判断Sl考点:多边形内角与外角【题文】一次函数y=﹣x+3的图象与y轴的交点坐标为.【答案】(0,3)【解析】试题分析:令x=0,则y=3,可得一次函数y=﹣x+3的图象与y轴的交点坐标为(0,3).考点:一次函数图象上点的坐标特点【题文】若点P(2m﹣1,)在第三象限,则常数m的取值范围是.【答案】m<﹣1【解析】试题分析:【分析】根据第三象限内点的横坐标与纵坐标都是负数,由点P(2m﹣1,)在第三象限,得到,解不等式①得,m<,解不等式②得,m<﹣1,所以,不等式组的解集是m<﹣1,即常数m的取值范围是m<﹣1.考点:各象限内点的坐标的符号特征【题文】如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.【答案】1:2【解析】试题分析:由五边形ABCDE与五边形A′B′C′D′E′位似,可得五边形ABCDE∽五边形A′B′C′D′E′,又由OA=10cm,OA′=20cm,即可求得其相似比为1:2,根据相似多边形的周长的比等于其相似比,即可求得答案为五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比为:OA:OA′=1:2.考点:多边形位似比【题文】观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22016﹣1的末位数字是.【答案】9【解析】试题分析:根据题意知:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…可得末位数字以2,4,8,6循环,然后由2016÷4=504,可得2+22+23+24+…+22016﹣1的末位数字与(2+4+8+6)×504﹣1的末位数字相同为9.考点:规律探索【题文】计算:(﹣1)2016+|1﹣|﹣2cos45°.【答案】0【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值、有理数的乘方性质分别化简各数进而求出答案.试题解析:(﹣1)2016+|1﹣|﹣2cos45°=1+﹣1﹣2×=﹣=0.考点:1、绝对值,2、特殊角的三角函数值,3有理数的乘方【题文】先化简,再求值:,其中x是方程x2+3x+2=0的根.【答案】x+1,-1【解析】试题分析:先算括号里面的,再算除法,根据x是方程x2+3x+2=0的根求出x的值,代入代数式进行计算即可.试题解析:===x+1,解方程x2+3x+2=0得,x1=﹣1,x2=﹣2,∵x≠﹣1,∴当x=﹣2时,原式=﹣2+1=﹣1.考点:分式的化简求值【题文】如图,扇形OAB的圆心角∠AOB=120°,半径OA=6cm.(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹);(2)求弧AB的长及扇形OAB的面积.【答案】(1)作图见解析(2)4π,12π【解析】试题分析:(1)连接AB,作弦AB的垂直平分线即可作出扇形的对称轴;(2)利用弧长的计算公式和扇形的面积公式可得结果.试题解析:(1)如图所示:(2)的长度:=4π(cm);==12π(cm2).考点:扇形有关的计算【题文】有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.【答案】(1)16(2)【解析】试题分析:(1)画出树状图分析数据、列出可能的情况.(2)根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可.试题解析:(1)ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共产生16种结果,每种结果出现的可能性相同,即:(A,A)(A,B)(A,C)(A,D)(B,A)(B,B)(B,C)(B,D)(C,A)(C,B)(C,C)(C,D)(D,A)(D,B)(D,C)(D,D);(2)其中两张牌都是中心对称图形的有4种,即(B,B)(B,C)(C,B)(C,C)∴P(两张都是中心对称图形)=.考点:概率【题文】为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下车库的设计示意图(如图),按规定,地下车库坡道口上方要张贴限高标志,以便高职停车人车辆能否安全驶入.(1)图中线段CD(填“是”或“不是”)表示限高的线段,如果不是,请在图中画出表示限高的线段;(2)一辆长×宽×高位3916×1650×1465(单位:mm)的轿车欲进入车库停车,请通过计算,判断该汽车能否进入该车库停车?(本小问中取1.7,精确到0.1)【答案】(1)图形见解析(2)能【解析】试题分析:(1)根据点到直线距离中垂线段最短,可以判断CD是否为限高的线段,从而可以作出正确的图形;(2)根据题目中的条件可以求得CE的长度,然后与车的高1465mm进行比较,即可解答本题.试题解析:(1)图中线段CD不是表示限高的线段,故答案为:不是,图中表示限高的线段是CE,如下图所示,(2)在Rt△ABD中,∠BAD=30°,AB=9m,∴BD=ABtan30°=9×=3m,∴CD=BD﹣BC=(3﹣0.5)m,在Rt△CDE中,∠CDE=60°,CD=(3﹣0.5)m,∴CE=CD×sin60°=(3﹣0.5)×=≈4.1m,∵4.1m>1465mm=1.465m,故该汽车能进入该车库.考点:解直角三角形的应用【题文】已知函数y1=x+2的图象分别与坐标轴相交于A,B两点(如图所示),与反比例函数y2=(x >0)的图象相交于C点.(1)写出A、B两点的坐标;(2)作CD⊥x轴,垂足为D,如果OB是△ACD的中位线,求反比例函数y=(x>0)的关系式;(3)根据图象(x>0)直接写出y1>y2时的取值范围.【答案】(1)B(0,2),A(﹣3,0)(2)(3)x>3【解析】试题分析:(1)分别令一次函数解析式中x=0、y=0求出y、x的值,从而得出点A、B的坐标;(2)由A、B点的坐标结合中位线的性质,找出线段OD、DC的长度,从而找出点C的坐标,再由点C的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的系数k,从而得出结论;(3)观察函数图象,根据两函数图象的上下关系结合交点的坐标,即可得出结论.试题解析:(1)令一次函数y1=x+2中x=0,则y=2,∴点B的坐标为(0,2);令一次函数y1=x+2中y=0,则x+2=0,解得:x=﹣3,∴点A的坐标为(﹣3,0).(2)∵OB是△ACD的中位线,∴,∵点A(﹣3,0),点B(0,2),∴AD=6,DC=4,OD=AD﹣AO=6﹣3=3,∴点C的坐标为(3,4).又∵点C在反比例函数y2=(x>0)的图象上,∴k=3×4=12,∴反比例函数解析式为y2=(x>0).(3)观察函数图象,发现:当x>3时,一次函数图象在反比例函数图象的上方,∴不等式y1>y2时的取值范围为x>3.考点:1、反比例函数,2、一次函数,3、三角形的中位线【题文】如图,AB是⊙O的切线,B为切点,圆心在AC上,∠A=30°,D为的中点.(1)求证:AB=BC;(2)求证:四边形BOCD是菱形.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)由AB是⊙O的切线,∠A=30°,易求得∠OCB的度数,继而可得∠A=∠OCB=30°,又由等角对等边,证得AB=BC;(2)首先连接OD,易证得△BOD与△COD是等边三角形,可得OB=BD=OC=CD,即可证得四边形BOCD是菱形.试题解析:(1)∵AB是⊙O的切线,∴OB⊥AB,∵∠A=30°,∴∠AOB=60°,∵OB=OC,∴∠OCB=∠OBC=∠AOB=30°,∴∠A=∠OCB,∴AB=BC;(2)连接OD,∵∠AOB=60°,∴∠BOC=120°,∵D为的中点,∴,∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD与△COD是等边三角形,∴OB=BD=OC=CD,∴四边形BOCD是菱形.考点:1、切线的性质,2、等腰三角形的性质,3、菱形的判定,4、等边三角形的判定与性质【题文】如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【答案】(1)(4,4)(2)证明见解析(3)1【解析】试题分析:(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根据三角函数的知识,即可求得AB与OA的长,即可求得点B的坐标;(2)首先可得CE∥AB,D是OB的中点,根据直角三角形斜边的中线等于斜边的一半,可证得BD=AD,∠ADB=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,根据内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD是平行四边形;(3)首先设OG的长为x,由折叠的性质可得:AG=CG=8﹣x,然后根据勾股定理可得方程(8﹣x)2=x2+(4)2,解此方程即可求得OG的长.试题解析:(1)在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OBcos30°=8×=4,AB=OBsin30°=8×=4,∴点B的坐标为(4,4);(2)∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;(3)设OG的长为x,∵OC=OB=8,∴CG=8﹣x,由折叠的性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即(8﹣x)2=x2+(4)2,解得:x=1,即OG=1.考点:1、折叠的性质,2、三角函数的性质,3、平行四边形的判定,4、等边三角形的性质,5、勾股定理【题文】如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)当D在线段AC上运动时,求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M使|MA﹣MC|最大?若存在请求出点M的坐标,若不存在请说明理由.【答案】(1)y=x2﹣4x+3;(2);(3)M(2,﹣3)【解析】试题分析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(3)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA﹣MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.试题解析:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA﹣MC|<BC,∴当M、B、C三点共线时,|MA﹣MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则,解得,∴直线BC的解析式为y=﹣3x+3,∵抛物线y=x2﹣4x+3的对称轴为直线x=2,∴当x=2时,y=﹣3×2+3=﹣3,∴点M(2,﹣3),即,抛物线对称轴上存在点M(2,﹣3),使|MA﹣MC|最大.考点:二次函数综合题。
2018年广东省揭阳市普宁马鞍山中学高三数学文模拟试题含解析

2018年广东省揭阳市普宁马鞍山中学高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中内角A,B,C的对边分别为a,b,c,若,,,则b值是()A. B. C. D.参考答案:A2. 某程序的框图如图所示,执行该程序,若输入的为12,则输出的的值分别为(A)(B)(C)(D)参考答案:D3. 如图所示,一游泳者自游泳池边上的点,沿方向游了10米,,然后任意选择一个方向并沿此方向继续游,则他再游不超过10米就能够回到游泳池边的概率是A. B. C.D.参考答案:A4. 命题,;命题,,则下列命题中为真命题的是()A. B. C.D.参考答案:5. 已知集合A={x|x2>1},B={x|log2x>0},则A∩B=( )A.{x|x<﹣1} B.{x|>0} C.{x|x>1} D.{x|x<﹣1或x>1}参考答案:C考点:交集及其运算.专题:不等式的解法及应用.分析:化简A、B两个集合,利用两个集合的交集的定义求出A∩B.解答:解:集合A={x|x2>1}={x|x>1或x<﹣1},B={x|log2x>0=log21}={x|x>1},A∩B={x|x>1},故选:C.点评:本题考查集合的表示方法,两个集合的交集的定义和求法,化简A、B两个集合是解题的关键.6. “”是“直线与圆相切”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件参考答案:A7. 设满足约束条件,则的最大值是()A. 5B. 6C. 8D. 10参考答案:D略8. 一个几何体的三视图如图所示(两个矩形,一个直角三角形),则这个几何体的体积是()A.72 B.48 C. 27 D.36参考答案:D9. 条件,条件;若p是q的充分而不必要条件,则的取值范围是A.B.C.D.参考答案:B略10. 下列满足“?x∈R,f(x)+f(﹣x)=0且f′(x)≤0”的函数是()A.f(x)=﹣xe|x| B.f(x)=x+sinxC.f(x)=D.f(x)=x2|x|参考答案:A【考点】利用导数研究函数的单调性.【分析】满足“?x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R 上为减函数,进而得到答案.【解答】解:满足“?x∈R,f(x)+f(﹣x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,A中函数f(x)=﹣xe|x|,满足f(﹣x)=﹣f(x),即函数为奇函数,且f′(x)=≤0恒成立,故在R上为减函数,B中函数f(x)=x+sinx,满足f(﹣x)=﹣f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,C中函数f(x)=,满足f(﹣x)=f(x),故函数为偶函数;D中函数f(x)=x2|x|,满足f(﹣x)=f(x),故函数为偶函数,故选:A.【点评】本题以全称命题为载体,考查了函数的奇偶性和函数的单调性,难度中档.二、填空题:本大题共7小题,每小题4分,共28分11. 直线与曲线的交点个数是.参考答案:2个略12. 等比数列中,,前三项和,则公比的值为.参考答案:【知识点】等比数列的性质. D3【答案解析】或1. 解析:当q=1时,各项均为6,可得S3=18,符合题意;当q≠1时,,解得,综上可得公比q的值为:1或故答案为:1或【思路点拨】分类:q=1符合题意,当q≠1时,可得a1和q的方程组,解方程组可得.13. 一个容量为20的样本数据分组后,分组与频数分别如下:,2;,3;,4;,5;,4;,2.则样本在上的频率是▲.参考答案:略14. 给出下列命题:1已知、为异面直线,过空间中不在、上的任意一点,可以作一个平面与、都平行;2在二面角的两个半平面、内分别有直线、,则二面角是直二面角的充要条件是或;③已知异面直线与成,分别在、上的线段与的长分别为4和2,、的中点分别为、,则;④若正三棱锥的内切球的半径为1,则此正三棱锥的体积最小值.则正确命题的编号是。
广东省揭阳市2024-2025学年上学期九年级期中考数学模拟试题(解析版)

2024-2025学年度第一学期期中模拟试卷九年级数学试卷时间:90分钟 分数:120分一.选择题(每小题3分,共15分)1. 菱形ABCD 的对角线长分别为5和8,它的面积为( )A. 20B. 40C. 24D. 30【答案】A【解析】【分析】根据菱形的面积等于对角线乘积的一半,计算即可. 【详解】菱形的面积为:1 58202××=; 故选:A .【点睛】本题考查菱形的性质,掌握菱形的性质是解题的关键.2. 如果方程()27330mm x x −−−+=是关于x 的一元二次方程,那么m 的值为( ) A. 3±B. 3C. 3−D. 都不对【答案】C【解析】【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.根据题意得到272m −=,30m −≠,即可求得m 的范围.要特别注意二次项系数30m −≠这一条件,当30m −=时,方程就是一元一次方程了. 【详解】解:由一元二次方程的定义可知27230m m −= −≠, 解得:3m =−.故选:C .3. 在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有( )A. 5个B. 15个C. 20个D. 35个【答案】A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x 个,根据题意得:1515x+=0.75, 解得:x =5,经检验:x =5是分式方程的解,故袋中白球有5个.故选A .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题关键. 4. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛50场比赛,设参加比赛共有x 个队,根据题意,所列方程为( ).A. (1)50x x +=B. (1)502x x +=C. (1)50x x −=D. (1)502x x −= 【答案】D【解析】 【分析】设共有 x 个球队参赛,根据每两队之间都进行一场比赛,且共比赛 50 场,即可得出关于 x 的 一元二次方程,此题得解;【详解】设共有 x 个球队参赛,依题意, 得:(1)502x x −= 故选D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程 是解题的关键5. 下列判断正确的是( )A. 对角线互相垂直的四边形是菱形B. 对角线相等的菱形是正方形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形【答案】B【解析】【分析】本题考查特殊平行四边形的判定,熟记判定定理是关键.根据菱形,矩形,正方形的判定逐项判【详解】对角线互相垂直平分的四边形是菱形,故A 错误;对角线相等的菱形是正方形,故B 正确;对角线相等的平行四边形是矩形,故C 错误;对角线互相平分垂直且相等的四边形是正方形,故D 错误.故选B .6. 如图,已知MON ∠,点A 在OM 边上,点B 在ON 边上,且OA OB =,点E 在OB 边上,小明,小红分别在图1,图2中作了矩形AEBF ,平行四边形AEBF ,并连接了对角线,两条对角线交于点C ,小明,小红都认为射线OC 是MON ∠的角平分线,你认为他们说法正确的是( )A. 小明,小红都对B. 小明,小红都错C. 小明错误,小红正确D. 小明正确,小红错误【答案】A【解析】 【分析】根据矩形的性质、平行四边形的性质都可以得到AC BC =,即可证得AOC BOC ≌△△,即可得出结论.【详解】解: 四边形AEBF 是矩形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小明的说法正确;四边形AEBF 是平行四边形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小红的说法正确.故选:A .【点睛】本题考查了矩形的性质、平行四边形的性质、三角形全等的判定和性质,角平分线的判定,解题的关键是熟练掌握矩形的性质和平行四边形的性质.7. 关于x 的方程2(1)(2)x x ρ−+=(ρ为常数)根的情况下,下列结论中正确的是( )A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根 【答案】C【解析】【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.【详解】解:2(1)(2)x x ρ−+=,整理得:2230x x ρ+−−=,∴()2221434130ρρ∆=−−−=+>,∴方程有两个不等的实数根,设方程两个根为1x 、2x , ∵121x x +=−,2123x x p =−− ∴两个异号,而且负根的绝对值大.故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;△<0,方程没有实数根.也考查了一元二次方程根与系数的关系:12bx x a +=−,12c x x a= 8. 关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根12,x x ,()1212122(2)2x x x x x x −+−−+3=−,则k 的值( )A. 0或2B. -2或2C. -2D. 2【答案】D【解析】【详解】解:由根与系数的关系,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x −+−−+=−,得: ()21212423x x x x −−+=−,即()21212124423x x x x x x +−+=−-,所以,()2142(2)3k k −−−−+=−,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根,所以,△=()214(2)k k −−−+=227k k +−>0,k =-2不符合,所以,k =2故选D .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.9. 如图1,在菱形ABCD 中,60A ∠=°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A. B. C. D. 【答案】B【解析】【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A =60°,∴△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为∴△ABD 的面积2解得:a =负值已舍)故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.10. 如图,在正方形ABCD 中,E 为CD 边上一点,F 为 BC 延长线上一点,且CE CF =,连接EF .给出下列至个结论:①BE DF =;②BE DF ⊥;③EF =;④EDF EBF ∠=∠;⑤2ED EC =.其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题考查了正方形的性质、三角形全等的判定定理与性质、勾股定理,①先根据正方形的性质可得,90BC DC BCE DCF =∠=∠=°,再根据三角形全等的判定定理与性质即可得;②先根据三角形全等的性质可得CBE CDF ∠=∠,再根据三角形的内角和定理、等量代换可得90DGE ∠=°,由此即可得;③根据勾股定理即可得;④根据①中所证的全等三角形的性质即可得;无法说明2ED EC =成立,从而得出与题意不符,由此即可得结论.【详解】解:如图,延长BE ,交DF 于点G ,四边形ABCD 正方形,,90BC DC BCE DCF ∴=∠=∠=°,在BCE 和DCF 中,BC DC BCE DCF CE CF = ∠=∠ =, (SAS)BCE DCF ∴ ≌,,BE DF CBE CDF ∴=∠=∠,则结论①正确;即EDF EBF ∠=∠,则结论④正确;由对顶角相等得:BEC DEG ∠=∠,180180CBE BEC CDF DEG ∴°−∠−∠=°−∠−∠,即90BCE DGE ∠=∠=°, BE DF ∴⊥,则结论②正确;是,90CE CF DCF =∠=° ,EF ∴=,则结论③正确;无法说明2ED EC =成立,结论⑤错误;综上,正确结论的个数是4个,故选:C .二.填空题(每小题3分,共15分)11. 如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E 出口落出概率是________.【答案】14##025 【解析】【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、H 也都是等可能情况,然后概率的意义列式即可得解.【详解】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14; 故填:14. 【点睛】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12. 设12,x x 是一元二次方程220240x x +−=的两个根,则21122x x x ++=______. 【答案】2023【解析】【分析】根据方程解的定义、根与系数关系,得2112024x x +=,121x x +=−,对待求解代数式变形,用已知的代数式表示求解.的.【详解】解:由题意,得21120240x x +−=,121x x +=− ∴2112024x x +=. ∴2211211122202412023x x x x x x x ++=+++=−=.故答案为:2023【点睛】本题考查方程解的定义,一元二次方程根与系数关系;掌握根与系数关系是解题的关键. 13. 在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了_______个人.【答案】11【解析】【分析】设每轮传染中平均一个人传染了x 个人,根据“有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠””,列出方程,即可求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得: ()221288x +=解得:1211,13x x ==−,∵0x >且为整数∴213x =−不符合题意,舍去,答:每轮传染中平均一个人传染了11个人.故答案为:11【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.14. 如图,数轴上点A 代表的数字为3+1x ,点B 代表的数字为22+x x ,已知=5AB ,且点A 在数轴的负半轴上,则x 的值为 _____.【答案】2−【解析】【分析】先利用数轴上两点之间的距离的求法得到()2+23+1=5x x x −,再把方程化为一般式26=0x x −−,接着再用因式分解法把方程转化为3=0x −或+2=0x ,然后再解两个一次方程.【详解】解:根据题意得2+2(3+1)=5x x x −,整理得26=0x x −−,()()3+2=0x x −,3=0x −或+2=0x ,所以1=3x ,2=2x −,将1=3x 代入3+1x 中,得出A 为9,因点A 在数轴的负半轴上,故1=3x (舍去); 将2=2x −,代入3+1x 中,得出A 为5−,点A 在数轴的负半轴上,故=2x −.故答案为:2−.【点睛】本题考查了一元二次方程的因式分解法,这种方法简便易用,是解一元二次方程最常用的方法,也考查了数轴.15. 在正方形ABCD 中,2AD =,E ,F 分别为边DC CB ,上的点,且始终保持DE CF =,连接AE 和DF 交于点P ,则线段CP 的最小值为 _________.1−##1−+【解析】【分析】根据“边角边”证明ADE 和DCF 全等,根据全等三角形对应角相等可得DAE CDF ∠=∠,然后求出90APD ∠=°,取AD 的中点O ,连接OP ,根据直角三角形斜边上的中线等于斜边的一半可得点P 到AD 的中点的距离不变,再根据两点之间线段最短可得C 、P 、O 三点共线时线段CP 的值最小,然后根据勾股定理列式求出CO ,再求解即可.【详解】解: 四边形ABCD 是正方形,AD CD ∴=,90ADE DCF ∠=∠=°, 在ADE 和DCF 中,AD CD ADE BCD DE CF = ∠=∠ =, ()SAS ADE DCF ∴ ≌,DAE CDF ∴∠=∠,90CDF ADF ADC ∠+∠=∠=° ,90ADF DAE ∴∠+∠=°,90APD ∴∠=°,取AD 的中点O ,连接OP CO ,,则1133222OP AD ==×=(不变), 根据两点之间线段最短得C 、P 、O 三点共线时线段CP 的值最小,在Rt COD中,根据勾股定理得,CO =,∴1CP CO OP =−−,∴CP1−,1−.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P 到AD 的中点的距离是定值是解题的关键.三.解答题(每小题8分,共24分)16. 解方程:(1)2221x x x =+−;(2)()2231x x x −−=−. 【答案】(1)1222x x +(2)1x =,2x =【解析】【分析】(1)先将方程化为一般式,再用配方法求解即可;(2)先将方程化为一般式,再用公式法求解即可.小问1详解】解:2221x x x =+−,241x x −=,2445x x +=−,()225x −=,2x −,解得:1222x x +−;【小问2详解】解:()2231x x x −−=−, 22231x x x −−=−,22210x x +−=,2,2,1a b c ===−,∴()224242112b ac ∆=−=−××−=,x ,解得:1x =,2x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的法和步骤.17. 笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开.松鼠要先经过第一道门(A ,B ,或C ),再经过第二道门(D 或E )才能出去.【(1)请用树状图或列表的方法,表示松鼠走出笼子的所有可能路线(经过的两道门).(2)求松鼠经过E门出去的概率.【答案】(1)见解析(2)1 2【解析】【分析】(1)根据题意画出树状图即可;(2)根据(1)所画的树状图确定松鼠走出笼子的所有可能路线结果数和松鼠经过E门出去的结果数,然后运用概率公式计算即可.【小问1详解】解:根据题意画出树状图如下:【小问2详解】解:根据(1)所得的树状图可知:松鼠走出笼子的所有可能路线结果数为6,松鼠经过E门出去的结果数为3,则松鼠经过E门出去的概率为31 62 =.【点睛】本题主要考查了画树状图、根据树状图求概率等知识点,正确画出树状图是解答本题的关键.18. 已知:平行四边形ABCD的两边AB,AD的长是关于x的方程210 24mx mx−+−=的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?【答案】(1)1 2(2)5【解析】【分析】本题考查了菱形的性质,平行四边形的性质,一元二次方程根的判别式以及根据系数的关系,解一元二次方程,综合运用各知识点是解答本题的关键.(1)根据菱形的性质可知方程210 24mx mx−+−=有两个相等的实数根,由根的判别式求出m,进而可求出方程的根;(2)由AB的长为2,可知2是方程的一个根,代入方程求出m,根据根与系数的关系可求出平行四边形ABCD的周长.【小问1详解】解:∵平行四边形ABCD 是菱形,∴AB AD =, ∴方程21024m x mx −+−=有两个相等的实数根, ∴()214024m m ∆=−−−=, 解得:121m m ==, 当1m =时,方程为2104x x −+=, 解得1212x x ==, 即菱形的边长为12; 【小问2详解】 解:∵AB ,AD 的长是方程21024m x mx −+−=的两个实数根,AB 的长为2, ∴AB AD m +=,2是方程的一个根, ∴2122024m m −+−=, ∴解得52m =, ∴52AB AD +=, ∴()25AB AD +=, ∴平行四边形ABCD 的周长为5.四.解答题(每小题9分,共27分)19. 阅读材料:我们知道20x ≥,()20a b ±≥这一性质在数学中有着广泛的应用,比如探求多项式2362x x +−的最小值时,我们可以这样处理:2362x x +−()2322x x +−()22232112x x =++−−()223112x =+−−()2315x =+−.因为()210x +≥,所以()231505x +−≥−,当1x =−时,()2315x +−取得最小值5−.(1)求多项式2283x x −+的最小值,并写出对应的x 的取值.(2)求多项式22247x x y y −+−+的最小值.【答案】(1)xx =2,最小值5−;(2)2【解析】【分析】此题考查的是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式. (1)先把给出的式子化成完全平方的形式,再根据非负数的性质即可得出答案;(2)根据完全平方公式把给出的式子进行整理,即可得出答案.【小问1详解】解:2283x x −+ ()2243x x −+()224443x x =−++﹣()22243x =−−+ ()2225x =−−,∵()220x −≥,∴()222505x −−≥−,∴当xx =2时,()2225x −−取得最小值5−;【小问2详解】解:22247x x y y −+−+ ()()2221442x x y y =−++−++()()22122x y =−+−+,∵()210x −≥,()220y −≥,∴()()221222x y −+−+≥,∴当xx =1,2y =时,22247x x y y −+−+有最小值2.20. 如图,在ABCD 中,5AB =,4BC =,点F 是BC 上一点,若将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,过点E 作EG BC ∥交DF 于点G ,连接CG .(1)求证:四边形EFCG 是菱形;(2)当A B ∠=∠时,求点B 到直线EF 的距离.【答案】(1)证明见解析(2)点B 到直线EF 的距离为65. 【解析】【分析】(1)由折叠的性质得出CFD EFD ∠=∠,CF EF =,CG EG =,再根据平行线的性质可得EGF EFD ∠=∠,进而可证四条边相等;(2)先由题意得出四边形ABCD AE ,CE 的长,最后利用等面积法即可求解.【小问1详解】证明:∵将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,∴CFD EFD ∠=∠,CF EF =,CG EG =,∵EG BC ∥,∴EGF CFD ∠=∠,∴EGF EFD ∠=∠,∴EG EF =,∴EG EF CF CG ===,∴四边形EFCG 是菱形;【小问2详解】解:∵ABCD ,则AD BC ∥,∴180A B ∠+∠=°,∵A B ∠=∠,∴90A B ∠=∠=°,∴四边形ABCD 是矩形,∵5AB =,4BC =,∴5AB CD ED ===,4BC AD ==,∴3AE ,∴2BE =,在Rt BEF △中,222BE BF EF +=,4EF CF BF ==−,∴()22224BF BF +=−, 解得32BF =, ∴35422EF =−=, 设点B 到直线EF 的距离为h , ∴131522222h ××=×, 解得65h =, ∴点B 到直线EF 的距离为65. 【点睛】本题考查矩形的性质,菱形的判定,平行线的性质,勾股定理,折叠的性质等知识,熟练掌握以上知识是解题关键.21. 某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为1元,月均销量就相应减少10个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于___________元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)每个背包售价应不高于55元.(2)当该这种书包销售单价为42元时,销售利润是3120元.(3)这种书包的销售利润不能达到3700元.【解析】【分析】(1)设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,根据月均销量不低于130个,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(3)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,由根的判别式Δ=-36<0,即可得出这种书包的销售利润不能达到3700元.【小问1详解】解:设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,依题意, 得:()2804010130x ⎡⎤--⨯≥⎣⎦, 解得:55x ≤.答:每个背包售价应不高于55元.【小问2详解】依题意,得:()()3028040103120x x ⎡⎤---⨯=⎣⎦, 整理,得:29823520x x −+=,解得:124256x x ==,(不合题意,舍去). 答:当该这种书包销售单价为42元时,销售利润是3120元.【小问3详解】依题意,得:()()3028040103700x x ⎡⎤---⨯=⎣⎦, 整理,得:29824100x x -+=.∵()298412410360=--⨯⨯=- <,∴该方程无解,∴这种书包的销售利润不能达到3700元.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)(3)找准等量关系,正确列出一元二次方程.五.解答题(每小题12分,共24分)22. 如图所示,在Rt ABC △中,90B ∠=︒,100cm AC =,60A ∠=°,点D 从点C 出发沿CCCC 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿CCAA 方向以2cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒(025t <≤),过点D 作DF BC ⊥于点F ,连接DE EF ,.(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)证明见解析(2)能,503t = (3)252或20,理由见解析 【解析】【分析】(1)根据时间和速度表示出AE 和CCCC 的长,利用30°所对的直角边等于斜边的一半求出DF 的长,可得AE DF =,再证明DF AE ∥即可求证; (2)由(1)知四边形AEFD 为平行四边形,如果四边形AEFD 能够成为菱形,则必有邻边相等,即AE AD =,据此列方程求解即可;(3)当DEF 为直角三角形时,有三种情况:①当90EDF ∠=°时,②当90DEF ∠=°时,③当90DFE ∠=°时,分别找出等量关系列方程即可求出t 的值即可.【小问1详解】证明:由题意得,2AE t =,4CD t =,∵DF BC ⊥,∴90CFD ∠=°,∵90B ∠=︒,60A ∠=°,∴30C ∠=°, ∴114222DF CD t t ==×=,∴AE DF =;∵90CFD B ∠=∠=°,∴DF AE ∥,∴四边形AEFD 是平行四边形;【小问2详解】解:四边形AEFD 能够成为菱形,理由如下: 由(1)得,四边形AEFD 为平行四边形,若AEFD 为菱形,则AE AD =,∵100AC =,4CD t =,∴1004AD t =−,∴21004t t =−, ∴503t =, ∴当503t =时,四边形AEFD 能够成为菱形; 【小问3详解】解:分三种情况:①当90EDF ∠=°时,如图1, ∵90CFD B EDF ∠=∠=∠=°, ∴四边形DFBE 为矩形, ∴2DF BE t ==, ∵1502AB AC ==,2AE t =, ∴2502t t =−,252t =;②当90DEF ∠=°时,如图2, ∵四边形AEFD 为平行四边形, ∴EF AD ∥,∴90ADE DEF ∠=∠=°, 在Rt ADE 中,60A ∠=°, ∴30AED ∠=°,∵2AE t =, ∴12AD AE t ==,∵AD CD AC +=,∴4100t t +=,∴20t =;③当90DFE ∠=°不成立;综上所述:当t 为252或20时,DEF 为直角三角形. 【点睛】本题考查了平行四边形的判定与性质,菱形的性质,矩形的判定与性质,,含30°角的直角三角形的性质,直角三角形两锐角互余,平行线的判定与性质,一元一次方程的应用,掌握以上知识点是解题的关键.23. 如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3,4)−,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)填空:菱形ABCO 的边长=______;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线A B C --方向以3个单位/秒的速度向终点C 匀速运动,设PMB △的面积为()0S S ≠,点P 的运动时间为t 秒, ①当503t <<时,求S 与t 之间的函数关系式; ②在点P 运动过程中,当2S =,请直接写出t 的值. 【答案】(1)5 (2)直线AC 的解析式为1522y x =−+ (3)①91544t S =−+;②79t =或115【解析】 【分析】(1)根据点A 的坐标,结合勾股定理可计算菱形边长AO 的长度;(2)先求出C 点坐标,设直线AC 解析式y kx b =+,将点A C ,坐标代入得到二元一次方程组,然后解方程组即可得到,k b 的值;(3)①当503t <<时,根据题意得到53BP BA AP t =−=−,53422HM OH OM =−=−=,然后利用三角形面积公式,即可表示出S 与t 之间的函数关系;②设M 到直线BC 的距离为h ,根据等面积方法列方程,求出h ,可得到当51033t <<时,S 与t 之间的函数关系,将2S =分别代入两个解析式中,分别解方程即可得解.【小问1详解】解:∵点A 的坐标为()3,4−,∴34AH HO ==,在Rt AOH △中,5AO,故答案为:5;【小问2详解】解:∵四边形ABCO 是菱形,∴5OC OA ==,即50C (,). 设直线AC 的解析式y kx b =+,函数图象过点A C ,, 则5034k b k b += −+=, 解得1252k b =− =, ∴直线AC 的解析式为:1522y x =−+; 【小问3详解】 解:由1522y x =−+,令0x =,52y =,则50,2M ,则52OM =, ①当503t <<时,如图所示, 的53BP BA AP t =−=−,53422HM OH OM =−=−=, ∴()113915·5322244S BP HM t t ==××−=−+, ∴91544t S =−+, ②设M 到直线BC 的距离为h , ∴ΔΔΔ111222ABC AMB BMCS S S AB OH AB HM BC h +⋅⋅+⋅ 则113154552222h ××=××+×, 解得52h =, 当51033t <<时,如图所示,35BP t =−,52h =, ()11515253522244t S BP h t ∴=×=×−×=−, 当2S =时,代入91544t S =−+, 解得79t =, 代入152544t S =−,解得115t=,综上所述79t=或115.【点睛】本题考查了菱形的性质、动点问题、求一次函数解析式、勾股定理等知识,采用数形结合并分情况分析是解题关键.。
2018-2019学年揭阳市普宁市七年级下学期期中考试数学试卷解析版

2018-2019学年揭阳市普宁市七年级下学期期中考试数学试卷解析版一、选择题(本大题共10小题,每小题3分,共30分.)在每小题给出的四个选项中,只有一项正确选项,请将正确答案写在相应的位置上.1.下列运算中正确的是()A.a2+a3=a5B.a2•a4=a8C.a6÷a2=a3D.(a2)3=a6解:A、a2+a3不是同类项不能合并,故错误;B、a2•a4=a6,故错误;C、a6÷a2=a4,故错误;D、(a2)3=a6,故正确.故选:D.2.生物学家发现了一种病毒的长度约为0.0000032毫米,数据0.0000032用科学记数法表示为()A.0.32×10﹣6B.3.2×10﹣6C.3.2×10﹣5D.0.32×10﹣5解:0.0000032=3.2×10﹣6.故选:B.3.如图,下列说法中不正确的是()A.∠1和∠3是同旁内角B.∠2和∠3是内错角C.∠2和∠4是同位角D.∠3和∠5是对顶角解:A、∠1和∠3是同旁内角,正确,不合题意;B、∠2和∠3是内错角,正确,不合题意;C、∠2和∠4是同位角,错误,符合题意;D、∠3和∠5是对顶角,正确,不合题意;故选:C.4.如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠1+∠2=180°解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠1+∠2=180°,不能判定直线a与b平行.故选:D.5.下列各式中不能用平方差公式计算的是()A.(y﹣x)(x+y)B.(2x﹣y)(﹣y+2x)C.(x﹣3y)(x+3y)D.(4x﹣5y)(5y+4x)解:A、C、D能用平方差公式计算,(2x﹣y)(﹣y+2x)=(2x﹣y)(2x﹣y)=(2x﹣y)2,用完全平方公式,故选:B.6.如图,直线AB、EF相交于O点,CD⊥AB于O点,∠EOD=135°,则∠BOF的度数为()A.35°B.40°C.45°D.50°解:∵∠EOD+∠DOF=180°,∴∠DOF=180°﹣135°=45°.∵CD⊥AB,。
八数上(BS)-2018-2019学年广东省揭阳市普宁市八年级上期末数学试卷--期中、期末、月考真题

2018-2019学年广东省揭阳市普宁市八年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)2.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.23.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,94.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.86.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.7.如图所示,下列推理及括中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣29.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=.12.命题“若a2>b2,则a>b”的逆命题是,该逆命题是(填“真”或“假”)命题.13.计算:(3+)()=.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货吨.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.18.解方程组:19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是分,九(2)班复赛成绩的众数是分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(),∴∠CDQ=∠β().∴∠β=(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为km/h,放学回家的速度为km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求线段OM的长;(3)求点B的坐标.2018-2019学年广东省揭阳市普宁市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分.)在每小题列出的四个选项中,只有个正确选项,请将正确答案写在答题卷的相应位置1.下列各点中,位于第二象限的是()A.(8,﹣1)B.(8,0)C.(﹣,3)D.(0,﹣4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,3)故选:C.【点评】本题主要考查了点的坐标,解题时注意:位于第二象限的点的横坐标为负,纵坐标为正.2.下列实数中,不是无理数的是()A.B.﹣C.2π(π表示圆周率)D.2【分析】根据无理数、有理数的定义逐一对每个选择支进行判断.【解答】解:是分数,属于有理数,故选项A正确;﹣,2π,2是无理数.故选:A.【点评】此题主要考查了无理数的定义,注意:带根的开不尽方的数是无理数,无限不循环小数为无理数,含π的数是无理数.如2π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,9【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.【点评】此题主要考查了勾股数的定义,熟记勾股数的定义是解题的关键.4.如图,在△ABC中,∠A=80°,点D在BC的延长线上,∠ACD=145°,则∠B是()A.45°B.55°C.65°D.75°【分析】利用三角形的外角的性质即可解决问题;【解答】解:在△ABC中,∵∠ACD=∠A+∠B,∠A=80°,∠ACD=145°,∴∠B=145°﹣80°=65°,故选:C.【点评】本题考查三角形的外角,解题的关键是熟练掌握基本知识,属于中考常考题型.5.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.6.一次函数y=﹣2x﹣1的图象大致是()A.B.C.D.【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【解答】解:在y=﹣2x﹣1中,∵﹣2<0,﹣1<0,∴此函数的图象经过二、三、四象限,故选:D.【点评】本题考查的是一次函数的图象,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解答此题的关键.7.如图所示,下列推理及括中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等),正确;C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补),正确;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),错误;故选:D.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.8.下列说法正确的是()A.1的平方根是1B.﹣8的立方根是﹣2C.=±2D.=﹣2【分析】根据平方根、算术平方根的定义逐一判别可得.【解答】解:A.1的平方根是±1,此选项错误;B.﹣8的立方根是﹣2,此选项正确;C.=2,此选项错误;D.=2,此选项错误;故选:B.【点评】本题主要考查平方根与立方根,解题的关键是掌握平方根和算术平方根及立方根的定义.9.小明中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜3分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开7分钟;(5)用烧开的水煮面条和菜要3分钟.以上各工序除(4)外,一次只能进行一道工序,小明要将面条煮好,最少用()A.14分钟B.13分钟C.12分钟D.11分钟【分析】根据统筹方法,烧开水时可洗菜和准备面条及佐料,这样可以节省时间,所以小明所用时间最少为(1)、(4)、(5)步时间之和.【解答】解:第一步,洗锅盛水花2分钟;第二步,用锅把水烧开7分钟,同时洗菜3分钟,准备面条及佐料2分钟,总计7分钟;第三步,用烧开的水煮面条和菜要3分钟.总计共用2+7+3=12分钟.故选:C.【点评】解决问题的关键是读懂题意,采用统筹方法是生活中常用的有效节省时间的方法,本题将数学知识与生活相结合,是一道好题.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷的相应位置11.计算:=;|﹣|=2.【分析】根据二次根式的分母有理化和二次根式的性质分别计算可得.【解答】解:==,|﹣|==2,故答案为:,2.【点评】本题主要考查二次根式的分母有理化,解题的关键是掌握二次根式的有理化方法和二次根式的性质.12.命题“若a2>b2,则a>b”的逆命题是如a>b,则a2>b2,,该逆命题是(填“真”或“假”)假命题.【分析】先写出命题的逆命题,然后在判断逆命题的真假.【解答】解:如a2>b2,则a>b”的逆命题是:如a>b,则a2>b2,假设a=1,b=﹣2,此时a>b,但a2<b2,即此命题为假命题.故答案为:如a>b,则a2>b2,假.【点评】此题考查了命题与定理的知识,写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.计算:(3+)()=+1.【分析】利用多项式乘法展开,然后合并即可.【解答】解:原式=3﹣6+7﹣2=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨.则1辆大货车与1辆小货车一次可以运货4吨.【分析】设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,由“2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨”,即可得出关于x,y 的二元一次方程组,将方程组的两方程相加再除以3,即可求出结论.【解答】解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,根据题意得:,(①+②)÷3,得:x+y=4.故答案为:4.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(,).那么点A3的纵坐标是,点A2013的纵坐标是()2012.【分析】先求出直线y=kx+b的解析式,求出直线与x轴、y轴的交点坐标,求出直线与x轴的夹角的正切值,分别过等腰直角三角形的直角顶点向x轴作垂线,然后根据等腰直角三角形斜边上的高线与中线重合并且等于斜边的一半,利用正切值列式依次求出三角形的斜边上的高线,即可得到A3的坐标,进而得出各点的坐标的规律.【解答】解:∵A1(1,1),A2(,)在直线y=kx+b上,∴,解得,∴直线解析式为y=x+;设直线与x轴、y轴的交点坐标分别为N、M,当x=0时,y=,当y=0时,x+=0,解得x=﹣4,∴点M、N的坐标分别为M(0,),N(﹣4,0),∴tan∠MNO===,作A1C1⊥x轴与点C1,A2C2⊥x轴与点C2,A3C3⊥x轴与点C3,∵A1(1,1),A2(,),∴OB2=OB1+B1B2=2×1+2×=2+3=5,tan∠MNO===,∵△B2A3B3是等腰直角三角形,∴A3C3=B2C3,∴A3C3==()2,同理可求,第四个等腰直角三角形A4C4==()3,依此类推,点A n的纵坐标是()n﹣1.∴A2013=()2012故答案为:,()2012.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(2﹣1)2﹣()÷.【分析】先利用二次根式的除法法则和完全平方公式运算,然后把各二次根式化简为最简二次根式后合并即可.【解答】解:原式=8﹣4+1﹣(﹣)=9﹣4﹣2+=9﹣5.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.解方程组:【分析】方程组利用代入消元法求出解即可.【解答】解:,把①代入②得:3x﹣2x+3=8,解得:x=5,把x=5代入①得y=7,则原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为A(﹣3,0),B(﹣3,﹣3),C (﹣1,﹣3)(1)填空:AC=;(2)在图中作出△ABC关于x轴对称的图形△DEF.【分析】(1)利用勾股定理求解可得;(2)分别作出点B与点C关于x轴的对称图形,再与点A首尾顺次连接即可得.【解答】解:(1)AC==,故答案为:;(2)所画图形如下所示,其中△DEF即为所求,【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质,并据此得出变换后的对应点及勾股定理.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.据市旅游局发布信息,今年春节假期期间,我市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求我市去年外来和外出旅游的人数.【分析】设我市去年外来旅游的有x万人,外出旅游的有y万人,根据去年同期外来旅游比外出旅游的人数多20万人及今年外来与外出旅游的人数与去年人数之间的关系,即可得出关于x,y 的二元一次方程组,解之即可得出结论.【解答】解:设我市去年外来旅游的有x万人,外出旅游的有y万人,根据题意得:,解得:.答:我市去年外来旅游的有100万人,外出旅游的有80万人,【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.21.我区某中学开展“社会主义核心价值观”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.根据图中数据解决下列问题:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;(2)小明同学已经算出了九(1)班复赛的平均成绩=85分;方差S2=[(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),请你求出九(2)班复赛的平均成绩x2和方差S22;(3)根据(2)中计算结果,分析哪个班级的复赛成绩较好?【分析】(1)利用众数、中位数的定义分别计算即可;(2)利用平均数和方差的公式计算即可;(3)利用方差的意义进行判断.【解答】解:(1)九(1)班复赛成绩的中位数是85分,九(2)班复赛成绩的众数是100分;故答案为:85,100;(2)九(2)班的选手的得分分别为70,100,100,75,80,所以九(2)班成绩的平均数=(70+100+100+75+80)=85,九(2)班的方差S22=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160;(3)平均数一样的情况下,九(1)班方差小,所以九(1)班的成绩比较稳定.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了统计图.22.已知,直线PQ∥MN,△ABC的顶点A与B分别在直线MN与PQ上,点C在直线AB的右侧,且∠C=45°,设∠CBQ=∠α,∠CAN=∠β.(1)如图1,当点C落在PQ的上方时,AC与PQ相交于点D,求证:∠β=∠α+45°.请将下列推理过程补充完整:证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换)(2)如图2,当点C落在直线MN的下方时,BC与MN交于点F,请判断∠α与∠β的数量关系,并说明理由.【分析】(1)根据题意可以写出推理过程,从而可以解答本题;(2)根据三角形外角的性质和三角形的内角和即可得到结论..【解答】解:(1)证明:∵∠CDQ是△CBD的一个外角(三角形外角的定义),∴∠CDQ=∠α+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∵PQ∥MN(已知),∴∠CDQ=∠β(两直线平行,同位角相等).∴∠β=∠α+∠C(等量代换).∵∠C=45°(已知),∴∠β=∠α+45°(等量代换);故答案为:已知,两直线平行,同位角相等,∠α+∠C,(2)证明:∵∠CFN是△ACF的一个外角(三角形外角的定义),∴∠CFN=∠β+∠C(三角形的一个外角等于和它不相邻的两个内角的和),∵PQ∥MN(已知),∴∠CFN=∠α(两直线平行,同位角相等)∴∠α=∠β+∠C(等量代换).∵∠C=45°(已知),∴∠α=∠β+45°(等量代换).【点评】本题考查了三角形外角的性质,平行线的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.五、解答题(本大题共3小题,每小题9分,共27分)请将正确答案写在答题卷的相应位置23.如图1所示,小亮家与学校之间有一超市,小亮骑车由家匀速行驶去学校,然后在校学习8小时.最后放学骑车匀速回家(上学与放学均不在超市停留).图2中的折线OABC表示小亮离家的距离y(km)与离家的时间x(h)之间的函数关系.根据已上信息,解答下列问题:(1)小亮上学的速度为5km/h,放学回家的速度为3km/h;(2)求线段BC所表示的y与x之间的函数关系;(3)如果小亮两次经过超市的时间间隔为8.48小时,那么超市离小亮家多远?【分析】(1)根据题意和图象中的数据可以求得小亮上学的速度和放学回家的速度;(2)根据图象中的数据和题意可以求得线段BC所表示的y与x之间的函数关系;(3)由题意可知,小明从家到超市和从超市到家的时间之和是总的时间减去两次经过超市的时间间隔,从而可以解答本题.【解答】解:(1)由题意可得,小明上学的速度为:3÷0.6=5km/h,放学回家的速度为:3÷(9.6﹣0.6﹣8)=3km/h,故答案为:5,3;(2)设线段BC所表示的y与x之间的函数关系式为y=kx+b,将B(8.6,3)、C(9.6,0)代入y=kx+b,得,得,∴线段BC所表示的y与x之间的函数关系式为y=﹣3x+28.8(8.6≤x≤9.6);(3)设超市离家skm,=9.6﹣8.48,解得:s=2.1.答:超市离家2.1km.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.如图,在△ABC中,∠C=90°,将△ACE沿着AE折叠以后C点正好落在AB边上的点D处.(1)当∠B=28°时,求∠AEC的度数;(2)当AC=6,AB=10时,①求线段BC的长;②求线段DE的长.【分析】(1)在Rt△ABC中,利用互余得到∠BAC=62°,再根据折叠的性质得∠CAE=∠CAB =31°,然后根据互余可计算出∠AEC=59°;(2)①在Rt△ABC中,利用勾股定理即可得到BC的长;②设DE=x,则EB=BC﹣CE=8﹣x,依据勾股定理可得,Rt△BDE中DE2+BD2=BE2,再解方程即可得到DE的长.【解答】解:(1)在Rt△ABC中,∠ABC=90°,∠B=28°,∴∠BAC=90°﹣28°=62°,∵△ACE沿着AE折叠以后C点正好落在点D处,∴∠CAE=∠CAB=×62°=31°,Rt△ACE中,∠ACE=90°∴∠AEC=90°﹣31°=59°.(2)①在Rt△ABC中,AC=6,AB=10,∴BC===8.②∵△ACE沿着AE折叠以后C点正好落在点D处,∴AD=AC=6,CE=DE,∴BD=AB﹣AD=4,设DE=x,则EB=BC﹣CE=8﹣x,∵Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.即DE的长为3.【点评】本题考查了折叠问题,折叠是一种对称变换,它属于轴对称,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.25.已知:如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为(5,0);(2)求线段OM的长;(3)求点B的坐标.【分析】(1)利用勾股定理求出OA的长即可解决问题;(2)求出直线AC的解析式,利用待定系数法即可解决问题;(3)只要证明AB=AC=5,AB∥x轴,即可解决问题;【解答】解:(1)∵A(﹣3,4),∴OA==5,∴OA=OC=5,∴C(5,0),故答案为(5,0);(2)设直线AC的解析式y=kx+b,函数图象过点A、C,得,解得,∴直线AC的解析式y=﹣x+,当x=0时,y=,即M(0,),∴OM=.(3)∵△AOC沿着AC折叠得到△ABC,∴OA=BA,OC=BC,且∠ACO=∠ACB,又∵OA=OC,∴AB=AC=OC,∴∠BAC=∠ACB,∴∠ACO=∠BAC,∴AB∥x轴,由(1)知,C(5,0),∴OC=5.∵AB=AC=OC,∴AB=5.∵A坐标为(﹣3,4),AB∥x轴,∴B坐标为(2,4).【点评】本题属于三角形综合题,考查了翻折变换,等腰三角形的性质,一次函数的应用等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
普宁市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
普宁市实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)满足方程组的解x与y之和为2,则a的值为()A. ﹣4B. 4C. 0D. 任意数【答案】B【考点】三元一次方程组解法及应用【解析】【解答】解:根据题意可列出方程组,(1 )﹣(2)得x+2y=2,代入(3)得y=0,则x=2,把y=0,x=2代入(1)得:a+2=6,∴a=4.故答案为:B.【分析】根据题意建立三元一次方程组,观察系数的特点,两个方程中含有a,且a的系数是1,因此利用加减消元消去a后的方程与x+y=2,建立二元一次方程组,求出x、y的值,就可求出a的值。
2、(2分)16的平方根与27的立方根的相反数的差是()A. 1B. 7C. 7或-1D. 7或1【答案】C【考点】平方根,立方根及开立方【解析】【解答】解:∵16的平方根为±4,27的立方根为3,∴3的相反数为-3,∴4-(-3)=7,或-4-(-3)=-1.故答案为:C.【分析】根据平方根和立方根的定义分别求出16的平方根和27的立方根的相反数,再列式、计算求出答案.3、(2分)如图是“百姓热线电话”一周内接到的热线电话情况统计图,其中关于环境保护问题的电话70个,本周“百姓热线电话”共接热线电话()个.A. 180B. 190C. 200【答案】C【考点】扇形统计图【解析】【解答】解:70÷35%=200(个),故答案为:C.【分析】由统计图知,环境保护问题的电话占本周内接到的热线电话量的35%,根据求一个数的百分之几是多少,把本周内接到的热线电话量看作单位“1”,求单位“1”用除法计算.4、(2分)三元一次方程组的解为()A. B. C. D.【答案】C【考点】三元一次方程组解法及应用【解析】【解答】解:②×4−①得2x−y=5④②×3+③得5x−2y=11⑤④⑤组成二元一次方程组得,解得,代入②得z=−2.故原方程组的解为.故答案为:C.【分析】观察方程组中同一个未知数的系数特点:z的系数分别为:4,1、-3,存在倍数关系,因此由②×4−①;②×3+③分别消去z,就可得到关于x、y的二元一次方程组,利用加减消元法求出二元一次方程组的解,然后将x、y的值代入方程②求出z的值,就可得出方程组的解。
【真卷】2018年广东省惠州市惠阳区中考数学模拟试卷及解析PDF(4月份)(解析版)
2018年广东省惠州市惠阳区中考数学模拟试卷(4月份) 一、选择题(每小题3分,共30分) 1.(3分)下列各数中,比﹣2小的数是( ) A.2 B.0 C.﹣1 D.﹣3 2.(3分)如图是由4个大小相同的正方体组合而成的几何体,其俯视图是( )
A. B. C. D. 3.(3分)目前,中国网民已经达到831 000 000人,将数据831 000 000用科学记数法表示为( ) A.0.831×109 B.8.31×108 C.8.31×109 D.83.1×107 4.(3分)关于一组数据:1,3,5,5,6,下列说法错误的是( ) A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.2 5.(3分)在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是( ) A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(﹣2,1) 6.(3分)下列运算正确的是( ) A.(2a2)2=2a4 B.6a8÷3a2=2a4 C.2a2•a=2a3 D.3a2﹣2a2=1 7.(3分)若关于x的方程ax﹣4=a的解是x=3,则a的值是( ) A.﹣2 B.2 C.﹣1 D.1 8.(3分)如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=( )
A.40° B.50° C.60° D.70° 9.(3分)如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC, 2
则AD的长为( ) A.6 B.5 C.4 D.3 10.(3分)如图,抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,抛物线对称轴为x=﹣.下列结论中,错误的结论是( )
A.abc>0 B.方程ax2+bx+c=0的解是x1=﹣2,x2=1 C.b2﹣4ac>0 D.a=b
二、填空题(每小题4分,共24分) 11.(4分)﹣27的立方根是 . 12.(4分)函数y=的自变量x的取值范围是 . 13.(4分)正六边形的每个外角是 度. 14.(4分)计算:()﹣1﹣20180+|﹣1|= ; 15.(4分)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,若△ABC的面积为9,则△A′B′C′的面积为 ; 3
2023年广东省揭阳市普宁市中考数学一模试卷(含解析)
绝密★启用前2023年广东省揭阳市普宁市中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 式子−22的意义是( )A. 2的平方B. −2的平方C. 2的平方的相反数D. −2的平方的相反数2. 下列各式计算正确的是( )A. a+2a=3a2B. (−a3)2=a6C. a3⋅a2=a6D. (a+b)2=a2+b23.如图,已知直线a⊥c,b⊥c,∠1=115°,那么∠2的度数是( )A. 55°B. 65°C. 75°D. 115°4. 不等式3−2x≤x的解集在数轴上表示正确的是( )A. B.C. D.5.如图,正方形ABCD中,BC=4,点E在BC边上,EC=3,则sin∠CDE的值为( )A. 35B. 34C. 43D. 456. 化简4x2−4+1x+2的结果是( )A. x−2B. 1x−2C. 2x−2D. 2x+27. 观察图形…并判断照此规律从左到右第四个图形是( )A. B. C. D.8.下列问题中,变量y与x之间的函数关系可以用如图所示的图象表示的是( )A. 圆的面积y与圆的半径xB. 汽车匀速行驶时,行驶的距离y与行驶的时间xC. 小明打篮球投篮时,篮球离地面的高度y与篮球离开手的时间xD. 三角形面积一定时,它的底边长y与底边上的高x9. 如图,∠MON=60°,以点O为圆心,适当长为半径画弧,交OM于点A,交ON于点B;分别以点A,B为圆心,大于12AB的长为半径画弧,两弧在∠MON的内部相交于点P,画射线OP;连接AB,AP,BP,过点P作PE⊥OM于点E,PF⊥ON于点F.则以下结论错误的是( )A. △AOB是等边三角形B. PE=PFC. △PAE≌△PBFD. 四边形OAPB是菱形10. 在平面直角坐标系中,点A(3,n−2)是反比例函数y=k(k≠0)的图象上一点,已知点B(3x,n),C(n−2,n),连接BC,则下列说法错误的是( )A. 点C可能在反比例函数y=k的图象上xB. 直线BC与反比例函数y=k的图象必有一个交点xC. n的值不可能为2D. 在反比例函数y=k图象的一个分支上,可能存在y随x的增大而减小x二、填空题(本大题共5小题,共15.0分)11. “嫦娥三号”在月球着陆地点为虹湾,这是月球上最美丽的地标之一,它其实是一个直径达260000米的巨型陨石坑壁.虹湾的直径用科学记数法表示为______ 米.12. 方程(x+1)2=9的根为.13.如图,DE是△ABC的中位线,S△A D E=1,则S△A B C=.14. 若a=b+2,则代数式a2−2ab+b2的值为.15.如图,在等边三角形ABC中,AB=4,P为AC上一点(与点A、C不重合),连接BP,以PA、PB为邻边作平行四边形PADB,则PD的最小值是______ .三、解答题(本大题共8小题,共75.0分。
广东省揭阳市普宁市华侨中学2018学年高二上学期第四次月考数学试卷理科 含解析
2018-2018学年广东省揭阳市普宁市华侨中学高二(上)第四次月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣2<x<2},B={x|x2﹣2x≤0},则A∩B等于()A.(0,2)B.(0,2]C.[0,2)D.[0,2]2.如果,且α是第四象限的角,那么=()A.B.C.D.3.设等差数列{a n}的前n项和为S n,若a2+a8=15﹣a5,则S9等于()A.18 B.36 C.45 D.604.执行图所示的程序,输出的结果为20,则判断框中应填入的条件为()A.a≥5 B.a≥4 C.a≥3 D.a≥25.一个棱锥的三视图如图所示,则这个棱锥的体积为()A.12 B.36 C.16 D.486.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β7.若0<x<y<1,则()A.3y<3x B.log x3>log y3 C.log4x>log4y D.()x<()y8.不等式的解集是()A.{x|≤x≤2}B.{x|≤x<2}C.{x|x>2或x≤}D.{x|x≥}9.已知实数x,y满足,则x+y的最小值为()A.2 B.3 C.4 D.510.已知两定点A(﹣2,0),B(1,0),若动点P满足|PA|=2|PB|,则P的轨迹为()A.直线 B.线段 C.圆D.半圆11.设x,y∈R,且x+y=4,则5x+5y的最小值是()A.9 B.25 C.162 D.5012.若P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,且=0,tan∠PF1F2=,则此椭圆的离心率为()A.B.C.D.二、填空题:13.如果直线l1:2x﹣ay+1=0与直线l2:4x+6y﹣7=0平行,则a=.14.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(1))=.15.若椭圆的离心率为,则k的值为.16.命题p:∀x∈[1,2],x2﹣m≥0,命题q:∀x∈R,x2+mx+1>0,若命题p∧q为真命题,则实数m的取值范围为.三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.设命题p:函数f(x)=(a﹣)x是R上的减函数,命题q:函数f(x)=x2﹣4x+3在[a,4]上递增.若“p且q”为假命题,“p或q”为真命题,求a的取值范围.18.已知△ABC的内角A、B、C的对边分别为a、b、c,,且c=3.(1)求角C;(2)若向量与共线,求a、b的值.=2a n﹣1(n≥1,n∈N)19.已知数列{a n}中,a1=3,a n+1(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为S n,求证:.20.某啤酒厂为适应市场需要,2018年起引进葡萄酒生产线,同时生产啤酒和葡萄酒,2018年啤酒生产量为16000吨,葡萄酒生产量1000吨.该厂计划从2018年起每年啤酒的生产量比上一年减少50%,葡萄酒生产量比上一年增加100%,试问:(1)哪一年啤酒与葡萄酒的年生产量之和最低?(2)从2018年起(包括2018年),经过多少年葡萄酒的生产总量不低于该厂啤酒与葡萄酒生产总量之和的?(生产总量是指各年年产量之和)21.已知如图所示,四棱锥P﹣ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.(1)求证:平面PAD⊥平面PAB;(2)求三棱锥D﹣PAC的体积;(3)求直线PC与平面ABCD所成角的正弦值.22.已知椭圆C: +=1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:•为定值.2018-2018学年广东省揭阳市普宁市华侨中学高二(上)第四次月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|﹣2<x<2},B={x|x2﹣2x≤0},则A∩B等于()A.(0,2)B.(0,2]C.[0,2)D.[0,2]【考点】交集及其运算.【分析】先化简集合B,即解一元二次不等式x2﹣2x≤0,再求交集.【解答】解:根据题意知:集合B={x|x2﹣2x≤0}={x|0≤x≤2}∴A∩B=[0,2)故选C2.如果,且α是第四象限的角,那么=()A.B.C.D.【考点】同角三角函数间的基本关系;诱导公式的作用.【分析】由cosα的值以及α为第四象限角,利用同角三角函数间的基本关系求出sinα的值,原式利用诱导公式化简,将sinα的值代入计算即可得到结果.【解答】解:∵cosα=,α是第四象限的角,∴sinα=﹣=﹣,则cos(α+)=﹣sinα=.故选D3.设等差数列{a n}的前n项和为S n,若a2+a8=15﹣a5,则S9等于()A.18 B.36 C.45 D.60【考点】等差数列的性质.【分析】由等差数列的通项公式知a2+a8=15﹣a5⇒a5=5,再由等差数列的前n项和公式知S9=×2a5.【解答】解:∵a2+a8=15﹣a5,∴a5=5,∴S9=×2a5=45.故选C.4.执行图所示的程序,输出的结果为20,则判断框中应填入的条件为()A.a≥5 B.a≥4 C.a≥3 D.a≥2【考点】循环结构.【分析】写出前两次循环即得到要输出的结果,此时a=3,需要输出,得到判断框中的条件为a≥4.【解答】解:进入循环第一次得到结果为s=5,a=4;进入循环第二次得到结果为s=20,a=3;此时,需要输出,所以判断框中的条件为a≥4故选B.5.一个棱锥的三视图如图所示,则这个棱锥的体积为()A.12 B.36 C.16 D.48【考点】由三视图求面积、体积.【分析】几何体是四棱锥,再根据三视图判断四棱锥的高与底面长方形的长与宽,把数据代入棱锥的体积计算可得答案.【解答】解:由三视图知几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,高为3,四棱锥的底面是长方形,长方形的长、宽分别为4、3,∴几何体的体积V=×3×4×3=12.故选:A.6.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥n B.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;平面与平面之间的位置关系.【分析】由α⊥β,m⊂α,n⊂β,可推得m⊥n,m∥n,或m,n异面;由α∥β,m⊂α,n ⊂β,可得m∥n,或m,n异面;由m⊥n,m⊂α,n⊂β,可得α与β可能相交或平行;由m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β.【解答】解:选项A,若α⊥β,m⊂α,n⊂β,则可能m⊥n,m∥n,或m,n异面,故A 错误;选项B,若α∥β,m⊂α,n⊂β,则m∥n,或m,n异面,故B错误;选项C,若m⊥n,m⊂α,n⊂β,则α与β可能相交,也可能平行,故C错误;选项D,若m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β,故D正确.故选D.7.若0<x<y<1,则()A.3y<3x B.log x3>log y3 C.log4x>log4y D.()x<()y【考点】对数的运算性质.【分析】利用指数函数和对数函数的单调性求解.【解答】解:∵0<x<y<1,∴3x<3y,故A错误;log x3>log y3,故B正确;log4x<log4y,故C错误;()x>()y,故D错误.故选:B.8.不等式的解集是()A.{x|≤x≤2}B.{x|≤x<2}C.{x|x>2或x≤}D.{x|x≥}【考点】一元二次不等式的应用.【分析】把原不等式的右边移项到左边,通分计算后,然后转化为两个一元一次不等式组,求出不等式组的解集即为原不等式的解集.【解答】解:不等式,移项得:,即≤0,可化为:或解得:≤x<2,则原不等式的解集为:≤x<2故选B.9.已知实数x,y满足,则x+y的最小值为()A.2 B.3 C.4 D.5【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+y,得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最小,此时z最小.由,得,即A(1,1),此时z的最小值为z=1+1=2,故选:A.10.已知两定点A(﹣2,0),B(1,0),若动点P满足|PA|=2|PB|,则P的轨迹为()A.直线 B.线段 C.圆D.半圆【考点】轨迹方程.【分析】设P点的坐标为(x,y),利用两点间的距离公式表示出|PA|、|PB|,代入等式|PA|=2|PB|,化简整理得答案.【解答】解:设P点的坐标为(x,y),∵A(﹣2,0)、B(1,0),动点P满足|PA|=2|PB|,∴,平方得(x+2)2+y2=4[(x﹣1)2+y2],即(x﹣2)2+y2=4.∴P的轨迹为圆.故选:C.11.设x,y∈R,且x+y=4,则5x+5y的最小值是()A.9 B.25 C.162 D.50【考点】基本不等式.【分析】根据题意可得5x>0,5y>0,利用基本不等式5x+5y≥2即可.【解答】解:∵5x>0,5y>0,又x+y=4,∴5x+5y≥2=2=2=50.故选D.12.若P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,且=0,tan∠PF1F2=,则此椭圆的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】根据向量、的数量积为零,可得△PF1F2是P为直角顶点的直角三角形.Rt △PF1F2中,根据正切的定义及,可设PF2=t,PF1=2t,由勾股定理,得出.利用椭圆的定义得到2a=PF1+PF2=3t,最后由椭圆离心率的定义可得此椭圆的离心率.【解答】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A二、填空题:13.如果直线l1:2x﹣ay+1=0与直线l2:4x+6y﹣7=0平行,则a=﹣3.【考点】直线的一般式方程与直线的平行关系.【分析】根据两条直线平行的条件,建立关于a的方程,解之即可得到实数a的值.【解答】解:∵直线l1:2x﹣ay+1=0与直线l2:4x+6y﹣7=0平行,∴可得,解之得a=﹣3故答案为:﹣314.如图,函数f(x)的图象是折线段ABC,其中A,B,C的坐标分别为(0,4),(2,0),(6,4),则f(f(1))=0.【考点】函数的值.【分析】函数f(x)的图象是折线段ABC,其中A,B,C,由图象找出函数的整点,根据这些对应关系求f(f(1)).【解答】解:由图f(1)=2,f(2)=0故f(f(1))=0故答案为:0.15.若椭圆的离心率为,则k的值为k=4或.【考点】椭圆的简单性质.【分析】若焦点在x轴上,则,若焦点在y轴上,则,由此能求出答案.【解答】解:若焦点在x轴上,则,解得k=4.若焦点在y轴上,则,解得k=﹣.故答案为:4或﹣.16.命题p:∀x∈[1,2],x2﹣m≥0,命题q:∀x∈R,x2+mx+1>0,若命题p∧q为真命题,则实数m的取值范围为(﹣2,1] .【考点】复合命题的真假.【分析】命题p:可得m≤(x2)min.命题q:可得△<0,解得m范围.若命题p∧q为真命题,可得p与q都为真命题,即可得出.【解答】解:命题p:∀x∈[1,2],x2﹣m≥0,∴m≤(x2)min=1.命题q:∀x∈R,x2+mx+1>0,△=m2﹣4<0,解得﹣2<m<2.若命题p∧q为真命题,∴p与q都为真命题,∴,解得﹣2<m≤1.实数m的取值范围是﹣2<m≤1.故答案为:(﹣2,1].三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.设命题p:函数f(x)=(a﹣)x是R上的减函数,命题q:函数f(x)=x2﹣4x+3在[a,4]上递增.若“p且q”为假命题,“p或q”为真命题,求a的取值范围.【考点】复合命题的真假.【分析】命题p:函数f(x)=(a﹣)x是R上的减函数,可得.命题q:由f(x)=(x﹣2)2﹣1,在[a,4]上递增,得2≤a<4.p且q为假,p或q为真,可得p,q一真一假.【解答】解:命题p:函数f(x)=(a﹣)x是R上的减函数,由得:.命题q:∵f(x)=(x﹣2)2﹣1,在[a,4]上递增,得2≤a<4.∵p且q为假,p或q为真,∴p,q一真一假.若p真q假得,,若p假q真得,.综上所得,a的取值范围是或.18.已知△ABC的内角A、B、C的对边分别为a、b、c,,且c=3.(1)求角C;(2)若向量与共线,求a、b的值.【考点】余弦定理;三角函数的恒等变换及化简求值;正弦定理.【分析】(1)利用二倍角公式及辅助角公式对已知化简可得sin(2C﹣30°)=1,结合C的范围可求C(2)由(1)C,可得A+B,结合向量共线的坐标表示可得sinB﹣2sinA=0,利用两角差的正弦公式化简可求【解答】解:(1)∵,∴∴sin (2C ﹣30°)=1 ∵0°<C <180° ∴C=60°(2)由(1)可得A +B=120°∵与共线,∴sinB ﹣2sinA=0 ∴sin=2sinA整理可得,即tanA=∴A=30°,B=90° ∵c=3.∴a=,b=219.已知数列{a n }中,a 1=3,a n +1=2a n ﹣1(n ≥1,n ∈N ) (1)求数列{a n }的通项公式; (2)设,数列{b n }的前n 项和为S n ,求证:.【考点】数列递推式;数列的求和. 【分析】(1)由a n +1=2a n ﹣1,得a n +1﹣1=2(a n ﹣1),从而可得{a n ﹣1}是以2为首项,2为公比的等比数列,由此可求数列的通项公式; (2)利用裂项法求出数列的和,即可证得结论. 【解答】(1)解:由a n +1=2a n ﹣1,得a n +1﹣1=2(a n ﹣1), 又a 1﹣1=2,所以{a n ﹣1}是以2为首项,2为公比的等比数列∴,即;(2)证明:=∵,∴.20.某啤酒厂为适应市场需要,2018年起引进葡萄酒生产线,同时生产啤酒和葡萄酒,2018年啤酒生产量为16000吨,葡萄酒生产量1000吨.该厂计划从2018年起每年啤酒的生产量比上一年减少50%,葡萄酒生产量比上一年增加100%,试问:(1)哪一年啤酒与葡萄酒的年生产量之和最低?(2)从2018年起(包括2018年),经过多少年葡萄酒的生产总量不低于该厂啤酒与葡萄酒生产总量之和的?(生产总量是指各年年产量之和)【考点】函数模型的选择与应用.【分析】(1)利用该厂计划从2018年起每年啤酒的生产量比上一年减少50%,葡萄酒生产量比上一年增加100%,可得该厂第n年啤酒和葡萄酒年生产量,进而可得啤酒与葡萄酒的年生产量之和,利用基本不等式,可求最值;(2)利用葡萄酒的生产总量不低于该厂啤酒与葡萄酒生产总量之和的,建立不等式,即可求得结论.【解答】解:设从2018年起,该厂第n年啤酒和葡萄酒年生产量分别为a n吨和b n吨,经过n年后啤酒和葡萄酒各年生产量的总量分别为A n吨和B n吨.(1)设第n年啤酒和葡萄酒生产的年生产量为D n吨,依题意,=,=500×2n,(n∈N*),则D n=a n+b n=+500×2n=,当且仅当,即n=3时取等号,故2018年啤酒和葡萄酒生产的年生产量最低,为8000吨.(2)依题意,,得B n≥2A n,∵,,∴1000(2n﹣1)≥,∵2n﹣1>0,∴2n≥64=26,∴n≥6,从第6年起,葡萄酒各年生产的总量不低于啤酒各年生产总量与葡萄酒各年生产总量之和的.21.已知如图所示,四棱锥P﹣ABCD的底面ABCD为矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.(1)求证:平面PAD⊥平面PAB;(2)求三棱锥D﹣PAC的体积;(3)求直线PC与平面ABCD所成角的正弦值.【考点】直线与平面所成的角;棱柱、棱锥、棱台的体积;平面与平面垂直的判定. 【分析】(1)由已知条件推导出AB ⊥BC ,PB ⊥BC ,由此能证明平面PAD ⊥平面PAB . (2)以A 为原点,以平面ABP 内过点A 作AB 的垂线为x 轴,AB 为y 轴,AD 为z 轴,建立空间直角坐标系,由V D ﹣PAC =V P ﹣ADC ,利用等积法能求出三棱锥D ﹣PAC 的体积. (3)求出和平面ABCD 的法向量,由此利用向量法能求出直线PC 与平面ABCD 所成角的正弦值. 【解答】(1)证明:∵四棱锥P ﹣ABCD 的底面ABCD 为矩形,∴AB ⊥BC , ∵∠PBC=90°,∵PB ⊥BC ,∵AB ∩PB=B ,∴BC ⊥平面PAB , ∵AD ∥BC ,∴AD ⊥平面PAB ,∵AD ⊂平面PAD ,∴平面PAD ⊥平面PAB .(2)解:以A 为原点,以平面ABP 内过点A 作AB 的垂线为x 轴,AB 为y 轴,AD 为z 轴,建立空间直角坐标系,由已知得P (,﹣,0),A (0,0,0),=(),平面ADC 的法向量=(1,0,0),P 到平面ADC 的距离h===,S △ADC ==1,∴三棱锥D ﹣PAC 的体积:V D ﹣PAC =V P ﹣ADC ===.(3)解:P (,﹣,0),C (0,2,1),=(﹣,,1),平面ABCD 的法向量=(1,0,0),设直线PC 与平面ABCD 所成角的为θ,则sin θ=|cos <,>|=||=||=.∴直线PC 与平面ABCD 所成角的正弦值为.22.已知椭圆C: +=1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:•为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)根据椭圆的离心率,三角形的面积及椭圆几何量之间的关系,建立等式,即可求得椭圆的标准方程;(2)①直线方程代入椭圆方程,利用韦达定理及线段AB中点的横坐标为,即可求斜率k的值;②利用韦达定理,及向量的数量积公式,计算即可证得结论.【解答】(1)解:因为满足a2=b2+c2,,…根据椭圆短轴的一个端点与两个焦点构成的三角形的面积为,可得.从而可解得,所以椭圆方程为…(2)证明:①将y=k(x+1)代入中,消元得(1+3k2)x2+6k2x+3k2﹣5=0…△=36k4﹣4(3k2+1)(3k2﹣5)=48k2+20>0,…因为AB中点的横坐标为,所以,解得…②由①知,所以…==…===…2018年11月11日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广东省揭阳市普宁市中考数学模拟试卷(4月份) 一、选择题(每小题3分,共30分) 1.(3分)﹣2的倒数是( ) A.﹣ B. C.﹣2 D.2 2.(3分)9的算术平方根是( ) A.3 B.﹣3 C.±3 D. 3.(3分)如图所示的工件,其俯视图是( )
A. B. C. D. 4.(3分)下列图案中,是轴对称图形但不是中心对称图形的是( )
A. B. C. D. 5.(3分)已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为( ) A.﹣1 B.0 C.1 D.3 6.(3分)下列计算正确的是( ) A.a5+a5=a10 B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a6
7.(3分)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( )
A.两地气温的平均数相同 B.甲地气温的中位数是6℃ C.乙地气温的众数是4℃ D.乙地气温相对比较稳定 8.(3分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为( ) A.5 B.6 C.7 D.8 9.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0 10.(3分)一次函数y=ax+b和反比例函数y=在同一个平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是( )
A. B. C. D. 二、填空题(每小题4分,共24分) 11.(4分)全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是 . 12.(4分)因式分解:x2y﹣y= . 13.(4分)如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2= °.
14.(4分)4cos30°++|﹣2|= . 15.(4分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影 部分的面积为 . 16.(4分)如图,边长为4的正六边形ABCDEF的中心与坐标原点O重合,AF∥x轴,将正六边形ABCDEF绕原点O顺时针旋转n次,每次旋转60°,当n=2018时,顶点A的坐标为 .
三、解答题(一)(每小题6分,共18分) 17.(6分)解不等式组,并把它的解集在数轴上表示出来.
18.(6分)先化简,再求值:(a+)÷,其中a=2. 19.(6分)如图,已知矩形ABCD(AB<AD). (1)请用直尺和圆规按下列步骤作图,保留作图痕迹; ①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE; ②作∠DAE的平分线交CD于点F; ③连接EF; (2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为 .
四、解答题(二)(每小题7分,共21分) 20.(7分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二 年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应扇形的圆心角为 度,并将条形统计图补充完整. (2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率. 21.(7分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍. (1)求甲、乙两个工程队每天各修路多少千米? (2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天? 22.(7分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE. (1)求证:四边形BCDE为菱形; (2)连接AC,若AC平分∠BAD,判断AC与CD的数量关系和位置关系,并说明理由.
五、解答题(三)(每小题9分,共27分) 23.(9分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象 于点M,交AB于点N,连接BM. (1)求m的值和反比例函数的表达式; (2)观察图象,直接写出当x>0时不等式2x+6﹣<0的解集; (3)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?最大值是多少?
24.(9分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆. (1)求证:AC是⊙O的切线; (2)过点E作EH⊥AB,垂足为H,求证:CD=HF; (3)已知:CD=1,EH=3,求AF的长.
25.(9分)如图(1),在矩形DEFG中,DE=3,EG=6,在Rt△ABC中,∠ABC=90°,BC=3,AC=6,△ABC的一边BC和矩形的一边DG在同一直线上,点C和点D重合,Rt△ABC将从D以每秒1个单位的速度向DG方向匀速平移,当点C与点G重合时停止运动,设运动时间为t秒,解答下列问题: (1)如图(2),当AC过点E时,求t的值; (2)如图(3),当AB与DE重合时,AC与EF、EG分别交于点M、N,求CN的长; (3)在整个运动过程中,设Rt△ABC与△EFG重叠部分面积为y,请求出y与t的函数关系式,并写出相应t的取值范围. 2018年广东省揭阳市普宁市中考数学模拟试卷(4月份) 参考答案与试题解析
一、选择题(每小题3分,共30分) 1.(3分)﹣2的倒数是( ) A.﹣ B. C.﹣2 D.2 【分析】根据倒数的定义即可求解. 【解答】解:﹣2的倒数是﹣. 故选:A.
2.(3分)9的算术平方根是( ) A.3 B.﹣3 C.±3 D. 【分析】根据算术平方根的定义解答. 【解答】解:∵32=9, ∴9的算术平方根是3. 故选:A.
3.(3分)如图所示的工件,其俯视图是( )
A. B. C. D. 【分析】根据从上边看得到的图形是俯视图,可得答案. 【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线, 故选:B.
4.(3分)下列图案中,是轴对称图形但不是中心对称图形的是( ) A. B. C. D. 【分析】根据轴对称图形与中心对称图形的概念分别分析得出答案. 【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误; B、不是轴对称图形,也不是中心对称图形,故此选项错误; C、不是轴对称图形,是中心对称图形,故此选项错误; D、是轴对称图形,不是中心对称图形,故此选项正确. 故选:D.
5.(3分)已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为( ) A.﹣1 B.0 C.1 D.3 【分析】根据方程的系数结合根的判别式△=0,即可得出关于c的一元一次方程,解之即可得出常数c的值. 【解答】解:∵关于x的方程x2﹣4x+c+1=0有两个相等的实数根, ∴△=(﹣4)2﹣4×1×(c+1)=12﹣4c=0, 解得:c=3. 故选:D.
6.(3分)下列计算正确的是( ) A.a5+a5=a10 B.a7÷a=a6 C.a3•a2=a6 D.(﹣a3)2=﹣a6 【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可. 【解答】解:A.a5+a5=2a5,所以此选项错误; B.a7÷a=a6,所以此选项正确; C.a3•a2=a5,所以此选项错误; D.(﹣a3)2=a6,所以此选项错误; 故选:B.
7.(3分)甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( ) A.两地气温的平均数相同 B.甲地气温的中位数是6℃ C.乙地气温的众数是4℃ D.乙地气温相对比较稳定 【分析】分别计算出甲乙两地的平均数、中位数、众数和方差,然后对各选项进行判断. 【解答】解:甲乙两地的平均数都为6℃;甲地的中位数为6℃;乙地的众数为4℃和8℃;乙地气温的波动小,相对比较稳定. 故选:C.
8.(3分)某服装进货价80元/件,标价为200元/件,商店将此服装打x折销售后仍获利50%,则x为( ) A.5 B.6 C.7 D.8 【分析】根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论. 【解答】解:根据题意得:200×﹣80=80×50%, 解得:x=6. 故选:B.
9.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣4 B.bd>0 C.|a|>|d| D.b+c>0 【分析】根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案. 【解答】解:由数轴上点的位置,得 a<﹣4<b<0<c<1<d. A、a<﹣4,故A不符合题意; B、bd<0,故B不符合题意;