统计学习题 第七章 假设检验
统计学简述假设检验的基本步骤

统计学简述假设检验的基本步骤假设检验是统计学中常用的推断方法之一,用于对样本数据进行统计推断,并对关于总体或总体参数的假设提出统计推断。
以下是假设检验的基本步骤:1. 建立原假设和备择假设:首先明确要研究的问题,并建立相应的原假设(H0)和备择假设(H1)。
原假设通常表示没有效果、无差异或无关联等,备择假设则表示存在效果、有差异或有关联等。
2. 选择适当的检验统计量:根据所研究的问题和数据类型,选择适当的检验统计量。
例如,如果研究两个样本均值是否有差异,可以选择t检验统计量来进行假设检验。
3. 确定显著性水平:显著性水平(α)是限定拒绝原假设的临界值,通常常见的显著性水平有0.05和0.01。
选择合适的显著性水平取决于研究的目的和可接受的错误类型。
4. 计算或检索检验统计量的观察值:根据收集的样本数据,计算或检索出所选检验统计量的观察值。
5. 确定拒绝域:根据显著性水平和所选检验统计量的分布,确定拒绝原假设的临界值。
拒绝域是指当检验统计量的观察值落在该区域内时,拒绝原假设。
6. 进行统计决策:根据检验统计量的观察值和拒绝域的关系,进行统计决策。
如果检验统计量的观察值落在拒绝域内,则拒绝原假设,并接受备择假设。
如果观察值不在拒绝域内,则无法拒绝原假设。
7. 得出结论:根据统计决策,得出对原假设的结论。
结论应该明确表达对原假设的接受或拒绝,并解释统计推断的结果。
8. 进行敏感性分析(可选):对于接受备择假设的统计推断,可以进行敏感性分析,检查推断结果对数据变化的稳健性。
需要注意的是,以上是假设检验的一般步骤,具体的应用方法和检验统计量的选择会根据具体问题和数据类型进行调整和更改。
在进行假设检验时,应遵循统计学的原则和规范,并做好解释结果和结论的工作。
统计学中的假设检验方法

统计学中的假设检验方法统计学中的假设检验方法是一种常见的数据分析技术,用于验证关于总体特征的假设。
通过统计抽样和概率分布的理论基础,可以通过假设检验方法来评估样本数据对于某种假设的支持程度。
本文将介绍假设检验的基本原理、步骤以及一些常见的假设检验方法。
一、假设检验的原理假设检验是基于一个或多个关于总体特征的假设提出的。
一般来说,我们称原假设为零假设(H0),表示研究者对于总体特征没有明确的预期;对立假设(H1或Ha)则用来说明研究者认为存在显著的差异或关联关系。
假设检验的基本原理是通过对抽样分布的计算和统计量进行假设检验,从而得出是否拒绝零假设的结论。
根据样本数据的统计量计算出的P值,可以作为评估假设支持程度的标准。
一般来说,当P值小于显著性水平(一般为0.05)时,我们会拒绝零假设。
二、假设检验的步骤假设检验的步骤一般包括以下几个方面:1. 明确研究问题和假设:首先要明确研究者所关注的问题和假设,以及零假设和对立假设的表述。
2. 选择适当的检验方法:根据样本数据的类型和问题的特征,选择适当的假设检验方法。
常见的假设检验方法包括t检验、卡方检验、方差分析等。
3. 设置显著性水平:根据研究者对错误接受零假设和拒绝真实假设的容忍度,设置显著性水平。
一般来说,0.05是常用的显著性水平。
4. 计算统计量和P值:根据样本数据计算统计量,并通过统计分布计算对应的P值。
P值表示了在零假设成立的情况下,获得观察到的统计量或更极端结果的概率。
5. 做出结论:根据P值和显著性水平的比较,得出是否拒绝零假设的结论。
如果P值小于显著性水平,我们会拒绝零假设,认为样本数据支持对立假设;反之,我们无法拒绝零假设。
三、常见的假设检验方法1. 单样本t检验:单样本t检验用于比较一个样本的平均值是否显著不同于一个已知的总体平均值。
适用于连续型数据,例如身高、体重等。
2. 独立样本t检验:独立样本t检验用于比较两个独立样本的平均值是否显著不同。
第七章假设检验

第一节 第二节 检验 假设检验的一般问题 总体均值, 总体均值,比例和方差的假设
学习目标
1. 了解假设检验的基本思想 2. 掌握假设检验的步骤 3. 能对实际问题作假设检验
第一节 假设检验的一般问题
一,假设检验的概念 二,假设检验的步骤 三,假设检验中的小概率原理 四,假设检验中的两类错误 五,双侧检验和单侧检验
拒绝域 置信水平
α
1-α 接受域 H0值 样本统计量
临界值
6,右侧检验(显著性水平与拒绝域 ) 右侧检验( 抽样分布
置信水平 拒绝域 1-α 接受域 H0值 观察到的样本统计量 样本统计量
α
临界值
抽样分布
1-α 接受域 H0值
置信水平 拒绝域
α
临界值
样本统计量
第二节 总体均值,比例和方差的假设检验
1,原假设为真时拒绝原假设 , 2,会产生一系列后果 , 3,第一类错误的概率为α ,第一类错误的概率为α
被称为显著性水平 第二类错误(取伪错误) (二)第二类错误(取伪错误)
1,原假设为假时接受原假设 , 2,第二类错误的概率为β ,第二类错误的概率为β
(三)列表
H0: 无罪
假设检验就好 像一场审判过程
2,确定假设的步骤 例如问题为: 检验该企业生产的零件平均长度为4厘米 步骤: (1)从统计角度陈述问题 ( = 4) 1 (2)从统计角度提出相反的问题 ( ≠ 4) 必需互斥和穷尽 (3)提出原假设 ( = 4) (4)提出备择假设 ( ≠ 4) 有 ≠ 符号
3,双侧检验(例子) 双侧检验(例子)
1,原假设与备择假设是一个完整事件组. 2,通常先确定备择假设,再定原假设. 3,等号总放在原假设. 4,两者的选择本质上带有主观色彩. 5,假设检验的目的主要是收集证据拒绝原 假设.
医用统计学-总体均数的估计与假设检验练习题

医用统计学-总体均数的估计与假设检验练习题二、是非题1.即使变量偏离正态分布,只要样本含量相当大,样本均数也近似正态分布。
()3.两次t检验都是对两样本均数的差别做统计检验,一次P<0.01,另一次0.01<P<0.05,就表明前者两样本均数差别大,后者两样本均数差别小。
()4.对两样本均数的差别做统计检验,两组数据具有方差齐性,但与正态分布相比略有偏离,样本含量都较大,因此仍可做t检验。
()三、最佳选择题2、两样本均数比较的t检验,差别有统计学意义时,P越小,说明()。
A、两样本均数差别越大B、两总体均数差别越大C、越有理由认为两总体均数不同D、越有理由认为两样本均数不同E、越有理由认为两总体均数不同3、甲乙两人分别随机数字表抽得30个(各取两位数字)随机数字作为两个样本,求得X1和S12,X2和S22,则理论上()。
A、X1=X 2B、S12= S22C、作两样本均数的t检验,必然得出无差别的结论D、作两方差齐性的F检验,必然方差齐E、由甲、乙两样本均数之差求出的总体均数的95%可信区间,很可能包括04、在参数未知的正态总体中随机抽样,∣X-μ∣≥()的概率为5%。
A、1.96σB、1.96C、2.58D、t0.05,v SE、t0.05,vsx5、某地1992年随机抽取100名健康女性,算得其血清总蛋白含量的均数为74g/L,标准差为4g/L,则其95%的参考值范围()。
A、74±4×4B、74±1.96×4C、74±2.58×4D、74±2.58×4÷10E、74±1.96×4÷106、关于以0为中心的t分布,错误的是()。
A、t分布是一簇曲线B、t分布是单峰分布C、当ν∝时,t uD、t分布以0为中心,左右对称E、相同ν时,∣t∣越大,P越大7、在两样本均数比较的t检验中,无效假设是()A、两样本均数不等B、两样本均数相等C、两总体均数不等D、两总体均数相等E、两样本均数等于总体均数8、两样本均数比较时,分别取以下检验水准,以()所取第二类错误最小。
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第七章

写在前面:由于答案是一个个复制到word rh,比校耗时耗力,故下载收取5分・希望需要的朋友给予理解和支持!PS网上有一些没经我同总就将我的答案整合、转换成pdf,放在文库里的.虽然是免费的.但是窃取f我的劳动成果,希望有心的朋友支持我一下.下载我的原版答案。
第七章假设检验假设检验的基本談念习题1 样木容fin确定后,在一个假设检验中•给定显著水平为*设此第一类错的概率为。
•则必有()•(A)a+p=l; (B)a+p>l; (C)a+p<l; {D)a+p<2.解答: 应选(D)・当样木容Sn确定后.aQ不能同时都很小.即a变小时,p变大:而P变小时• a变大.理论上,自然希望犯这两类错误的概率都很小・但a*的大小关系不能确定.并且这两类错谋不能同时发生,即a=l且p=l不会发生.故选(D).习題2设总休X^(g,a2b其中02已知,着要检验W需川统计a U=X"-gOa/n,(1)若对敢边检验,统计假设为则拒绝区间为(2)若肌边假设为H0:g=g0,Hl:n<^0,则拒绝区间为. (给定显着性水平为4样木均值为X•,样木容fi 为n,且可记ul・a为标准正态分布的(l・a)分位数).解答:由敢侧检验及拒绝的概念即可御到.习題3 如何理解假设检验所作出的〃拒绝原假设H0"和“接受原假设Hcr的判断解答:拒绝H0是有说服力的,接受H0是没有充分说服力的•因为假设检验的方法是概率性质的反证法.作为反证法就是必然要〃推出矛盾r才能得出"拒绝HO"的结论.这是有说服力的・如果“推不出矛盾化这时只能说〃目前还找不到拒绝H0的充分理由W此“不拒绝H0”或〃接受HCr\这并没有肯定H0—定成立•由于样木观察值是随机的• W此拒绝H0.不童味着H0是假的•接受H0也不意味着H0是真的•都存在着错误决策的可能.当原假设H0为真,而作出r拒绝H0的判断,这类决策错谋称为第一类错谋.又叫弃真错洪•显然犯这类错渓的概率为前述的小槪率a:a=P(拒绝HOIHO为真);而原假设HO不真•却作出接受H0的判断•称这类错误为第二类错误,又称取伪错误.它发生的槪率P为P二P(接受HO|H0不真).习題4 犯第一类错误的概率a与犯第二类错谋的概率P之间有何关系一般來说.当样木容g固定时,若减少犯一类错误的槪率.则犯另一类错渓的概率往往会增大•要它们同时减少,只有増加样木容a n.在实际问题中,总是控制犯節一类错误的概率a而使犯第二类错谋的概率尽可能小・a的大小视具体实际问题而定.通常取a弓等tfL 习題5 在假设检验中•如何理解指定的显著水平a 解答:我们希望所作的检验犯两类错谋的槪率尽可能都小・但实际上这是不可能的•当样木容Sn固定时,一般地•减少犯其中一个错谋的槪帑就会增加犯另一个错误的概率• W此,通常的作法是只要求犯第一类错误的概率不大于指定的显著水平6因而根据小概率原理,最终结论为拒绝H0较为可靠,而最终判断力接受H0则不大可靠,«原因是不知道犯第二类错误的概率P处竟有多少.且a小,P就大.所以通常用JW 相容r 〃不拒绝HO"等词语來代替“接受H0".而"不拒绝HO"还包含有再进一步作抽样检验的意思.习题6 在假设检验中•如何确定原假设H0和备择假设H1 解答: 在实际中・通常把那些需要着重考虑的假设视为原假设H0.而与之对应的假设视为备择假设H1.(1)如果问题是要决定新方案是否比原方案好,往往将原方案取假设.而将新方案取为备择假设:(2)若提出一个假设・检验的目的仅仅是为r判断这个假设是否成立.这时直接取此假设为原假设H0即可. 习題7 假设检验的基木步腺有哪些解答:根据反证法的思想和小概率原理•可将假设检验的步骤归纳如下:(1)根据问题的要求.提出原理假设H0和备择假设HL (2)根据检验对紀构造检验统计gT(Xl,X2宀Xn),使肖H0为真时汀有确定的分布.(3)由给定的显著水平6直统计址T所服从的分布表,定出临界值K使P{ 1 T I >A)=a,或P(T>M)=P(T<X2)=a/2,从而求出H0的拒绝域:I T I >入或T>MJ<X2,(4)由样木观察值计算统i|・fi T的观察值t(5)作出判断,将t的值与临界值比较大小作出结论:当tW拒绝域g时,则拒绝H0.否则,不拒绝H0.即认为在显著水平a下,H0与实际悄况差界不显著.习題8 假设检验与区间估il•有何异同解答:假设检验与区间估ii•的提法虽不同,但解决问题的途径是相通的.参数0的a信水平为i・a的a信区间对应于双边假设检验在駄着性水平a下的接受域:参数e的a信水平为1-a的爪侧置信区对应于爪边假设检验在显著性水平a下的接受域.在总休的分布已知的条件下•假设检验与区间估计是从不同的角度回答同一个问題•假设检验是判别原假设H0是否成立,而区间估计解决的是“多少"(或范前者是宦性的.后者是定fi的.习题9 某天开工时,需检验自动包装工作是否正常•根据以往的经验,其装包的质a在正常情况下服从正态分布N(100,仲位:kg).现抽测了9包,其质S为:问这天包装机工作是否正常将这一问题化为假设检验问题.写出假设检验的步驟(am 解答: ⑴提出假设检验问题H0:尸100, Hl:"100;(2)选取检验统il S U:U=X; HO成立时,UW((U);(3)a=,ua/2=,拒绝域W={ 1 u 1 >};(4))f勺I u I =. hM 1 u I <ua/2=,故接受HO,认为包装机.I:作正常.设总休X^(pJbXl,X2/7Xn是取自X的样木.对于假设检验HO:|i=O'Hl:pMO,取显著水平a,拒绝域为W={ i U i >ua/2b其中u=nX-,求:H0成立时,犯第一类错误的槪率aO;(2)十HO不成立时(若"0),犯第二类错的概率p.(l)X^(H4)/X'MM(g,l/n),故nX'=uMM(O,l). a0=P{ I u I >ua/2 I g=0}=l-P{-ua/2<u<ua/2}=1-[<D(ua/2)-(D(-ua/2)]=l-[(l-a2)-a2]=a,即犯第一类错误的概率是显著水平a.(2)F H0不成立.即PMO时.犯第二类错误的概率为P=P{ I U I 30/2 I E(X)=n}=P{・uct/2<u<ua/2 I E(X)=A}=P{-ua/2<nX'<ua/2 I E(X)=|i}=P{-ua/2-nn<n(X'-n)<ua/2-nn I E(X)=n}=(I)(ua/2-niJi)-®(-ua/2-nn),注1 '^1 H T+8或时,PTO.由此可见.当实际均值H偏离原假设校大时,犯第二类错误的概率很小.检验效果较好.注2!勺卩工0但接近于0时.Pdw.Wa很小.故犯第一娄错误的概率很大.检验效果较差.单正态总体的假设检験习题1 已知某炼铁厂铁水含碳量服从正态分布N,・现在测定r 9炉铁水•其平均含碳虽为•如果估计方差没有变化.可否认为现在生产的饮水平均含碳fi仍为(a=解答^ 木问题是在a二下检验假设HO:ns由r a2=已知,所以可选取统计sU=X •在HO 成立的条件下• UW(OJ),且此检验问题的拒绝域为I U 1 = I X •这里 说明U 没有落在拒绝域中.从而接受H0.即认为现在生产之饮水平均含碳S 仍为•习題2要求一种元件平均便用寿命不斜低于1000小肘,生产者从一批这种元件中随机抽取25件,测御其寿命的 平均值为950小时.已知该种元件寿命服从标准差为0=100小时的正态分布,试在显著性水平(1=卜确定 这批元件是否合格设总体均值为卩川未知.即需检验假设H0:H >1000,H1:H <1000.解答:检验假设 HO :n>1000,Hl :n<1000.这是飛边假设检验问题.由于方差02二,故用U 检验法.对于显着性水平a 二,拒绝域为W={X"-1000a/n<-ua.査标准正态分布表•得 又知n=25X=950,故可计算出x'-1000a/n=950-1000100/25=,因为&故在a=下拒绝H0,认为这批元件不合格.习题3 打包机装糖入包,每包标准重为100kg.毎天开工后,要检验所装糖包的总体期望值是否合乎标准 (100kg)•某日开工后.测御9包糖重如下位:kg):打包机装糖的包得服从正态分布•问该天打包机1:作是否正常(a 二 解答: 木问题是在a 二下检验假设HO:p=100,Hl :"100・由于02未知.所以可选取统讣fi T=X--100S/n,在HO 成立的条件下.W(n-1K 且此检验问題的拒绝域为I T I = 1 X'-lOOS/n I >ta/2(n-l).I t 1 =<=(8),即t 未落在拒绝域中・从而接受H0,即可以认为该天打包工作正常.习題4机器包装食盐.假设毎袋盐的净重服从正态分布•规定毎俊标准含fi 为500g,标准差不斜趙过lOg •某天开 工后•随机抽取9袋.测得浄重如下仲位:g):497, 507, 510, 475, 515, 484, 488, 524, 491,I U I =<=ua/2・这里 t=x"-100s/ns :试在駄著性水平a二下检验假设:HO:n=500,Hl:n#500,解答:x'=499,ss:,n=9,t=(x~-|jiO)sn==,a=, (8)=.Will <(8b故接受HO,认为该天每袋平均质a可视为500g・习«5从清凉饮料自动售货机・随机抽样36杯,其平均含g为219(mL),标准差为/在a二的显I?性水平下・试检验假设S HO:A=|I O=222,H1:H<M=222・解答: 设总休X-W(g,a2bX代表自动售货机售出的清凉饮料含S・检验假设H0:n=n0=222(mL), Hl:n<222(mL),由asn=36,査表毎(36・1)弓拒绝域为W={t=x'-nOs/n<-ta(n-l).il•算t值并判断:t=36»习題6 某种寻线的电阻服从正态分布N(x・今从新生产的一批导线中抽取9根・测«电阻•得s=Q,对于a®能否认为这批导线电阴的标准差仍为解答:木问题是在a二下检验假设H0:a2=, Hl:o2匕选取统计fi x2=n-la2S2,在HO成立的条件下,X2^2(n-1),且此检验问題的拒绝域为X2>xa/22(n-l)或x2<xl-a/22(n-l).这里X2==x=,X(8)=,x(8)-落在拒绝域中,从而拒绝HO,即不能认为这批导线电阻的标准差仍为.习题7某厂生产的铜线,要求其折断力的方差不超过16N2.今从某日生产的铜丝中随机抽取容fi为9的样木•测得其折断力如下(飛位:N):289, 286, 285, 286, 285, 284, 285, 286, 298, 292设总体服从正态分布,问该日生产的铜线的折斷力的方差是否符合标准(a二解答: 检验问題为n=9, s2勺X2=8XS216勺am X(8)=・因X2<X(8)s故接受HO,可认为铜丝的折断力的方差不超过16N2.习题8过去经验示.商三学生完成标准考试的时间为一正态变其标准差为6min.若随机样木为20位学生, 其标准差为X,试在显着性水平a= b\检验假设:H0:a>6,Hl:a<6,解答:HO:a>6,Hl:a<6,a=,n-l=19,ssx(19)-拒绝域为W={x2<},i l•算X2值X2=(20-l)x^.因为>■故接受H0,认为a>6.习題9测定某种潯液中的水分・它的10个测定值给出*%,设测定值总体服从正态分布.02为总休方差.02未知,试在a二水平下检验假设:在a= b\拒绝域为W={(n-l)S2a02<xl-a2(9).查X2分布表得X(9)m讣算得(n-l)s2o02=(10-l)x\per)2\per)2^>,未落入拒绝域•故接受H0.取正态总体的假设检越习題1制造厂家宜称•线A的平均张力比线B至少强120N,为证实其说法.在同样情况下测试两种线各50条.线A的平均张力x-=867N,标准差为01=;而线B的平均张力为y・=778N,标准差为o2m在a二的显善性水平下,试检验此制造厂家的说法.解答:H0:nl4l2=120,Hl:pl 屮2<120・am=・W={u=x'-y~-120ol2nl+a22n2<-ua,拒绝域为由x'=867,y'=778,nl=n2=50, 012=2,o22=2,得□=867-778-120250+250^^^,因为&故拒绝H0,认为pl-rx2<120,即厂家的说法不对.习题2 欲知某新血清是否能抑制白血球过多症,选择已患该病的老畝9只•并将其中5只施予此种血清,另外4 只则不热•从实验开始.其存活年限表示如下假设两总体均服从方差相同的正态分布,试在显著性水平a二下检验此种血清是否有效解答^ 设pl- p2分别为老鼠接受和未接受血清的平均存活年限。
《统计学》课后练习题答案

A.透视表B.合并计算C.单变量求解D.分类汇总
5.小张收集了1957-2007年中国GDP的数据,如果要反映这50年我国生产发展的趋势,用什么图形最为合适?()(知识点3.5答案:D)
A.直方图B.散点图C.饼图D.折线图
37
பைடு நூலகம்33.6
130-140
12
10.9
103
93.6
19
17.3
140-150
5
4.5
108
98.2
7
6.4
150-160
2
1.8
110
100.0
2
1.8
合计
110
100
—
—
—
—
A.树苗高度低于110厘米的占总数的39.1%B.树苗高度低于110厘米的占总数的84.5%
C.树苗高度高于130厘米的有19棵D.树苗高度高于130厘米的有103棵
第二章数据的收集与整理
2.1数据的来源
2.2统计调查方案设计
2.3调查方法
2.4调查的组织方式:普查、抽样调查、重点调查、典型调查
2.5抽样的组织方式:简单随机抽样、系统抽样、分层抽样、整群抽样
2.6数据的审定:误差
2.7数据的分组
2.8.编制次数分布表:频数(次数)、频率
习题
一、单项选择题
1.小吴为写毕业论文去收集数据资料,()是次级数据。(知识点:2.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
习题假设检验答案
习题八假设检验该统计量服从N (0, 1)。
3. 要使犯两类错误的概率同时减小,只有 _增加样本容量4 . 设X 1,X 2,...,X n 和丫1,丫2,…,Y m 分别来自正态总体X 〜N(x , X )和 Y ~ N( Y , 丫),两总体相互独立。
1 )当X 和Y 已知时,检验假设H ° : X Y 所用的统计量为 U X 丫n 若X 和Y 未知,但X X Y(m 1)S2 (n 1)S2 1 ~~1m n立时,该统计量服从_ 6 .设X !,X 2,...,X nY~ N( Y , YX 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),在显著性水平 下,检验假设H °: 80; H 1: 80;的拒绝域为 ____ |T | t 2(n 1)— 在显著性水平 下,检验2 2XY 、填空题1 •设X i ,X 2,…,X n 是来自正态总体的样检验假设H 。
:0的t t -检验使用统计量t2•设X i ,X 2,..., X n 是来自正态总体的样本, 其中参数 X —s _ Vn 其中参数2未知,则验假设应用 U 检验法,检验的统计量是_U未知,2已知。
要检X;当H °成立时;当H 0成立时该统计量服从 N (0, 1) Y ,检验假设H 。
: x Y 所用的统计量;当H 0成立时该统计量服从t(m n 2) _______ 。
5•设X 「X 2,…,X n 是来自正态总体的样本,其中参数H 。
: 2o ,应用—2_检验法,检验的统计量是 —2未知,要检验假设 °耍;当 H 。
成2(n 1)_。
和Y,Y 2,…,Y m 分别来自正态总体X ~ N( ),两总体相互独立。
要检验假设H °: XS 2验的统计量为 F 工。
7•设总体X ~ N( , 2), , 2都是未知参数,把从X , X )和 Y ,应用F 检验法,检 检验假设H 0 :X; H i :的统计量为—U—,拒绝域为),, m(2)假设H°: 2 2;已:2 o;的拒绝域为—2 22(n 1)或2 22(n 1)_;8. 设总体X ~ N( , 2), , 2都是未知参数,把从X中抽取的容量为n的样本均值记为X,样本标准差记为S (修正),当2已知时,在显著性水平下,{U u }_。
统计学假设检验概念和方法
临界值
H0值
计算出旳样本统计量
样本统计量
右侧检验旳P 值
抽样分布
置信水平
拒绝域
1 -
P值
H0值
临界值 计算出旳样本统计量
利用 P 值进行检验
(决策准则)
1. 单侧检验
– 若p-值 ,不拒绝 H0 – 若p-值 < , 拒绝 H0
2. 双侧检验
– 若p-值 /2, 不拒绝 H0 – 若p-值 < /2, 拒绝 H0
零假设总是一种与总体参数有关旳问题,所以 总是用希腊字母表达。有关样本统计量如样本 均值或样本均值之差旳零假设是没有意义旳, 因为样本统计量是已知旳,当然能说出它们等 于几或是否相等
提出原假设和备择假设
什么是备择假设?(alternative hypothesis) 1. 与原假设对立旳假设,也称“研究假设” 2. 研究者想搜集证据予以支持旳假设总是有不
(单尾和双尾)
是
z 检验
Z X 0 n
总体均值旳检验
(检验统计量)
总体 是否已知 ?
大
z 检验
Z X 0
Sn
否
样本容量 n
小
用样本标 准差S替代
检验
t X 0 Sn
总体均值旳检验
(2 已知或2未知大样本)
1. 假定条件
– 总体服从正态分布 – 若不服从正态分布, 可用正态分布来近似
– 右侧检验时,P-值为曲线上方不小于等于
检验统计量部分旳面积
3. 被称为观察到旳(或实测旳)明显性水平
– H0 能被拒绝旳 旳最小值
双侧检验旳P 值
/ 2 拒绝
1/2 P 值
/ 2 拒绝
1/2 P 值
统计学期末复习选择练习题(分章节)——第七章
应用统计单项选择题-第07章-方差分析1.单选题:关于方差分析中的SSA和SSE,正确的说法是()。
A. SSA和SSE反映了随机因素带来的影响B. SSA和SSE反映了系统因素带来的影响C. SSA所表现的是组间差异既包括随机因素,也包括系统因素D. SSE所表现的是组内差异既包括随机因素,也包括系统因素解答: C2.单选题:利用“方差分析表”进行方差分析时,该表不包括的项目有()。
A. 方差来源B. 离差平方和及其分解C. 各离差平方和的自由度D. 原假设的统计判断解答: D3.单选题:下面不属于单因素方差分析中所需的平方和是()。
A. SSTB. SSAC. SSED. SSR解答: D4.单选题:与假设检验相比,方差分析方法可以使犯第I类错误的概率()。
A. 提高B. 降低C. 等于0D. 等于1解答: B5.单选题:方差分析中,错误说法是()。
A. 如果方差分析只针对一个因素进行,称为单因素方差分析B. 如果同时针对多个因素进行,称为多因素方差分C. 方差分析就是通过不同方差的比较,作出接受原假设或拒绝原假设的判断D. 方差分析不可以对若干平均值是否相等同时进行检验解答: D6.单选题:以下对方差分析叙述不正确的是()。
A. 方差分析可以对若干平均值是否相等同时进行检验B. 进行方差分析要求各水平下的样本容量相同C. 离差平方和能分解为组内方差与组间方差的和D. 方差分析方法在社会科学领域也大有用武之地解答: B7.单选题:下列式子错误的是()。
A. F=MSE/MSAB. MSA=SSA/(r-1)C. MSE=SSE/(n-r)D. SST=SSE+SSA解答: A8.单选题:方差分析所研究的是()。
A. 分类型自变量对分类型因变量的影响B. 分类型自变量对数值型自变量的影响C. 分类型因变量对数值型自变量的影响D. 分类型自变量对数值型因变量的影响解答: D9.单选题:若方差分析中,所提出的原假设是H0:μ1=μ2=…=μk,备择假设是()。
常见的统计学中的假设检验方法
常见的统计学中的假设检验方法介绍假设检验是统计学中常用的一种方法,用于对给定的样本数据进行推断和决策。
它通过对样本数据与之前建立的假设进行比较,来确定是否拒绝或接受假设。
以下是一些常见的统计学中的假设检验方法的简要介绍。
单样本t检验单样本t检验适用于对一个样本的均值是否与已知的总体均值有显著差异进行检验。
假设检验的步骤包括设置原假设和备择假设、计算样本均值和标准差、计算t值并与临界值进行比较以得出结论。
独立样本t检验独立样本t检验用于比较两个独立样本的均值是否有差异。
这个方法适用于当我们有两个独立的样本,想要确定它们的均值是否来自于同一个总体。
假设检验的步骤与单样本t检验类似。
配对样本t检验配对样本t检验适用于比较同一组被试在两个不同条件下的均值是否有差异。
这个方法适用于当我们有同一组被试在两个不同条件下的成对观测数据时,想要确定这两个条件是否对其均值产生了显著影响。
假设检验的步骤与单样本t检验类似。
卡方检验卡方检验用于比较观察到的频数与期望频数之间的差异是否显著。
这个方法适用于分类数据的分析,可以确定观察到的频数是否符合预期的分布。
假设检验的步骤包括计算卡方统计量、确定自由度,并与临界值进行比较以得出结论。
方差分析方差分析用于比较两个或更多个样本均值之间的差异是否显著。
这个方法适用于当我们有多个样本需要进行比较时,可以确定它们的均值是否存在显著差异。
假设检验的步骤包括设置原假设和备择假设、计算组内和组间均方、计算F统计量并与临界值进行比较以得出结论。
总结以上是常见的统计学中的几种假设检验方法。
每种方法都有其适用的场景和步骤,正确理解和运用这些方法可以帮助我们进行数据分析和推断。
在实际应用中,我们应根据具体问题和数据的特点选择合适的假设检验方法,并进行可靠的统计推断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章假设检验第一节二项分布二项分布的数学形式·二项分布的性质第二节统计检验的基本步骤建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法第四节中心极限定理抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理第五节总体均值和成数的单样本检验σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验)·关于总体成数的检验一、填空1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于(正态)分布。
2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( 显著性水平),它决定了否定域的大小。
3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(大),原假设为真而被拒绝的概率越(小)。
4.二项分布的正态近似法,即以将B(x;n,p)视为N( np ,npq) 查表进行计算。
二、单项选择1.关于学生t分布,下面哪种说法不正确( B )。
A要求随机样本 B 适用于任何形式的总体分布C 可用于小样本D 可用样本标准差S代替总体标准差2.二项分布的数学期望为( C )。
A n(1-n)pB np(1- p)C npD n(1- p)。
3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为( D )。
A大于0.5 B -0.5 C 1 D 0.5。
4.假设检验的基本思想可用( C )来解释。
A中心极限定理 B 置信区间C 小概率事件D 正态分布的性质5.成数与成数方差的关系是(D)。
A成数的数值越接近0,成数的方差越大B 成数的数值越接近0.3,成数的方差越大C 成数的数值越接近1,成数的方差越大D 成数的数值越接近0.5,成数的方差越大6.在统计检验中,那些不大可能的结果称为( D )。
如果这类结果真的发生了, 我们将否定假设。
A 检验统计量B 显著性水平C 零假设D 否定域7.对于大样本双侧检验,如果根据显著性水平查正态分布表得Z α/2=1.96,则当零假设被否定时,犯第一类错误的概率是( C )。
A 20%B 10%C 5%D .1%8.关于二项分布,下面不正确的描述是( A )。
A 它为连续型随机变量的分布;B 它的图形当p =0.5时是对称的,当p ≠ 0.5时是非对称的,而当n 愈大时非对称性愈不明显;C 二项分布的数学期望)(X E =μ=np ,变异数)(XD =2σ=npq ;D 二项分布只受成功事件概率p 和试验次数n 两个参数变化的影响。
三、多项选择1.关于正态分布的性质,下面正确的说法是( AB )。
A 正态曲线以μ=x 呈钟形对称,其均值、中位数和众数三者必定相等。
B 对于固定的σ值,不同均值μ的正态曲线的外形完全相同,差别只在于曲线在横轴方向上整体平移了一个位置。
C 对于固定的μ值,不同均值σ的正态曲线的外形完全相同,差别只在于曲线在横轴方向上整体平移了一个位置。
D 对于固定的μ值, σ值越大,正态曲线越陡峭。
2.下列概率论定理中,两个最为重要,也是统计推断的数理基础的是( CD )A 加法定理B 乘法定理C 大数定律D 中心极限定理E 贝叶斯定理。
3.统计推断的具体内容很广泛,归纳起来,主要是( BE )问题。
A 抽样分布B 参数估计C 方差分析D 回归分析E 假设检验4.下列关于假设检验的陈述正确的是( ACDE )。
A 假设检验实质上是对原假设进行检验;B 假设检验实质上是对备择假设进行检验;C 当拒绝原假设时,只能认为肯定它的根据尚不充分,而不是认为它绝对错误;D 假设检验并不是根据样本结果简单地或直接地判断原假设和备择假设哪一个更有可能正确;E 当接受原假设时,只能认为否定它的根据尚不充分,而不是认为它绝对正确5.选择一个合适的检验统计量是假设检验中必不可少的一个步骤,其中“合适”实质上是指(ACE )A选择的检验统计量应与原假设有关;B 选择的检验统计量应与备择假设有关;C 在原假设为真时,所选的检验统计量的抽样分布已知;D 在备择假设为真时,所选的检验统计量的抽样分布已知;E 所选的检验统计量的抽样分布已知,不含未知参数。
6.关于t检验,下面正确的说法是(BD )。
A t检验实际是解决大样本均值的检验问题;B t检验实际是解决小样本均值的检验问题;C t检验适用于任何总体分布;D t检验对正态总体适用;E t检验要求总体的σ已知。
四、名词解释1.零假设:概率分布的具体形式是由假设决定的,假设肯定不止一个。
在统计检验中,通常把被检验的那个假设称为零假设(或称原假设,用符号H0表示),并用它和其他备择假设(用符号H1表示)相对比。
2.第一类错误:零假设Ho实际上是正确的,却被否定了。
3.第二类错误:零假设Ho实际上是错误的,却没有被否定。
4.显著性水平:能允许犯第一类错误的概率叫做检验的显著性水平,它决定了否定域的大小。
5.总体参数:6.检验统计量:检验统计量是关于样本的一个综合指标,但与参数估计中讨论的统计量有所不同,它不用作估测,而只用作检验。
7.中心极限定理:σ的如果从一个具有均值μ和方差2量为n 的随机样本,那么当n 变得很大时,样本均值的抽样分布接近正态,并具有均σ/n 。
值μ和方差2五、判断题1.在同样的显著性水平的条件下,单侧检验较之双侧检验,可以在犯第一类错误的危险不变的情况下,减少犯第二类错误的危险。
(√)2.统计检验可以帮助我们否定一个假设,却不能帮助我们肯定一个假设。
(√)3.检验的显著性水平(用α表示)被定义为能允许犯第一类错误的概率,它决定了否定域的大小。
(√)4.第一类错误是,零假设H 0实际上是错的,却没有被否定。
第二类错误则是,零假设H 0实际上是正确的,却被否定了。
( × )5.每当方向能被预测的时候,在同样显著性水平的条件下,双侧检验比单侧检验更合 适。
( × )六、计算题1.根据统计,北京市初婚年龄服从正态分布,其均值为25岁,标准差为5岁,问25岁到30岁之间结婚的人;其百分数为多少? 【84.13%】2.共有5000个同龄人参加人寿保险,设死亡率为0.1%。
参加保险的人在年初应交纳保险费10元,死亡时家属可领2000元。
求保险公司一年内从这些保险的人中,获利不少于30000元的概率。
【98.75%】3.为了验证统计报表的正确性,作了共50人的抽样调查,人均收入的结果有:,871元=X 元,21=S 问能否证明统计报表中人均收入μ=880元是正确的(显著性水平α=0.05)。
【不能,因为Z=-3.03<-1.96,所以否定原假设μ=880】4.某单位统计报表显示,人均月收入为3030元,为了验证该统计报表的正确性,作了共100人的抽样调查,样本人均月收入为3060元,标准差为80元,问能否说明该统计报表显示的人均收入的数字有误(取显著性水平α=0.05)。
【可以,因为Z=3.75〉1.96,所以可以拒绝原假设μ=3030,即可以认为统计报表有误】5.已知初婚年龄服从正态分布,根据9个人的抽样调查有:5.23=X (岁),3=S (岁)。
问是否可以认为该地区平均初婚年龄已超过20岁(α=0.05)?【可以,因为t=3.2998〉2.821,所以可以拒绝原假设μ=20,可以认为平均初婚年龄已超过20岁】6.某地区成人中吸烟者占75%,经过戒烟宣传之后,进行了抽样调查,发现了100名被调查的成人中,有63人是吸烟者,问戒烟宣传是否收到了成效?(α=0.05)【1H 0.75,H 0.75︒=<。
=0.05,Z 1.65αα=。
Z ==-2.77<-1.65.所以拒绝原假设,接受备择假设。
】7.据原有资料,某城市居民彩电的拥有率为60%,现根据最新100户的抽样调查,彩电的拥有率为62%。
问能否认为彩电拥有率有所增长?(α=0.05)【不能,因为Z=0.408<1.65,所以接受原假设p=60%,不能认为彩电拥有率有所增长】8.一个社会心理学家试图通过实验来表明采取某种手段有助于增加群体的凝聚力。
但有16个小组,将它们配对成一个实验组和控制组,实验组和控制组各有8个小组,问怎样用二项分布去检验无效力的零假设,列出检验所需的零假设,计算抽样分布,用显著水平0.05,请指出否定域。
【在社会研究的实验法中,此为“双组实验设计”,其步骤是:1)用匹配或随机指派的方法将实验对象一半分到控制组一半分到实验组;2)对实验组实施实验刺激但不对控制组实施这种刺激;3)然后同时对控制组和实验组进行测量,即后测;4)在比较和分析两个组后测结果之间的差别,得出实验刺激的影响。
由此,我们先将16个组两两匹配,得到8个配对组(要使每个配对组在除实验变量之外的其他方面尽量相似)。
然后在每个配对组中任取一组安排于实验组,另一组安排于控制组。
接着,在4-8年的时间内,让分到实验组的8组人接受某种手段,如共同游戏,而控制组的8组人则没有这样做。
而后对每个配对组分别进行后度测量,并用“+”号表示实验组比控制组好的那些配对组,用“-”表示实验组比控制组差的那些配对组。
除非度量方法很粗燥,每配对组应该都能判断出差异。
这样便可以用二项分布做实验无效的检验了。
0H :p=0.5,1H :p>0.5,选用0.1的显著性水平。
()()78P P 0.03910.1+=<,()()()678P P P 0.1836>0.1++=,所以否定域由7个“+”和8个“+”组成,即对每配对组进行后测度量,如出现7个“+”和或8个“+”时,在0.1的显著性水平上,我们将否定零假设,说明实验有效。
否则就不能否定零假设,也就是说实验无效】9.孟德尔遗传定律表明:在纯种红花豌豆与白花豌豆杂交后所生的,子二代豌豆中,红花对白花之比为3:1。
某次种植试验的结果为:红花豌豆352株,白花豌豆96株。
试在α=0.05的显著性水平上,检定孟德尔定律。
【3:p 4H ︒=,13:p 4H ≠。
20.05,Z 1.96αα==,3523Z -==1.75<1.96,所以保留原假设】10.一个样本容量为50的样本,具有均值10.6和标准差2.2,要求:1)请用单侧检验,显著性水平0.05检验总体均值为10.0的假设;【1.65<1.928,所以否定原假设,接受备择假设均值为10.6】2)请用双侧检验,显著性水平0.05检验总体均值为10.0的假设;【1.928<1.96,所以不能否定原假设,仍接受总体均值为10.0】3)请比较上述单、双侧检验犯第一类错误和犯第二类错误的情况。