八年级数学上册1.5可化为一元一次方程的分式方程第2课时分式方程的应用作业 ppt课件1 湘教版

合集下载

青岛版八年级上册数学《可化为一元一次方程的分式方程》PPT教学课件(第1课时)

青岛版八年级上册数学《可化为一元一次方程的分式方程》PPT教学课件(第1课时)
会产生增根.
可化为一元一次方程的分式方程 第2课时
甲、乙两人做某种机器零件,已知甲每小时比乙多 做6个,甲做90个零件所用的时间和乙做60个零件所用的 时间相等,求甲、乙每小时各做多少个零件?
请审题分 析题意设元
解:设甲每小时做x个零件,则乙每小时做(x-6)个零件,
依题意得:
90 60 , x x6
这个方程有何特点? 特点:方程两边的代数式是分式. 或者说未知数在分母上的方程.
分式方程的概念 分母中含有未知数的方程叫做分式方程.
分式方程的特点: (1)含有分式 ; (2)分母中含有未知数; (3)是等式.
判断下列说法是否正确:
(1) 2x 3 5是分式方程 2
(2)
3 4 是分式方程
44x x 3
(3) x2 1是分式方程 x
(4) 1 1 是分式方程 x1 y1
(× ) (√ ) (× ) (√ )
分式方程的解法
80 60 x3 x3
分式方程
两边都乘以最简公分母 (x+3)(x-3) 得方程
两边乘以 最简公分

80(x 3) 60(x 3).
解这个整式方程得 x 21.
验x=5是所列分式方程的根,故x=5.
答案:5
2.(江西·中考)解方程:
x x
2 2
4 x2
4
1
【解析】方程两边同乘以 x2 4 ,得 (x 2)2 4 x2 4
解得x=3
检验:x=3时,x2 4 ≠0 所以,x=3是原分式方程的解.
3.当m为何值时,去分母解方程
x
2
2
mx x2 4
列分式方程解应用题的一般步骤
1.审:分析题意,找出等量关系.

16.3 可化为一元一次方程的分式方程(第2课时)(课件)八年级数学下册(华东师大版)

16.3 可化为一元一次方程的分式方程(第2课时)(课件)八年级数学下册(华东师大版)

30 x3
2 3
D. 30 30 2
x3 x 3
当堂检测
2.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇; 若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的
__b __a__倍.
ba
当堂检测
3.某工厂准备加工600个零件,在加工了100个零件后,采取了新
技术,使每天加工的效率是原来的2倍,结果共用了7天完成了任 务,求该厂原来每天加工多少个零件?
解得x=20. 经检验,x=20是原方程的根,且符合题意. 答:他骑“共享助力车”从家到单位上班需要20 min.
当堂检测
6、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元 买了一种文学书.科普书的价格比文学书高出一半,因此他们所买的科普书比所 买的文学书少1本,这种科普书和这种文学书的价格各是多少?
②第一年出租的房屋数=第二年出租的房屋数 ⑵根据这一情境你能提出哪些问题?
①每年有多少间房屋出租? ②这两年每间房屋的租金各是多少?
讲授新课
①每年有多少间房屋出租?
解: ① 设每年有x 间房屋出租.
根据题意,得
102000 96000 500
x
x
解得 x=12
经检验: x=12 是原方程的解,也符合提意.
解:设甲工程队单独完成任务需x天, 则乙工程队单独完成任务需(x+2)天, 依题意得
2 3 1 x x2
化为整式方程得x2-3x-4=0 解得x=-1或x=4.
讲授新课
检验:当x=4和x=-1时,x(x+2)≠0,x=4和 x=-1都是原分式方程的解. 但x=-1不符合实际意义,故x=-1舍去; ∴乙单独完成任务需要x+2=6(天). 答:甲、乙工程队单独完成任务分别需要 4天、6天.

1.5 可化为一元一次方程的分式方程 第2课时 分式方程的应用

1.5 可化为一元一次方程的分式方程 第2课时 分式方程的应用

1.5 可化为一元一次方程的分式方程第2课时分式方程的应用【学习目标】1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用;2.通过用分式方程解决实际问题,发展分析和解决问题的能力【重点】能将实际问题中的等量关系用分式方程表示,并能正确地解出分式方程【难点】根据题意列出分式方程一、自主学习学一学:阅读教材P57-58的内容填一填:1.行程问题:路程=_______________________________顺风(水)速度=静风(水)速度风(水)速;逆风(水)速度=静风(水)速度风(水)速2.工程问题:工作量=_______________________________议一议:解分式方程应该注意什么?归纳总结:用分式方程解决实际问题的步骤:做一做:为了改善生态环境,防止水土流失,某村计划在荒坡上种960棵树,由于青年志愿者的支援,每日比原计划多种1/3,结果提前4天完成任务,原计划每天种多少棵数?二、合作探究1.飞机沿直线顺风飞行450千米后,按原来的路线飞回原处(风向不变),一共用去5.5小时,如果飞机在无风时每小时飞行165千米,那么风速是多少?(只要求列方程)分析:设,可列表分析:顺风逆风速度路程时间等量关系方程2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.(1)这一问题中的等量关系是(2)水费= ×,所以用水量= /(3)列方程解答:3.为了方便广大游客到昆明参加游览“世博会”,铁道部临时增开了一列南宁——昆明的直达快车,已知南宁——昆明两地相距828km,一列普通列车与一列直达快车都由南宁开往昆明,直达快车的平均速度是普通快车平均速度的1.5倍,直达快车比普通快车晚出发2h,比普通快车早4h到达昆明,求两车的平均速度?四、拓展提升4.小红妈:“售货员,请帮我买些梨.”售货员:“您上次买的那种梨卖完了,建议这次您买些苹果,价格比梨贵一点,不过营养价值更高.”小红妈:“好,你们很讲信用,这次我照上次一样,也花30元钱.”对照前后两次的电脑小票,小红妈发现:每千克苹果的价是梨的1.5倍,苹果的重量比梨轻2.5千克.试根据上面对话和小红妈的发现,分别求出梨和苹果的单价.。

分式方程的ppt课件

分式方程的ppt课件
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
问题2
你能试着解分式方程
90 30+v
=
60 30-v
吗?
问题3 这些解法有什么共同特点?
总结:
这些解法的共同特点是先去分母,将分式方程转化
为整式方程,再解整式方程.
思考:
(1)如何把分式方程转化为整式方程呢? (2)怎样去分母? (3)在方程两边乘以什么样的式子才能把每一个分母
解:移项、合并,得 50x =sv.
解得
x=
sv 50
.
检验:由于v,s 都是正数,当x
=
sv
时x(x+v)≠0,
所以,x
=
sv 50
50 是原分式方程的解,且符合题意.
sv
答:提速前列车的平均速度为 50 km/h.
探究列分式方程解实际问题的步骤
上面例题中,出现了用一些字母表示已知数据的形 式,这在分析问题寻找规律时经常出现.例2中列出的 方程是以x 为未知数的分式方程,其中v,s是已知常数,
思考: (1)这个问题中的已知量有哪些?未知量是什么? (2)你想怎样解决这个问题?关键是什么?
表达问题时,用字母不仅可以表示未知数(量), 也可以表示已知数(量).
探究列分式方程解实际问题的步骤
例2 某次列车平均提速v km/h.用相同的时间, 列车提速前行驶s km,提速后比提速前多行驶50 km, 提速前列车的平均速度为多少?
八年级 上册
15.3 分式方程 (第2课时)
课件说明
• 本课是在学生已经学习了分式方程的概念并能够 解简单的分式方程的基础上,进一步巩固可化为 一元一次方程的分式方程的解法,归纳出解分式 方程的一般步骤,能够列分式方程解决简单的实 际问题.

分式方程应用题ppt课件

分式方程应用题ppt课件
问乙队单独完成这项工程需要多少天?
解:设乙队单独完成这项工程需要x天
1 20+( 1 + 1 ) 24=1
60
60 x
解得:x 90
经检验:x 90是原方程的解
x+3 原计划
由题意可得:
1800 1.51800 1x8003
实际上
x3
x
18x00
x
1800 1800
18
同步练习
2.某厂计划生产1800吨纯净水支援灾区人民,为尽快把纯 净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍, 结果比原计划提前3天完成了生产任务.
2.求原计划每天生产多少吨纯净水?
分式方程的应用
宜宾市高县胜天中学
李诗富
1
教学目标:
1、了解用分式方程的数学模型反映现 实情境中的实际问题.
2、能用分式方程来解决现实情境中的 问题
重点:理解“实际问题”——分式方程模 型的过程。
难点:实际问题中的等量关系的建立。
关键:分析实际问题中的量与量之间的关
系,正确列出分式方程。
2
回顾与思考
解:设原计划每天铺设管道x米, 则实际上每天铺设( 1+10%)x米
550 5 550
x
(1 10%) x
24
例4.工作总量看成单位 1 的类型
预备知识
1.一项工程,甲工程队单独完成需要10天,则每天完成多少?
每天完成整个工程的 1 ,即甲队的工效为 1
10
10
2.一项工程,甲工程队单独完成需要a天,则每天完成多少?
分析:设骑车同学速度为v千米/时
(提示:20分= 1 小时) 3

可化为一元一次方程的分式方程(讲课)

可化为一元一次方程的分式方程(讲课)

PART 02
分式方程的概念和形式
REPORTING
WENKU DESIGN
定义与分类
定义
分式方程是含有分式的方程。
分类
按照分式方程的分母,可以分为有理分式方程和无理分式方程。
分式方程的解法概述
去分母
将分式方程转化为整式方程, 是解分式方程的基本步骤。
转化为一元一次方程
通过去分母,将分式方程转化 为简单的一元一次方程,便于 求解。
表示和求解。
供需关系问题
在市场经济中,分式方程可以用 来描述供需关系,例如需求量等 于价格乘以需求量,可以通过分
式方程来表示和求解。
日常生活中的应用
01
购物问题
在日常生活中,我们经常遇到购物打折、优惠等问题,可以通过建立分
式方程来计算最优的购买方案。
02
旅游行程安排
在旅游行程安排中,分式方程可以用来描述时间、路程和速度之间的关
WENKU DESIGN
物理问题中的应用
速度、时间和距离问题
分式方程在物理中常用于描述速度、时间和距离 过分式方程来表示和求解。
力学问题
在力学中,分式方程可以用来描述力的作用关系,例如在 斜面上物体的运动,可以通过建立分式方程来求解物体的 加速度和斜面的角度。
01
变种一
系数变化型
02
变种二
未知数个数增加型
03
变种三
条件限制型
04
变种四
多步骤运算型
THANKS
感谢观看
REPORTING
https://
电学问题
在电学中,分式方程可以用来描述电流、电压和电阻之间 的关系,例如欧姆定律可以用分式方程来表示和求解。

可化为一元一次方程的分式方程(讲课)


分式方程的解也叫作分式方程的根.
上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母.
怎样解分式方程
如 何 解 这 个方 程 ?
通过前面回顾一元一次方程的解法,若有分母,应先去分母, 所以此题可通过去分母,将分式方程转化为一元一次方程来求解.
4、检验
5、下结论
方程两边都乘以最简公分母
解得x=c
把x=c代入最简公分母检验
1、找最简公分母
各分母的最简公分母
当堂检测
课后延伸:
3.
4.
5.
【重点难点】:
使学生领会“ 转化”的思想方法,认识到解分式方程的关键在于将它转化为整式方程来解. 培养学生自主探究的意识,提高学生观察能力和分析能力。
学习目标
辨析:判断下列哪些是整式方程, 哪些是分式,剩下的是什么呢?
(1)
(2)
(3)
(4)
(5)
分析:根据定义可得:(1)、(2)是整式方程,(3)是分式,(4)(5)是这一节课我们要学习的分式方程.
分析:去分母,将分式方程转化为整式方程,方程的每一部分都要乘最简公分母.
解:方程两边同乘 得
化简得 4x = 4
x = 1 不是原分式方程的解,原分式方程无解
解得 x = 1
检验:当 x =1时
小结
本节课的重点就是解可化为一元一次方程的分式方程的解法,其步骤为:
2、去分母
3、解整式方程
下结论.
解分式方程的步骤
在将分式方程变形为整式方程时,方程两边同乘以一个含未知数的整式,并约去了分母,有时可能产生不适合原分式方程的检验.

八年级数学上11.5可化为一元一次方程的分式方程及其应


实际生活中的应用
金融问题
分式方程在金融领域也有广泛的应用。例如,复利的计算、 投资回报率的计算等可以用分式方程来表示和解决。
交通问题
在交通管理中,分式方程可以用于描述车辆行驶的速度和时 间关系,以及道路交通流量等问题。例如,在高速公路上, 车辆的平均速度和行驶时间的关系可以用分式方程来表示和 计算。
根据方程定义取舍
有些分式方程在特定条件下无解 或无穷多解,需要根据方程的定 义和条件进行取舍。
解的适用范围
注意变量的取值范围
在分式方程中,变量的取值范围可能 会影响解的存在性和唯一性,因此需 要注意变量的取值范围。
注意方程的定义域
分式方程可能只在特定的定义域内有 解,因此需要注意方程的定义域,确 保解的适用范围。
转化原理和方法
1 2
消除分母
通过通分或消去分母,将分式方程转化为整式方 程。
转化为一元一次方程
将转化后的整式方程整理为一元一次方程的形式。
3
求解一元一次方程
解出转化后的一元一次方程的解。
转化过程和步骤
01
02
03
04
确定最简公分母
找到分式方程中各分母的最小 公倍数,作为最简公分母。
通分
将方程两边的分式通分,使分 式方程转化为整式方程。
移项与合并同类项
将整式方程中的项移至等号同 一边,并合并同类项。
化简整理
将整式方程化简整理为标准的 一元一次方程形式。
转化后的解法

01
02
03
直接求解法
对于简单的分式方程,可 以直接求解得到解。
换元法
对于复杂的分式方程,可 以通过换元法简化计算过 程。
图解法

《分式方程》分式PPT

B. 2(x–8)+5x=8
C. 2(x–8)–5x=16(x–7)
D. 2(x–8)–5x=8
解析:原方程可以变形为
x 8
5x

8,两边都乘以2(x–7)得
x 7 2( x 7)
2(x–8)+5x=8×2(x–7),即2(x–8)+5x=16(x–7).
巩固练习
方法点拨
易错易混点拨:
x 2 3 x 2
x 5 3 x 5
x 8
1 1
1



3x 8
x 11
1
1


3x 3
24

1 1
1
1 1
1







3x 1
x 11
3 x 1 8
解得x=–3,
经检验:x=–3是原方程的根.
课堂小结
分式方程Βιβλιοθήκη 巩固练习下列式子中,属于分式方程的是 (2)(3) ,属于整式方
程的是 (1) (填序号).
x x-1
2
4
(1) +
=1; (2) =

2
3
2
1-x 1-x
1
2
1
(3) + 2 =1; (4) >5.
3x x
x
探究新知
知识点 2
问题1:
解分式方程
90
60
=
你能试着解分式方程 30+v 30-v
吗?
3.了解解分式方程根需要进行检验的原因.
2.会用去分母的方法解可化为一元一次方程的简单的分式方程,体会化归思

1.5.1可化为一元一次方程的分式方程解法

解得
x =-2
检验:当 x=-2 时,最简公分母x-1的值为 -2-2=-3≠0 因此
x=-2 是原方程的一个根
1 x 1 1 x 1 1 x
原方程变形为
1 x 1 x 1 x 1
1 x x 1
两边同乘以x-1,得
解得:
x 1
检验将x=1代入公分母x-1
x 1 1 1 0
探究分式方程的增根原因
在将分式方程变形为整式方程时,方程 两边同乘以一个含未知数的整式,并约去了 分母,有时可能产生不适合原分式方程的解 (或根),这种根通常称为增根. 因此,在解分式方程时必须进行检验.
解分式方程有可能产生增根,因此解 分式方程必须检验.
说一说
解可化为一元一次方程的分式方程的基 本步骤有哪些?
解得
左边 =
检验:把x=-3代入原方程,得
5 - 3 =0 = 右边 -3 - 2 - 3 因此x=-3是原方程的解.
分式方程的解也叫作分式方程的根.
1 = 4 . 例2 解方程 :x - 2 x2 - 4

方程两边同乘最简公分母(x+2)(x-2), 得 解得 x+2=4. x=2.
检验:把x=2代入原方程,方程两边的分式的 分母都为0,这样的分式没有意义. 因此,x=2不是原分式方程的根,从而原 分式方程无解.
x2 (3) 1是分式方程 x
(否 (是
(否
) )

1 1 (4) 是分式方程 x 1 y 1
(是

议一议
30 = 1 的分母中含有 分式方程 25 x 1.5 x 6 未知数,我们该如何来求解呢?
25 - 30 = 1 x 1.5 x 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档