新版人教版八年级数学下册第十九章-一次函数测试卷(含答案)

合集下载

人教版八年级下册数学第十九章 一次函数 含答案

人教版八年级下册数学第十九章 一次函数 含答案

人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、如图,直线y= x+ 与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为()A.2B.4C.6D.82、一次函数的图象如图所示,则代数式化简后的结果为().A. B. C. D.3、梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10kg以上(不含10kg)的种子,超过10kg的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:kg)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过10kg时,销售价格为5元/kg;②一次购买30kg种子时,付款金额为100元;③一次购买10kg以上种子时,超过10kg的那部分种子的价格打五折:④一次购买40kg种子比分两次购买且每次购买20kg种子少花25元钱.其中正确的个数是( ).A.1个B.2个C.3个D.4个4、正比例函数函数值y随x的增大而减小,则一次函数的图象大致是()A. B. C. D.5、函数y=中自变量x的取值范围是()A.x=2B.x≠2C.x>2D.x<26、6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200B.9000,10000C.10000,13200D.13200,154007、如图,点是菱形边上的动点,它从点出发沿路径匀速运动到点,设的面积为,点的运动时间为,则关于的函数图象大致为()A. B. C. D.8、如图,已知正比例函数与一次函数的图象交于点.下面四个结论中正确的是()A. B. C.当时, D.当时,9、甲、乙两车从A城出发前往B城,在整个行驶过程中,汽车离开A城的距离y(km)与行驶时间t(h)的函数图象如图所示,下列说法正确的有()①甲车的速度为50km/h ②乙车用了3h到达B城③甲车出发4h时,乙车追上甲车④乙车出发后经过1h或3h两车相距50km.A.1个B.2个C.3个D.4个10、如果弹簧的长度ycm与所挂物体的质量x(kg)的关系是一次函数,图象如图所示,那么弹簧不挂物体时的长度是( )A.9cmB.10cmC.10.5cmD.11cm11、以一个二元一次方程组中的两个方程作为一次函数画图象,所得的两条直线()A.有一个交点B.有无数个交点C.没有交点D.以上都有可能12、在平面直角坐标系中,过点的直线经过一、二、三象限,若点,,都在直线上,则下列判断正确的是()A. B. C. D.13、已知一次函数y=ax+c与二次函数y=ax2+bx+c,它们在同一坐标系内的大致图象是()A. B. C. D.14、已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax﹣2b与反比例函数y= 在同一平面直角坐标系中的图象大致是()A. B. C. D.15、如图,射线L甲、L乙分别表示甲、乙两名运动员在自行车比赛中所行路程S(米)与时间t(分)的函数图象.则他们行进的速度关系是()A.甲、乙同速B.甲比乙快C.乙比甲快D.无法确定二、填空题(共10题,共计30分)16、一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x小时,两车之间的距离为y千米,图中的折线表示y与x之间的函数关系.根据图象可知:当x为________ 时,两车之间的距离为300千米.17、如图,已知一次函数的图象,则关于x的不等式的解集是________.18、某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y与制作纪念册的册数x的函数关系式为________.19、一次函数y=2x+2的图象如图所示,则由图象可知,方程2x+2=0的解为________.20、已知y与x成正比,且当x=-1时,y=-6,则y与x之间的函数关系式为________。

人教版八年级数学下册 第十九章 一次函数 单元测试卷(含答案)

人教版八年级数学下册  第十九章  一次函数 单元测试卷(含答案)

2019年八年级数学下册一次函数单元测试卷一、选择题1、对于函数y=-3x+1,下列结论正确的是()A.它的图象必经过点(-1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0 D.y的值随x值的增大而增大2、巴西奥运会期间,童童从宾馆出发前往奥体中心观看中国女排决战塞尔维亚,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,她搭乘朋友的车顺利到家。

其中x表示童童从宾馆出发后所用时间,y表示童童离宾馆的距离.下图能反映y与x的函数关系式的大致图象是3、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )A.B.C.D.4、若直线y=kx+b经过第二、三、四象限,则()A.k>0,b>0 B.k>0,b<0C.k<0,b>0D.k<0,b<05、在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A. B. C. D.7、若点A(m,n)在的图像上,且2m-3n>6,则b的取值范围为A. b>2B. b>-2C. b<2D. b<-28、如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x +b>ax﹣3的解集是( )A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣29、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,ma x{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是( )A.0 B.2 C.3 D.410、已知直线y=34 x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是( )A.y=﹣x+8 B.y=﹣x+8 C.y=﹣x+3 D.y=﹣x+311、在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有()A.1个B.2C.3个D.4个12、如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是( )A.B.C.D.二、填空题13、函数x32x1y-+-=的自变量x的取值范围是。

人教版八年级下册数学第十九章 一次函数 含答案

人教版八年级下册数学第十九章 一次函数 含答案

人教版八年级下册数学第十九章一次函数含答案一、单选题(共15题,共计45分)1、对于函数y=﹣3x+1,下列结论正确的是( )A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限 C.当x>1时,y<0 D.y的值随x值的增大而增大2、一次函数的图象过点(0,2),且随的增大而增大,则m=()A.-1B.3C.1D.-1或33、如图,直线与双曲线(k>0,x>0)交于点A,将直线向上平移4个单位长度后,与y轴交于点C,与双曲线(k>0,x>0)交于点B,若OA=3BC,则k的值为( )A.3B.6C.D.4、某市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A地方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.下列说法:①乙工程队每天修公路240米;②甲工程队每天修公路120米;③甲比乙多工作6天;④A、B两地之间的公路总长是1680米.其中正确的说法有()A.4个B.3个C.2个D.1个5、东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是千米,出租车费为15.5元,那么的最大值是()A.11B.8C.7D.56、当a≠0时,函数y=ax+1与函数在同一坐标系中的图象可能是A. B. C.D.7、已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k、b的取值情况为()A.k>0,b>0B.k>0,b<0C.k>l,b<0D.k>l,b>08、如图所示,函数和的图象相交于(-1,1),(2,2)两点.当y 1>y2时,x的取值范围是()A.x<-1B.-1<x<2C.x>2D.x<-1或x>29、如图,点A(a,1)、B(﹣1,b)都在双曲线上,点P、Q 分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是( )A. B. C. D.10、二次函数y=x2-2x+3,当函数值为2时,自变量的值是()A.x=-2B.x=2C.x=1D.x=-111、对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象与x轴的交点坐标是(0,4)D.函数的图象向下平移4个单位长度得y=﹣2x的图象12、如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上。

八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

人教版八年级数学下册第十九章《一次函数》单元测试附答案卷

第十九章《一次函数》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.(跨学科融合)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中自变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器2.函数y=√x+1中自变量x的取值范围是()A.x≥2B.x≥-1C.x≤1D.x≠13.下列函数中,不是一次函数的是()A.y=x+1B.y=-xC.y=x2D.y=1-x4.直线y=2x经过()A.第二、四象限B.第一、二象限C.第三、四象限D.第一、三象限5.将函数y=-3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=-3x+2B.y=-3x-2C.y=-3(x+2)D.y=-3(x-2)6.已知关于x的正比例函数y=(k+5)x,且y随x的增大而减小,则k的取值范围是()A.k>5B.k<5C.k>-5D.k<-57.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0D.y2<0<y18.如图,已知一次函数y=kx+b的图象,则k,b的值为()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0第8题第9题第10题图9.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900 mB.小涛从家去报亭的平均速度是60 m/minC.小涛从报亭返回家中的平均速度是80 m/minD.小涛在报亭看报用了15 min10.(创新题)如图,若输入x的值为-5,则输出的结果为()A.-6B.-5C.5D.6二、填空题(共5小题,每小题3分,共15分)11.若y与x的函数关系式为y=2x-2,当x=2时,y的值为.12.直线y=2x-3与x轴的交点坐标是.13.如图,已知一次函数y1=kx+b与y2=x+a的图象,若y1<y2,则x的取值范围是.14.(跨学科融合)测得一根弹簧的长度与所挂物体质量的关系如下表:(重物不超过20千的函数关系式是(015.(创新题)如图1,在矩形ABCD中,BC=5,动点P从点B出发,沿BC-CD-DA运动至点A 停止.设点P运动的路程为x,△ABP的面积为y,若y关于x的函数图象如图2所示,则DC=,y的最大值是.三、解答题(一)(共3小题,每小题8分,共24分)16.已知一次函数y=2x-6.(1)判断点(4,3)是否在此函数的图象上;(2)此函数的图象不经过第象限,y随x的增大而.17.已知直线y=kx+b经过点A(3,7)和B(-8,-4),求直线AB的解析式.18.如图,已知直线l:y=kx+3经过A,B两点,点A的坐标为(-2,0).(1)求直线l的解析式;(2)当kx+3>0时,根据图象直接写出x的取值范围.。

人教版初中八年级数学下册第十九章《一次函数》经典题(含答案解析)

人教版初中八年级数学下册第十九章《一次函数》经典题(含答案解析)

一、选择题1.甲、乙两车分别从A 地出发匀速行驶到B 地,在整个行驶过程中,甲、乙两车离开A 城的距离(km)y 与甲车行驶的时间(h)t 之间的关系如图所示,则下列结论中正确的个数为( )①,A B 两地相距480km ;②乙车比甲车晚出发1小时,却比甲车早到1小时; ③乙车出发后4小时时追上甲车;④甲,乙两车相距50km 时, 3.5t 或4.5.A .1B .2C .3D .42.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟3.下列图象中,不表示y 是x 的函数的是( )A .B .C.D.4.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x 的解集是()A.0<x<32B.32<x<6 C.32<x<4 D.0<x<35.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20210x yy x+-=⎧⎨-+=⎩B.20210x yy x-+=⎧⎨+-=⎩C.20210x yy x-+=⎧⎨--=⎩D.2010x yy x++=⎧⎨+-=⎩6.如图,A、M、N三点坐标分别为A(0,1),M(3,4),N(5,6),动点P从点A 出发,沿y轴以每秒一个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒,若点M、N分别位于l的异侧,则t的取值范围是()A .611t <<B .510t <<C .610t <<D .511t <<7.已知点()1,4P 在直线2y kx k =-上,则k 的值为( ) A .43B .43-C .4D .4-8.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( )A .B .C .D .9.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算( )A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定10.如图,直线y kx b =+与x 轴交于点()1,0-,与y 轴交于点()0,2-,则关于x 的不等式0kx b +<的解集为( )A .1x >-B .2x >-C .1x <-D .2x <-11.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D .12.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A .①②B .②③C .②④D .③④13.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量14.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于5 15.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( )A .32m >B .32m >-C .32m <D .32m <-二、填空题16.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.17.已知一次函数y kx b =+的图象与直线1y x =-+平行,且经过点(8,2),那么b 的值是________.18.如图,已知A(8,0),点P 为y 轴上的一动点,线段PA 绕着点P 按逆时针方向旋转90°至线段PB 位置,连接AB 、OB ,则OB +BA 的最小值是__________.19.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为1231,,,,n P P P P -,过每个分点作x 轴的垂线分别交直线AB 于点1231,,,,n T T T T -,用1231,,,,n S S S S -分别表示11212121Rt ,Rt ,,Rt n n n T OP T PP T P P ---△△△的面积,则当n=4时,121n S S S -+++=_______;当n=2020时,1231n S S S S -++++=______.20.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -+-+=_________.21.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.22.如表,y 是x 的一次函数,则m 的值为_____________.x 1-0 1 y 3m23.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上.则点C 2020的纵坐标是____.24.如图,平面直角坐标系xOy 中,()0,2A ,()2,0B ,C 为AB 的中点,P 是OB 上的一个动点,ACP ∆周长最小时,点P 的横坐标是______.25.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.26.新冠疫情爆发以来,某工厂响应号召,积极向疫情比较严重的甲地区捐赠口罩、消毒液等医疗物资,在工厂装运完物资准备前往甲地的A 车与在甲地卸完货准备返回工厂的B 车同时出发,分别以各自的速度匀速驶向目的地,出发6小时时A 车接到工厂的电话,需要掉头到乙处带上部分检验文件(工厂、甲地、乙在同一直线上且乙在工厂与甲地之间),于是,A 车掉头以原速前往乙处,拿到文件后,A 车加快速度迅速往甲地驶去,此时,A 车速度比B 车快32千米/小时,A 车掉头和拿文件的时间忽略不计,如图是两车之间的距离y (千米)与B 车出发的时间x (小时)之间的函数图象,则当A 车到达甲地时,B 车离工厂还有_____千米.三、解答题27.如图,在平面直角坐标系中,直线y kx b =+交x 轴于点()30A -,,交y 轴于点()0,1B .过点()1,0C -作垂直于x 轴的直线交AB 于点D ,点()1,E m -在直线CD 上且在直线AB 的上方.(1)求k 、b 的值(2)当3m =时,求四边形AOBE 的面积S .(3)当2m =时,以AE 为边在第二象限作等腰直角三角形PAE ,直接写出点P 的坐标.28.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标; (2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.29.青甘杨作为杨树的一种是我国东北和西北防护林以及用材林的主要树种之一,具有生长快、适应性强、分布广等特点.青甘杨树苗的高度与其生长年数之间的关系如下表所示:(树苗原高是90cm )生长年数n/年12345青甘杨树苗高度/cmh125160195230(1)第5年树苗可能达到的高度为_______cm.(2)请用含n的代数式表示高度h.(3)根据(2)中的结论,请计算生长了11年后的青甘杨可能达到的高度.30.综合与探究如图1,一次函数162y x=-+的图象交x轴、y轴于点A,B,正比例函数12y x=的图象与直线AB交于点(),3C m.(1)求m的值并直接写出线段OC的长;(2)如图2,点D在线段OC上,且与O,C不重合,过点D作DE x⊥轴于点E,交线段CB于点F.请从A,B两题中任选一题作答.我选择题____题.A.若点D的横坐标为4,解答下列问题:①求线段DF的长;②点P是x轴上的一点,若PDF的面积为CDF面积的2倍,直接写出点P的坐标;B.设点D的横坐标为a,解答下列问题:①求线段DF的长,用含a的代数式表示;②连接CE,当线段CD把CEF△的面积分成1:2的两部分时,直接写出a的值.。

人教版八年级数学 下册 第十九章 一次函数 单元综合与测试题(含答案)

1 / 3第十九章 一次函数 单元复习与检测题(含答案)一、选择题 1、函数2y x =+的自变量的取值范围是( )A .x ≥-2B .x < -2C .x >-2D .x ≤ -2 2、下列函数关系中,属于正比例函数关系的是( )A.圆的面积与它的半径B.面积为常数S 时矩形的长y 与宽xC.路程是常数时,行驶的速度v 与时间tD. 三角形的底边是常数a 时它的面积S 与这条边上的高h3、若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点( ) A .(-3,2) B .(32,-1) C .(23,-1) D .(-32,1)4、下列问题中,两个变量成正比例的是( ) A .等腰三角形的面积一定,它的底边和底边上的高 B .等边三角形的面积和它的边长C .长方形的一边长确定,它的周长与另一边长D .长方形的一边长确定,它的面积与另一边长5、在直角坐标系中,既是正比例函数y=kx,又是y 的值随x 的增大而减小的图象是( )A .B .C .D .6、如图,函数y =2x 和y =ax +4的图象相交于点A(m, 2),则不等式2x <ax +4的解集为( )A. x >3B. x <1C. x >1D. x <37、如图,直线y =kx +b 交坐标轴于A (-3,0).B (0,5)两点,则不等式-kx -b <0的解集为( )A .x >-3B .x <-3C .x >3D .x <38、李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 9、某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( )10、已知一次函数32y x m =+和12y x n =-+的图象都经过点A (-2,0),且与y 轴分别交于B ,C 两点,那么△ABC 的面积等于( ).A .2B .3C .4D .6二、填空题11、某物体从上午7时至下午4时的温度M (℃)是时间t(h)的函数:35100m t t =-+ (其中t=0表示中午12时,t=-1表示上午11时,t=1表示13时),则上午10时此物体的温度为 ℃12、已知直线y=(2-3m )x 经过点A (x 1,y 1)、B (x 2,y 2),当x 1<x 2时,有y 1>y 2,则m 的取值范围是 .13、如图,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm )和注水时间x(s)之间的关系满足如图2中的图象,则至少需要________s 能把小水杯注满.2 / 314、已知一次函数y =ax -b 的图象经过一.二.三象限,且与x 轴交于点(-2,0),则不等式ax >b 的解集为 .15、已知直线l 1,l 2的解析式分别为y 1=ax +b ,y 2=mx +n (0<m <a ),根据图中的图象填空:(1)方程组,y ax b y mx n=+⎧⎨=+⎩的解为__________;(2)当-1≤x ≤2时,y 2的范围是__________;(3)当-3≤y 1≤3时,自变量x 的取值范围是__________.三、解答题16、如图,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB 沿x 轴向左平移得到△O'A'B',点A 的对应点A'落在直线y=-34x 上,求点B 与其对应点B'间的距离.17、一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s (米)与时间t (秒)的关系如图,结合结合图象,求图中S 1和S 0的数值.提示:求得小刚和李明速度,再乘以相遇时间,两个路程相减即可得出两人的路程之差150.18、已知A 、B 两地相距30km ,小明以6km /h 的速度从A 步行到B 地的距离为y km ,步行的时间为x h .(1)求y 与x 之间的函数表达式,并指出y 是x 的什么函数; (2)写出该函数自变量的取值范围.19、在平面直角坐标系xoy 中,已知一次函数()10y mx m =≠与()20y kx b k =+≠相交于点()12A ,,且()20y kx b k =+≠与y 轴交于点()03B ,.(1)求一次函数1y 和2y 的解析式; (2)当120y y >>时,求出x 的取值范围.20、在社会主义新农村建设中,长春某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?3 / 3参考答案:一、1、A 2、D 3、C 4、D 5、C 6、B 7、A 8、B 9、D 10、C 二、 11、102 12、m >2313、5 14、 x >-215、(1)2,3x y =⎧⎨=⎩ (2)0≤y 2≤3 (3)0≤x ≤2三、16、解析:由题意可知,点A 移动到点A'位置时,纵坐标不变,∴点A'的纵坐标为6,∵点A'落在直线y=-34x 上,∴-34x=6,解得x=-8,∴△OAB 沿x 轴向左平移到△O'A'B'位置,移动了8个单位,∴点B 与其对应点B'间的距离为8.17、解设小刚速度为xm/s ,李明速度为ym/s 由题意可得1001450160010020014503001600x yx y +=+⎧⎨+=+⎩解得31.5x y =⎧⎨=⎩所以S 0=1450+100x=1750m ,S 1=1450+200x=2050m 18、解:(1)由题意可得:y=6x , 此函数是正比例函数; (2)∵A 、B 两地相距30km , ∴0≤6x ≤30, 解得:0≤x ≤5,即该函数自变量的取值范围是:0≤x ≤5.19、∵一次函数()10y mx m =≠过点()12A ,∴2m = ∴12y x =;又∵一次函数()20y kx b k =+≠经过点()12A ,, ()03B , ∴2{3k bb=+=;解得: 1{3k b =-= ∴23y x =-+; (2)1<<3x .20、(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米.(2)设y 乙=kx+b ,则,309720k b k b +=⎧⎨+=⎩,解得120360k b =⎧⎨=-⎩,所以y 乙=120x-360,当x=6时,y 乙=360,设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∴把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620,解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.。

人教版数学八年级下册 第十九章 一次函数 练习附答案

人教版数学八年级下册第十九章一次函数(附答案)一、选择题1.函数y=kx+2经过点(1,3),则y=0时,x=() A.-2 B. 2 C. D. ±22.下列函数的解析式中是一次函数的是()A.y=1−x B.y=15x+1 C.y=x2+1 D.y=√x3.自由下落物体下落的高度h与下落的时间t之间的关系为h=12g t2(g=9.8 m/s2),在这个变化中,变量为()A.h,t B.h,g C.t,g D.t4.下列问题中,变量y与x成一次函数关系的是()A.路程一定时,时间y和速度x的关系B.长10米的铁丝折成长为y,宽为x的长方形C.圆的面积y与它的半径xD.斜边长为5的直角三角形的直角边y和x5.园林队在某公园进行绿化,中间休息了一段时间,绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A. 40平方米B. 50平方米 C. 65平方米D. 80平方米6.某地电话拨号入网有两种收费方式:A计时制:每分0.05元;B包月制:每月50元.此外,每一种上网方式都得加收通信费每分钟0.02元.某用户估计一个月上网时间为20小时,你认为采用哪种收费方式较为合算?()A.计时制B.包月制 C.两种一样D.不确定7.已知函数y=kx-1,且y随x的增大而减小,则它的图象是()A.B.C.D.8.甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中,错误的是()A.s是变量B.t是变量 C.v是变量D.s是常量9.如图,扇形OAB上有一动点P,P从点A出发,沿⌒AB、线段BO、线段OA匀速运动到点A,则OP的长度y与运动时间t之间的函数图象大致是 ()A.B.C.D.10.某人准备到甲或乙商场购买一些商品,两商场同种商品的标价相同,而各自推出不同的优惠方案:在甲商场累计购买满一定数额a元后,再购买的商品按原价的90%收费;在乙商场累计购买50元商品后,再购买的商品按原价的95%收费.若累计购物x元,当x>a时,在甲商场需付钱数yA=0.9x+10,当x>50时,在乙商场需付钱数为yB.下列说法:①yB=0.95x+2.5;②a=100;③当累计购物大于50元时,选择乙商场一定优惠些;④当累计购物超过150元时,选择甲商场一定优惠些.其中正确的说法是()A.①②③④B.①③④C.①②④D.①②③二、填空题11.三角形的面积公式中S=12ah其中底边a保持不变,则常量是________,变量是________.12.下列函数中,是一次函数的是________.①y=8x2,②y=x+1,③y=8x ,④y=2x+1.13.y+2与x+1成正比例,且当x=1时,y=3,则当x=2时,y=______.14.已知关于x的函数y=(m+3)x|m|-3+2n-6是x的正比例函数,则mn=________.15.已知一次函数y=kx+b(k≠0)图象过点(0,2),y随x增大而减小,且与两坐标轴围成的三角形面积为2,则一次函数的解析式为________.16.如图所示,△ABC的底边BC上的高是6 cm,当三角形的顶点C沿底边所在直线向点B运动时,三角形的面积发生了变化.在这个变化过程中,常量是__________________.17.已知函数y=2x2a+2b是x的正比例函数,则a+b=________.18.先完成下列填空,再在平面直角坐标系中画出下面函数的图象(不必再列表):正比例函数y=2x过(0,________)和(1,________)19.已知正比例函数y=kx(k是常数,k≠0),当-3≤x≤1时,对应的y的取值范围是-1≤y≤13,且y随x的减小而减小,则k的值为________.三、解答题20.设函数y=(m-2)x2-|m|+m-1,当m为何值时,y是x的正比例函数?21.在平面直角坐标系中,直线AB经过A(2,3)、B(-3,-2)两点,求直线AB所对应的函数解析式.22.当k为何值时,函数y=(k2+2k)x k2+k-1是x的正比例函数?23.已知函数y=x−32x+1.求:(1)当x=1和x=-1时的函数值;(2)当x为何值时,函数y分别等于1,-1.24.一辆小汽车在高速公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用T表示时间,V表示速度,那么随着T的变化,V的变化趋势是什么?(3)当T每增加1秒,V的变化情况相同吗?在哪1秒钟,V的增加最大?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.答案1.【答案】A【解析】先把点的坐标代入函数解析式求出k值,得到函数解析式,再求当y=0时的自变量x的值.根据题意1×k+2=3,解得k=1,故函数解析式为y=x+2,当y=0时,x+2=0,解得x=-2,故选A.2.【答案】B【解析】A.是反比例函数,故此选项错误;B.是一次函数,故此选项正确;C.是二次函数,故此选项错误;D.不是一次函数,故此选项错误;故选B.3.【答案】A【解析】根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量进行分析.在这个变化中,变量为h,t,故选A.4.【答案】B【解析】A.设路程是s,则根据题意知,s=xy,时间y和速度x是反比例函数关系.故本选项错误;B.根据题意,知10=2(x+y),即y=-x+5,符合一次函数的定义.故本选项正确;C.根据题意,知y=πx2,这是二次函数,故本选项错误;D.根据题意,知x2+y2=25,这是双曲线方程,故本选项错误,故选B.5.【答案】A【解析】根据图象可得,休息后园林队2小时绿化面积为130-50=80平方米,每小时绿化面积为80÷2=40(平方米).故选A.6.【答案】B【解析】根据题意,设上网时间为x小时,计时制y=(0.05+0.02)·60x=4.2x;包月制y=50+0.02·60x=50+1.2x;当x=20时,计时制费用y=4.2×20=84(元);包月制费用y=50+1.2×20=74(元),所以一个月内上网的时间为20小时,采用包月制较为合算,故选B.7.【答案】B【解析】∵一次函数y=kx-1,且y随着x的增大而减小,∴k<0,又∵b=-1<0,∴此一次函数图形过第二、三、四象限,故选B.8.【答案】A【解析】甲、乙两地相距s千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=s,在这个变化过程中常量是距离s,变量是时间t和速度v,故选A.9.【答案】D【解析】因为①当点P在弧AB上运动时,y=OP为定值,其长为扇形的半径的长;②当P点由B向O点运动时,y=OP的长逐渐减小为0;③当点P由点O开始向点A运动时,y=OP 的长逐渐增大为扇形的半径的长,所以选项D符合题意.10.【答案】C【解析】①yB=0.95x+50(1-95%)=0.95x+2.5,正确;②根据题意yA=a+(x-a)×90%=0.9x+0.1a=0.9x+10,所以a=100;③当累计购物大于50时上没封顶,选择乙商场一定优惠显然不对;④当yA<yB时,即0.9x+10<0.95x+2.5,解得x>150.所以当累计购物超过150元时,选择甲商场一定优惠些,故选C.11.【答案】12,a ;S ,h【解析】根据变量是指在一个变化过程中数值发生改变的量,常量是指在程序的运行过程中数值保持不变的量,可得答案.S =12ah ,其中底边a 保持不变,则常量是12,a ,变量是h 、S ,故答案为12,a ;S ,h .12.【答案】②【解析】一般地,形如y =kx +b (k ≠0,k 、b 是常数)的函数,叫做一次函数.只有②符合一次函数的定义,所以答案为②.13.【答案】112【解析】根据题意设y +2=k (x +1)(k ≠0),将x =1,y =3代入得:5=2k ,即k =52,∴y +2=52(x +1), 将x =2代入得:y +2=52×3,即y =112. 故答案为112.14.【答案】±12 【解析】依据正比例函数的定义得到2n -6=0,|m |-3=1,然后可求得m 、n 的值,最后依据有理数的乘法法则进行求解即可.∵关于x 的函数y =(m +3)x |m|-3+2n -6是正比例函数,∴{m +3≠0|m|−3=12n −6=0,解得n =3,m =±4.∴mn =±12.故答案为±12. 15.【答案】y =-x +2【解析】∵一次函数y =kx +b (k ≠0)图象过点(0,2),y 随x 增大而减小,且与两坐标轴围成的三角形面积为2,∴12OB ×2=2,∴B (2,0)∵y=kx+b的图象过点(0,2),(2,0),∴{2k+b=0, b=2,解得{k=−1, b=2,,∴此一次函数的解析式为y=-x+2.16.【答案】6 cm【解析】直接利用常量与变量的定义分别得出答案.在这个变化过程中,常量是:6 cm.故答案为 6 cm.17.【答案】12【解析】根据正比例函数定义可得2a=1,2b=0,再解可得a、b的值,然后可得a+b的值.由题意得:2a=1,2b=0,解得a=12,b=0,a+b=12,故答案为12.18.【答案】02【解析】当x=0时,y=2x=0,∴正比例函数y=2x过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x过(1,2).故正比例函数y=2x过(0,0)和(1,2).图象为19.【答案】-19【解析】易知k <0时,y 随x 的增大而减小,∴当x =-3时,y =13,代入正比例函数y =kx 得:13=-3k解得k =-19.20.【答案】解 ∵函数y =(m -2)x 2-|m|+m -1是x 的正比例函数,∴{m −2≠02−|m|=1m −1=0,解得m =1.【解析】根据正比例函数的定义列出关于m 的不等式组,求出m 的取值范围即可. 21.【答案】解 设直线AB 解析式为y =kx +b ,把点A (2,3)和点B (-3,-2)代入得{2k +b =3①,−3k +b =−2②,①-②得5k =5,即k =1,把k =1代入①得b =1,则直线AB 所对应的解析式为y =x +1.【解析】设直线AB 解析式为y =kx +b ,把A 与B 坐标代入求出k 与b 的值,即可确定出直线AB 所对应的函数解析式.22.【答案】解 由题意得:k 2+k -1=1且k 2+2k ≠0,解得k =1.【解析】根据正比例函数的定义可得k 2+k -1=1且k 2+2k ≠0,再解即可.23.【答案】解 (1)x =1时,y =1−32×1+1=-23,x =-1时,y =−1−32×(−1)+1=4;(2)y =1时,x−32x+1=1,解得x =-4,y =-1时,x−32x+1=-1,解得x =23.【解析】(1)把自变量x 的值代入函数关系式进行计算即可得解;(2)把函数值代入函数关系式解方程求解即可得到自变量x 的值.24.【答案】解 (1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用T 表示时间,V 表示速度,那么随着T 的变化,V 的变化趋势是V 随着T 的增大而增大;(3)当T 每增加1秒,V 的变化情况不相同,在第9秒时,V 的增加最大;(4)120×1003600=1003≈33.3米/秒,由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.【解析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出V 的变化趋势;(3)根据表中的数据可得出V 的变化情况以及在哪1秒钟,V 的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.。

【3套试卷】人教版八年级下册数学基础训练题: 第十九章 一次函数(含答案)

人教版八年级下册数学基础训练题:第十九章一次函数(含答案)一、选择题1.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)2.一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A. m<-1B. m>-1C. m>0D. m<03.一次函数的图象经过点A(﹣2,﹣1),且与直线y=2x﹣3平行,则此函数的解析式为()A. y=x+1B. y=2x+3C. y=2x﹣1D. y=﹣2x﹣54.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C. y=-2x D. y=2x5.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A. y=25x+15B. y=2.5x+1.5C. y=2.5x+15D. y=25x+1.56.一次函数y=kx+b的图象如图所示,当y<0时,x的取值范围是( )A. x>0B. x<0C. x>2D. x<27.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家,其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A. 1.1千米B. 2千米C. 15千米D. 37千米8.如图,在平面直角坐标系中,直线l1:y=x+3与直线l2:y=mx+n交于点A(﹣1,b),则关于x、y的方程组的解为()A. B. C. D.9.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A. x>﹣2B. x<﹣2C. x>﹣4D. x<﹣410.小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.11.一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()A. 9B. 16C. 25D. 3612.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A. x<2B. x<0C. x>0D. x>2二、填空题13.函数y=中,自变量x的取值范围为________ .14.已知,函数y=(k﹣1)x+k2﹣1,当k________ 时,它是一次函数.15.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .16.已知长方形的周长为30cm,一边长为ycm,另一边长为xcm,则y与x的关系式为________,其中变量是________,常量是________.17.根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为- ,则输出的结果为 ________18.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y (单位:元)与购书数量x(单位:本)之间的函数关系________.19.已知A地在B地的正南方3km处,甲、乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(km)与所行时间t(h)之间的函数关系如图所示,当他们行驶3h 时,他们之间的距离为________km.20.如图,已知点A和点B是直线y=x上的两点,A点坐标是(2,).若AB=5,则点B的坐标是 ________.21.一次函数y=ax+b的图象如图,则关于x的不等式ax+b≥0的解集为________.22.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为________ .三、解答题23.一次函数y=kx+b经过点(-4,-2)和点(2,4),求一次函数y=kx+b的解析式。

人教版八年级数学下册第十九章一次函数检测题(附答案)

第十九章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.函数y =x -1 的自变量x 的取值范围是DA .x >1B .x <1C .x ≤1D .x ≥12.若函数y =kx 的图象经过点(1,-2),那么它一定经过点BA .(2,-1)B .(-12 ,1)C .(-2,1)D .(-1,12) 3. “六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S 与时间t 之间函数关系的是B4.如图,直线y =x +b 和y =kx +2与x 轴分别交于点A (-2,0),点B (3,0),则⎩⎪⎨⎪⎧x +b >0,kx +2>0 解集为D A .x <-2 B .x >3 C .x <-2或x >3 D .-2<x <3第4题图 第9题图第10题图5.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是A6.已知一次函数y =(2m -1)x +1的图象上两点A (x 1,y 1),B (x 2,y 2),当x 1<x 2时,有y 1<y 2,那么m 的取值范围是BA .m <12B .m >12C .m <2D .m >0 7.已知一次函数的图象过点(3,5)与(-4,-9),则该函数的图象与y 轴交点的坐标为AA .(0,-1)B .(-1,0)C .(0,2)D .(-2,0)8.把直线y =-x -3向上平移m 个单位后,与直线y =2x +4的交点在第二象限,则m 的取值范围是AA .1<m <7B .3<m <4C .m >1D .m <49.在一次自行车越野赛中,出发m h 后,小明骑行了25 km ,小刚骑行了18 km ,此后两人分别以a km/h ,b km/h 匀速骑行,他们骑行的时间t (h)与骑行的路程s (km)之间的函数关系如图,观察图象,下列说法:①出发m h 内小明的速度比小刚快;②a =26;③小刚追上小明时离起点43 km ;④此次越野赛的全程为90 km.其中正确的说法有CA .1个B .2个C .3个D .4个10.如图,在平面直角坐标系中,点A 1,A 2,A 3…A n 在x 轴上,B 1,B 2,B 3…B n 在直线y =33x 上,若A 1(1,0),且△A 1B 1A 2,△A 2B 2A 3…△A n B n A n +1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S 1,S 2,S 3…S n .则S n 可表示为D A .22n 3 B .22n -13 C .22n -23 D .22n -33 二、填空题(每小题3分,共15分)11.函数y =5x 的图象经过的象限是一、三.12.在函数y =3x 2x -3 中,自变量x 的取值范围是x ≠32. 13.已知一次函数y =kx +b 的图象如图所示,则关于x 的不等式3kx -b >0的解集为x <2.第13题图 第14题图第15题图14.元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s 关于行走时间t 的函数图象,则两图象交点P 的坐标是(32,4800).15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54倍快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为2080米.三、解答题(共75分)16.(8分)已知2y -3与3x +1成正比例,且x =2时,y =5.(1)求x 与y 之间的函数关系,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a 的值.解:(1)y =32x +2,是一次函数 (2)a =017.(9分)已知一次函数y 1=kx +2(k 为常数,k ≠0)和y 2=x -3.(1)当k =-2时,若y 1>y 2,求x 的取值范围;(2)当x <1时,y 1>y 2.结合图象,直接写出k 的取值范围.解:(1)k =-2时,y 1=-2x +2,根据题意得-2x +2>x -3,解得x <53(2)当x =1时,y =x -3=-2,把(1,-2)代入y 1=kx +2得k +2=-2,解得k =-4,当-4≤k <0时,y 1>y 2;当0<k ≤1时,y 1>y 218.(9分)已知一次函数y =(a +8)x +(6-b ).(1)a ,b 为何值时,y 随x 的增大而增大?(2)a ,b 为何值时,图象过第一、二、四象限?(3)a ,b 为何值时,图象与y 轴的交点在x 轴上方?(4)a ,b 为何值时,图象过原点?解:(1)a >-8,b 为全体实数 (2)a <-8,b <6 (3)a ≠-8,b <6 (4)a ≠-8,b =619.(9分)有A ,B 两个发电厂,每焚烧一吨垃圾,A 发电厂比B 发电厂多发40度电,A 焚烧20吨垃圾比B 焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A 和B 各发电多少度?(2)A ,B 两个发电厂共焚烧90吨的垃圾,A 焚烧的垃圾不多于B 焚烧的垃圾两倍,求A 厂和B 厂总发电量的最大值.解:(1)设焚烧1吨垃圾,A 发电厂发电a 度,B 发电厂发电b 度,根据题意得:⎩⎪⎨⎪⎧a -b =40,30b -20a =1800, 解得⎩⎪⎨⎪⎧a =300,b =260, 答:焚烧1吨垃圾,A 发电厂发电300度,B 发电厂发电260度(2)设A 发电厂焚烧x 吨垃圾,则B 发电厂焚烧(90-x )吨垃圾,总发电量为y 度,则y =300x +260(90-x )=40x +23400,∵x ≤2(90-x ),∴x ≤60,∵y 随x 的增大而增大,∴当x =60时,y 有最大值为:40×60+23400=25800(度).答:A 厂和B 厂总发电量的最大值是25800度20.(9分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y (个)与甲加工时间x (h)之间的函数图象为折线OA -AB -BC ,如图所示.(1)这批零件一共有270个,甲机器每小时加工20个零件,乙机器排除故障后每小时加工40个零件;(2)当3≤x ≤6时,求y 与x 之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?解:(1)这批零件一共有270个,甲机器每小时加工零件:(90-50)÷(3-1)=20(个),乙机器排除故障后每小时加工零件:(270-90-20×3)÷3=40(个);故答案为:270;20;40 (2)设当3≤x ≤6时,y 与x 之间的函数关系式为y =kx +b ,把B (3,90),C (6,270)代入解析式,得⎩⎪⎨⎪⎧3k +b =90,6k +b =270, 解得⎩⎪⎨⎪⎧k =60,b =-90, ∴y =60x -90(3≤x ≤6) (3)设甲加工x小时时,甲乙加工的零件个数相等,①20x =30,解得x =1.5;②50-20=30,20x =30+40(x -3),解得x =4.5,答:甲加工1.5 h 或4.5 h 时,甲与乙加工的零件个数相等21.(10分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y =-2|x |的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y =-2|x |+2和y =-2|x +2|的图象如图所示.x… -3 -2 -1 0 1 2 3 … y … -6 -4 -2 0 -2 -4 -6 …(1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解析式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A ,B 的坐标和函数y =-2|x +2|的对称轴;(2)探索思考:平移函数y =-2|x |的图象可以得到函数y =-2|x |+2和y =-2|x +2|的图象,分别写出平移的方向和距离;(3)拓展应用:在所给的平面直角坐标系内画出函数y =-2|x -3|+1的图象.若点(x 1,y 1)和(x 2,y 2)在该函数图象上,且x 2>x 1>3,比较y 1,y 2的大小.解:(1)A (0,2),B (-2,0),函数y =-2|x +2|的对称轴为x =-2 (2)将函数y =-2|x |的图象向上平移2个单位得到函数y =-2|x |+2的图象;将函数y =-2|x |的图象向左平移2个单位得到函数y =-2|x +2|的图象 (3)将函数y =-2|x |的图象向上平移1个单位,再向右平移3个单位得到函数y =-2|x -3|+1的图象.所画图象如图所示,当x 2>x 1>3时,y 1>y 222.(10分)某商店准备购进A ,B 两种商品,A 种商品每件的进价比B 种商品每件的进价多20元,用3000元购进A 种商品和用1800元购进B 种商品的数量相同.商店将A 种商品每件的售价定为80元,B 种商品每件的售价定为45元.(1)A 种商品每件的进价和B 种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A ,B 两种商品共40件,其中A 种商品的数量不低于B 种商品数量的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决定对每件A 种商品售价优惠m (10<m <20)元,B 种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.解:(1)设A 种商品每件的进价是x 元,则B 种商品每件的进价是(x -20)元,由题意得:3000x =1800x -20,解得:x =50,经检验,x =50是原方程的解,且符合题意,50-20=30,答:A 种商品每件的进价是50元,B 种商品每件的进价是30元 (2)设购买A 种商品a 件,则购买B 商品(40-a )件,由题意得⎩⎨⎧50a +30(40-a )≤1560,a ≥40-a 2, 解得403 ≤a ≤18,∵a 为正整数,∴a =14,15,16,17,18,∴商店共有5种进货方案 (3)设销售A ,B 两种商品共获利y 元,由题意得:y =(80-50-m )a +(45-30)(40-a )=(15-m )a +600,①当10<m <15时,15-m >0,y 随a 的增大而增大,∴当a =18时,获利最大,即买18件A 商品,22件B 商品;②当m =15时,15-m =0,y 与a 的值无关,即(2)问中所有进货方案获利相同;③当15<m <20时,15-m <0,y 随a 的增大而减小,∴当a =14时,获利最大,即买14件A 商品,26件B 商品23.(11分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:有机蔬菜种类进价(元/kg) 售价(元/kg) 甲 m16(1) 6 kg 和乙种蔬菜10 kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100 kg 进行销售,其中甲种蔬菜的数量不少于20 kg ,且不大于70 kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60 kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg)之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.解:(1)由题意可得,⎩⎪⎨⎪⎧10m +5n =170,6m +10n =200, 解得⎩⎪⎨⎪⎧m =10,n =14, 答:m 的值是10,n 的值是14 (2)当20≤x ≤60时,y =(16-10)x +(18-14)(100-x )=2x +400,当60<x ≤70时,y =(16-10)×60+(16-10)×0.5×(x -60)+(18-14)(100-x )=-x +580,由上可得,y =⎩⎪⎨⎪⎧2x +400(20≤x ≤60)-x +580(60<x ≤70) (3)当20≤x ≤60时,y =2x +400,则当x =60时,y 取得最大值,此时y =520,当60<x ≤70时,y =-x +580,则y <-60+580=520,由上可得,当x =60时,y 取得最大值,此时y =520,∵在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,且要保证捐款后的盈利率不低于20%,∴520-2a ×60-40a 60×10+40×14≥20%,解得a ≤1.8,即a 的最大值是1.8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
O
y
x2
y=kx
y=6-x

8
62416O

t/天

S/t
八年级第十九章测试题
姓名 班级 一、选择题1.下列变量之间的关系中,一个变量是另一个变量的正比例函数的是( ) A.正方形的面积S随着边长x的变化而变化.B.正方形的周长C随着边长x的变化而变化 C.水箱以0.5L/min的流量往外放水,水箱中的剩水量V L随着放水时间t min的变化而变化D.面积为20的三角形的一边a随着这边上的高h的变化而变化 2.如果某函数的图象如图所示,那么y随x的增大而( ) A.增大 B.减小 C.不变 D.有时增大有时减小 3.一次函数y=kx+b中,y随x的正大而减小,b<0, 则这个函数的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为( ) A.2 B.32 C.32 D.1 5.某油箱容量为50L的汽车,加满汽油后开了200km时,油箱中的汽油大约消耗了41.如果加满汽油后汽车行驶的路程为xkm,油箱中的剩油量为yL,则y与x之间的函数关系式和自变量取值范围分别是( ) A.xy0625.0,x>0 B.xy0625.050,x>0 C. xy0625.0,8000x D. xy0625.050,8000x 6.食用油沸点的温度远高于水的沸点温度(1000C).小明为了用刻度不超过1000C的温度计测量出某种食用油沸点的温度,在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表: 时间t/s 0 10 20 30 40 油温y/0c 10 30 50 70 90 而且,小明发现,烧了110s时,油沸腾了.你估计这种油沸点的温度是( ) A.2000C B.2300C C.2600C D.2900C 二、填空题(每小题5分,共20分) 7.某电梯从1层(地面)直达3层用了20s,若电梯运行时匀速的,则乘坐该电梯从2层直达8层所需要的时间是___________________s 8.直线62xy与y轴的交点坐标为__________,与x轴的交点坐标是_____________ 9.函数kxy与xy6的图象如图所示,则k________________ 10.春耕期间,某农资门市部连续8天调进一批化肥进行销售,在开始调进化肥的第7天开始销
售.若进货期间每天调入化肥的吨数与销售期间每天销售化肥的吨数保持不变,这个门市部的化

肥存量S(单位:t)与时间t(单位:天)之间的函数关系如图所示,则该门市部这次化肥销售
活动(从开始进货到销售完毕)所用时间是_______________

三、解答题(第11,12题每题10分,第13题14分,第14题16分,共50分)
11.一次函数图象经过(-2,1)和(1,3)两点.
(1)求这个一次函数的解析式;

(2)当x=3时,求y的值.
12.如图是小明散步过程中所走的路程S(单位:m)与步行时间t(单位:min)的函数图象.
(1)小明在散步过程中停留了多少时间?

(2)求小明散步过程步行的平均速度.
2

(3)在哪一时间段,小明是匀速步行的?在这一时间段,他步行的速度是多少?
13.直线a:和直线b:相交于点A,分别与x轴相交于点B和点C,与y轴相交于点D和点E.
(1)求△ABC的面积;

(2)求四边形ADOC的面积

14.某景点的门票销售分两类:一类为散客门票,价格为40元/张;另一类为团体门票(一次性
购买门票10张及以上),每张门票价格在散客门票价格的基础上打8折.某班部分同学要去该景
点旅游,设参加旅游x人,购买门票需要y元.
(1)如果每人分别买门票,求y与x之间的函数关系式;

(2)如果买团体票,求y与x之间的函数关系式,并写出自变量的取值范围;
(3)请根据人数变化设计一种比较省钱的购票方案.

相关文档
最新文档