等差等比数列专项练习题(精较版)
高考数学《等差与等比数列》练习题

等差与等比数列一、单项选择题1.已知等差数列{}a n 的前n 项和为S n ,2S 8=S 7+S 10,则S 21=( )A .21B .11C .-21D .02.在等比数列{}a n 中,若a 2 019=4,a 2 021=9,则a 2 020=( )A .6B .-6C .±6D .1323.在等差数列{}a n 中,a 1+a 8+a 6=15,则此等差数列的前9项之和为( )A .5B .27C .45D .904.等比数列{}a n 的公比为q ,前n 项和为S n ,设甲:q >0,乙:{}S n 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件5.已知等差数列{}a n 的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )A .28B .29C .30D .316.设{}a n 为等比数列,{}b n 为等差数列,且S n 为数列{}b n 的前n 项和,若a 2=1,a 10=16,且a 6=b 6,则S 11=( )A .20B .30C .44D .887.已知等差数列{}a n 的前n 项和为S n ,等差数列{}b n 的前n 项和为T n .若S n T n =2n -1n +1 ,则a 5b 5=( ) A .1911 B .1710 C .32 D .758.在等差数列{}a n 中,已知a 5>0,a 3+a 8<0,则使数列{}a n 的前n 项和S n <0成立时n 的最小值为( )A .6B .7C .9D .10二、多项选择题9.已知等比数列{}a n 的公比为q ,且a 5=1,则下列选项正确的是( )A .a 3+a 7≥2B .a 4+a 6≥2C .a 7-2a 6+1≥0D .a 3-2a 4-1≥010.已知无穷等差数列{}a n 的公差d ∈N *,且5,17,23是{}a n 中的三项,则下列结论正确的是( )A .d 的最大值是6B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{}a n 中的项11.已知数列{}a n 的前n 项和为S n ,则下列说法正确的是( )A .若S n =n 2-1,则{}a n 是等差数列B .若S n =2n -1,则{}a n 是等比数列C .若{}a n 是等差数列,则S 99=99a 50D .若{}a n 是等比数列,且a 1>0,q >0,则S 2n -1·S 2n +1>S 22n12.已知数列{}a n 是等比数列,下列结论正确的为( )A .若a 1a 2>0,则a 2a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若a 2>a 1>0,则a 1+a 3>2a 2D .若a 1a 2<0,则()a 2-a 1 ()a 2-a 3 <0三、填空题13.设等差数列{}a n 的前n 项和为S n ,若S 7=28,则a 2+a 3+a 7的值为________.14.已知等比数列{}a n 的前n 项和为S n ,a 3=7,S 3=21,则公比q =________.15.已知公差不为0的等差数列{a n }的前n 项和为S n ,若a 3,a 5,a 10成等比数列,则S 7a 7=________. 16.已知等差数列{}a n 的公差为d ()d >1 ,前n 项和为S n ,若a 7=a 5+3a 1,且a 2是S 4-1和a 1-1的等比中项,则d =________,S n =________.。
数列等差等比数列问题综合强化训练专题练习(三)含答案人教版高中数学真题技巧总结提升

高中数学专题复习
《数列等差等比数列综合》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.在等差数列{}n a 中,若4612a a +=,n S 是数列的{}n a 的前n 项和,则9S 的值为( )
A .48
B .54
C .60
D .66(汇编重庆理)
2.设{}n a 是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是
A 、2X Z Y +=
B 、()()Y Y X Z Z X -=-
C 、2Y XZ =
D 、()()Y Y X X Z X -=-
【分析】取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算,只有选项D 满足。
【方法技巧】对于含有较多字母的客观题,可以取满足条件的数字代替字母,代入验证,若能排除3个选项,剩下唯一正确的就一定正确;若不能完全排除,可以取其他数字验证继续排除.本题也可以首项、公比即项数n 表示代入验证得结论.
3.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )
(A ) 15 (B) 16 (C) 49 (D )64(汇。
等差数列与等比数列的类比练习题(带答案)(可编辑修改word版)

(b 1b n)nn + 1 ,则有2n3等差数列与等比数列的类比一、选择题(本大题共 1 小题,共 5.0 分){a } S S =n (a 1 + a n ) 1. 记等差数列 n 的前 n 项和为 n ,利用倒序求和的方法得 n 2 ;类似地,记等比数列{b n }的前 n 项积为T n ,且b n> 0(n ∈ N *),类比等差数列求和的方法,可将T n 表示成关于首项b 1,末项b n 与项数 n 的关系式 为 ( )1. Anb 1b nA. B. 2 C. nb 1b nnb 1b nD. 2 二、填空题(本大题共 9 小题,共 45.0 分)2. 在公差为 d 的等差数列{a n }中有:a n = a m + (n - m )d (m 、n ∈ N + ),类比到公比为 q 的等比数列{b n }中有: .2.b n = b m ⋅ q n - m (m ,n ∈ N * ){a} b = a 1 + 2a 2 + 3a 3 + … + n a n{b }3. 数列 n 是正项等差数列,若 n 1 + 2 + 3 + … + n ,则数列 n 也 为等差数列,类比上述结论,写出正项等比数列{c n },若d n = 则数列{d n }也为等比数列.1(c c 2c 3…c n )1 + 2 + 3 + … + n 3. 1 2 3 n4. 等差数列{a n }中,有a 1 + a 2 + … + a 2n + 1 = (2n + 1)a n + 1,类比以上性质,在等比数列{b n }中,有等式 成立.4.b 1b 2…b 2n + 1 = b 2n + 1T5. 若等比数列{a n }的前 n 项之积为T n T 3n = ( T n ) ;类比可得到以下正确结论:若等差数列的前 n 项之和为S n ,则有 .5. S 3n = 3(S 2n - S n ){a}a 11 + a 12 + … + a 20 = a 1 + a 2 + …a 306. 已知在等差数列 n 中, 10 30 ,则在等比数列{b n }中,类似的结论为10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30q S nn7. 在等比数列{a n}中,若a9 = 1,则有a1⋅a2…a n = a1⋅a2…a17- n(n < 17,且n∈N* )成立,类比上述性质,在等差数列{b n}中,若b7 = 0,则有.b1 + b2 + … + b n= b1 + b2 + … + b13- n(n < 13,且n∈ N* )8.设S n是公差为d 的等差数列{a n}的前n 项和,则数列S6 - S3,S9 - S6,S12 - S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设T n是公比为2 的等比数列{b n}的前n 项积,则数列T6T9T12T3,T6,T9 是等比数列,且其公比的值是.5129.若等差数列{a n}的公差为d,前nS n{ }项的和为,则数列为等差数列,d. {b}公差为2 类似地,若各项均为正数的等比数列n的公比为q,前n 项的积为T n,则数列{nT n}为等比数列,公比为.10. 设等差数列{a n}的前n 项和为S n m,n(m < n),使得S m= S n,则S m + n= 0.类比上述结论,设正项等比数列{b n}的前n 项积为T n,若存在正整数m,n(m < n),使得T m= T n,则T m + n=.10. 1答案和解析【解析】{a} S= n(a1 + a n)1. 解:在等差数列n的前n 项和为n 2 ,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{bn}的前n 项积T n= (b1b n)n,故选:A由等差和等比数列的通项和求和公式及类比推理思想可得结果,在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.n + 1n + 12. 解:在等差数列{a n }中,我们有a n = a m + (n ‒ m )d ,类比等差数列,等比数列中也是如此,b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).故答案为b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).因为等差数列{a n }中,a n = a m + (n ‒ m )d (m ,n ∈ N + ),即等差数列中任意给出第 m项a m ,它的通项可以由该项与公差来表示,推测等比数列中也是如此,给出第 m 项 b m 和公比,求出首项,再把首项代入等比数列的通项公式中,即可得到结论.本题考查了类比推理,类比推理就是根据两个不同的对象在某些方面的相似之处,从而推出这两个对象在其他方面的也具有的相似之处,是基础题.3. 解: ∵ 根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字 倍的和,除以下标的和,∴ 根据新的等比数列构造新的等比数列, c c 2c 3…c n乘积变化为乘方 1 2 3 n ,1(c c 2c 3…c n ) 1 + 2 + 3 + … + n原来的除法变为开方 1 2 3 n1(c c 2c 3…c n ) 1 + 2 + 3 + … + n故答案为: 1 2 3 n根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字倍的和, 除以下标的和,等比数列要类比出一个结论,只有乘积变化为乘方,除法变为开方, 写出结论.本题考查类比推理,两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象的也具有这类特征,是一个有特殊到特殊的推理.4. 解:把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,∴ 在等比数列{b n }中有结论b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ).故答案为:b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ). 利用“类比推理”,把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,即可得出.本题考查了等比数列的通项公式、类比推理等基础知识与基本技能方法,属于中档题.5. 解:在等差数列中S 3n= S n + (S 2n ‒ S n ) + (S 3n ‒ S 2n ) = (a 1 + a 2 + … + a n ) ++ (S 2n ‒ S n ) + (a 2n + 1 + a 2n + … + a 3n )因为a 1 + a 3n = a 2 + a 3n ‒ 1 = … = a n + a 2n + 1 = a n + 1 + a 2n 所以S n + (S 3n ‒ S 2n ) = 2(S 2n ‒ S n ),所以S 3n = 3(S 2n ‒ S n ). 故答案为:S 3n = 3(S 2n ‒ S n ).本小题主要考查类比推理,由等差和等比数列的通项和求和公式及类比推理思想可得结果.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.6. 解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,等差数列中除法对应等比数列中的开方,故此我们可以类比得到结论:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30. 故答案为:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30.在等差数列中,等差数列的性质m + n = p + q ,则a m + a n = a p + a q ,那么对应的在等比数列中对应的性质是若m + n = p + q ,则b m b n = b p b q .本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.7. 解:在等比数列中,若a 9 = 1,则a 18 ‒ n ⋅⋅⋅ a 9 ⋅⋅⋅ a n = 1即a 1 ⋅ a 2…a n = a 1 ⋅ a 2…a 17 ‒ n (n < 17,且n ∈ N ∗)成立,利用的是等比性质,若 m + n = 18,则a 18 ‒ n ⋅ a n = a 9 ⋅ a 9 = 1,∴ 在等差数列{b n }中,若b 7 = 0,利用等差数列的性质可知,若m + n = 14,b 14 ‒ n + b n = b 7 + b 7 = 0,∴ b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗ )故答案为:b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗).据等差数列与等比数列通项的性质,结合类比的规则,和类比积,加类比乘,由类比规律得出结论即可.本题的考点是类比推理,考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.T 6 T 9 T 12 T 3,T , T 929 = 5128. 解:由题意,类比可得数列6是等比数列,且其公比的值是 ,故答案为 512.由等差数列的性质可类比等比数列的性质,因此可根据等比数列的定义求出公比即可.本题主要考查等比数列的性质、类比推理,属于基础题目.{a } SS n= a + (n ‒ 1) ⋅ d 9. 解:因为在等差数列 n 中前 n 项的和为 n 的通项,且写成了n1 2. 所以在等比数列{b n }中应研究前 n 项的积为T n 的开 n 方的形式.类比可得nT n = b 1( q )n ‒ 1.其公比为 故答案为 q .S nS nd{ n } n= a 1 + (n ‒ 1) ⋅ 2仔细分析数列 为等差数列,且通项为 的特点,类比可写出对应数 列{nT n }为等比数列的公比.本小题主要考查等差数列、等比数列以及类比推理的思想等基础知识.在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.10. 解:在由等差数列的运算性质类比推理到等比数列的运算性质时:加减运算类比推理为乘除运算,累加类比为累乘,故由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列{b n }为等比数列,它的前n .项积为T n ,若存在正整数 m ,n .(m ≠ n ),使得T m = T n ,则T m + n = 1.故答案为 1.在类比推理中,等差数列到等比数列的类比推理方法一般为:加减运算类比推理为乘除运算,累加类比为累乘,由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存q在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列 {b n }为等比数列,它的前n .项积为T n ,若存在正整数m ,n .(m ≠ n ),使得T m = T n ,则 T m + n = 1.类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).。
《等差数列与等比数列》小题专项练习

a1=1,点
an n
,
an1 n 1
在直线
x
y
2
0 上,则
an
.
17、数列1,1 2,1 2 22 ,1 2 22 23 , 的前 n 项和为
。
18、某同学在电脑上设置一个游戏,他让一弹性球从 100m 高出下落,每次着地后又跳回原
来的高度的一半再落下,则第 8 次着地时所经过的路程和为
A.52
B.51
C.50
D.49
7.等比数列{an}的前 5 项的和 S5=10,前 10 项的和 S10=50,则它的前 20 项的和 S20=( )
A.160
B.210
C.640
D.850
8.已知等差数列{an}的前 n 项和为 Sn,若 m>1,且 am-1+am+1-am2=0,S2m-1=38,则 m 等于( )
.
答案:1-5: DDADD ; 6-10: ADCCC ; 11-14 : 15,16; 16, n(2n-1);17,2^(n+1)-2-n;18,298.4m.
BCDC .
A.60 里
B.48 里
C.36 里
D.24 里
12. 已知等差数列{an}的前 n 项和为 Sn,若 m>1,且 am-1+am+1-am2=0,S2m-1=38,则 m 等于( )
A.38
B.20
C.10
D.9
13. 对任意等比数列{an},下列说法一定正确的是( )
A.a1,a3,a9 成等比数列
Hale Waihona Puke A.38B.20C.10
D.9
11. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为
等差等比数列练习题(含答案)以及基础知识点

由题意可得
解得
∵等差数列 的各项为正,∴
∴∴Biblioteka 22(I):是以 为首项,2为公比的等比数列。
即
(II)证法一:
①
②
②-①,得
即
④-③,得
即
是等差数列。
19、有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数。
20、已知 为等比数列, ,求 的通项式。
21、数列 的前 项和记为
(Ⅰ)求 的通项公式;
(Ⅱ)等差数列 的各项为正,其前 项和为 ,且 ,又 成等比数列,求
22、已知数列 满足
(I)求数列 的通项公式;
(A) (B) (C) (D)不确定
4、互不相等的三个正数 成等差数列, 是a,b的等比中项, 是b,c的等比中项,那么 , , 三个数()
(A)成等差数列不成等比数列(B)成等比数列不成等差数列
(C)既成等差数列又成等比数列(D)既不成等差数列,又不成等比数列
5、已知数列 的前 项和为 , ,则此数列的通项公式为()
2°.若 是公差为q的等比数列, 组成公差为qn的等比数列.(注意:当q=-1,n为偶数时这个结论不成立)
⑤若 是等比数列,
则顺次n项的乘积: 组成公比这 的等比数列.
⑥若 是公差为d的等差数列,
1°.若n为奇数,则 而S奇、S偶指所有奇数项、所有偶数项的和);
2°.若n为偶数,则
(二)学习要点:
1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d≠0的等差数列的通项公式是项n的一次函数an=an+b;②公差d≠0的等差数列的前n项和公式项数n的没有常数项的二次函数Sn=an2+bn;③公比q≠1的等比数列的前n项公式可以写成“Sn=a(1-qn)的形式;诸如上述这些理解对学习是很有帮助的.
(完整版)等差等比数列练习题(含答案)以及基础知识点

、等差等比数列基础知识点(一)知识归纳:1概念与公式:①等差数列:1 ° •定义:若数列{a n}满足a n, a n d(常数),则{a n}称等差数列;2° •通项公式:a n a i(n 1)d a k (n k)d;2 •简单性质:②中项及性质:④顺次n项和性质:偶数时这个结论不成立)⑤若{a n}是等比数列,则顺次n项的乘积:a1a2 a n,a n 1a n 2a2n , a2n 1a2n 2n2a3n组成公比这q的等比数列.②等比数列:a n ae n1 a k q n •前n项和公式:公式:Sk;3°.定义若数列{a n}满足•前n项和公式:S na n)2a n 1a n印a.q1 qna12(常数),则{a n}称等比数列;2 °a1(1 q n) (q 1),当qh 时Sn na1. q•通项公式:①首尾项性质:设数列{a n} : a i,a2,a3,,a n ,1°若{a n}是等差数列,则印a n a2 a n 1 a3 a n 2 2°若{a n}是等比数列,则a1a n a2 a n 1 a3 a n1 ° .设a, A , b成等差数列,则A称a、b的等差中项,2° •设a,G,b成等比数列,则G称a、b的等比中项,且③设p、q、r、s为正整数,且p s,1° •若{a n}是等差数列,则a p a q a r a s;2° .若{a n}是等比数列,则a p a q a r a s;1°若{a n}是公差为d的等差数列,2na k , a k,k n 1 k3n2na k组成公差为1n2d的等差数列;3n2° .若{a n}是公差为q的等比数列,2na k , a k,k n 1 k 2na k组成公差为1q n的等比数列.(注意: 当q= —1, n为4 ⑥ 若{a n }是公差为d 的等差数列,1° •若n 为奇数,则S n na 中且S 奇S 偶a 中(注:a 中指中项,即a 中a n 1,而S 奇、S 偶指所有奇数项、所有偶数项的和);2°若n 为偶数,则S 偶 S 奇 —.2(二)学习要点:1 •学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差 d 工0的等差数列的通项公式是项 n 的一次函数a n =an+b;②公差d 丰0的等差数列的前 n 项和公式项数 n 的没有常数项的二次函数 S n =an 2+bn;③公比q 丰1的等 比数列的前n 项公式可以写成“ S n =a(1-q n )的形式;诸如上述这些理解对学习是很有帮助的2•解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证 明的性质解题•3 .巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或aa-m,a,a+m )”②三数成等比数列,可设三数为“ a,aq,aq 2(或,a,aq) ”③四数成等差数列,可设四数为q“ a, a m,a 2m,a 3m(或a 3m,a m, a m,a 3m); ” ④四数成等比数列,可设四数为a,aq, aq 3), ”等等;类似的经验还很多,q[例1]解答下述问题:(I)已知1 1 1 a' b ' c成等差数列,求证/八 b cc a a b 亠(1) -JJ成等差数ab c (2) a -b c—成等比数列.2 22[解析]该问题应该选择“中项”的知识解决,山,c a ,a b成等差数列; a b c⑵(a b )(c b ) ac b(a c)2 2 2a2,2,c2成等比数列.[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,(H)等比数列的项数 n 为奇数,且所有奇数项的乘积为1 12 a c22ac a cbacb⑴ba c ab bc 2 2 c a acac2(a c)2 2(a c)b(a c)bb(a ①c),② 2 2 ab b(a c) a 2 c 2aca, aq, aq 2,aq 3(或弓, q 应在学习中总结经验1024,所有偶数项的乘积为128-.2,求项数n.4a 1 a 3 a 5 a n[解析]设公比为q,亠」」a 2a 4a n 11024 128、24.2n 1a 1 q 24-2 (1)而a 1a 2a 3nq 2(a 1 5n 2(川 a n1 ■)n352y51024 128,2352T , 将(1)代入得(22)n a i 1 2 3I q352T ,35(n 1) 2a k 1 , a k 2 ,35得,得n2等差数列{a n }中, 7.此数列中依次取出部分项组 成的数列,a k n 恰为等比数列,其中k 1 1,k 2 5,k 3 17,求数列{k n }的前n 项和. [解析]a i ,a 5,a i 7成等比数列, 2 a 5 a 1 印7 , 2(a 1 4d) a 1 (a 1d 0, a 1 2d, 16d) d(a i 2d) 0 数列{a k}的公比qa k n a1 而 a k na 13n 1 2da 5 a 13n 1 a 1a 14d3,(k n 由①,②得k n 1)d 2 3n 2d1)d{k n }的前n 项和S n21 1,3n 13 13n n 1.[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、 [例3]解答下述问题:(I)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去求原来的三数• [解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为 公式及性质是解决问题的基本功 4, 又成等比数列,原三数为 a -d, a, a+d ,则有 32) a 2 d 2d)(a d) 8a 64 0, d 8或d 亠2 26 3389公差为8得a 10或互,3 9(a d )(a d 2 (a 4) (a 32d 32a 0 16 d 22 3d 32d 9 9 (n)有四个正整数成等差数列, 10,这四个数的平方和等于一个偶数的平方,求此四数[解析]设此四数为a 15,a 5,a5,a 15(a 15),5、 已知数列a n 的前n 项和为S n , S 2n 14n 2 2n ,则此数列的通项公式为(A)a n 2n 2(B) a n8nn 1(C) a n 2(D ) a nn 26、 已知(zx)24(x y)(y z),则(A ) x, y, z 成等差数列(B ) x, y,z 成等比数列(C )丄,丄丄成等差数列x ' y ' z(D )-成等比数列x y z7、 数列a n 的前n 项和S n a n 1,则关于数列 a n的下列说法中,正确的个数有①一定是等比数列,但不可能是等差数列 ④可能既不是等差数列,又不是等比数列②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列(A) 4(B ) 3⑤可能既是等差数列,又是等比数列(C) 2 (D ) 1(a 152) (a 5)2 (a 5) (a 15) (2m)2 (m N )4a ' -500 4m (m a)(m a) 125,125 1 125 5 25,m a 与m a 均为正整数,且m a m a,m a 1 m a 2m a 125m a 25解得a 62或a12(不合),所求四数为47, 57, 67, 77[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是主 要方法•、等差等比数列练习题一、选择题1、 如果一个数列既是等差数列, (A )为常数数列 又是等比数列,则此数列(B )为非零的常数数列(C )存在且唯一(D )不存在2.、 在等差数列 a n 中,a i 4,且a i ,a 5,a i3成等比数列,贝Ua n 的通项公式为 (A) a n 3n 1(B ) a n n(C ) a n3n 1 或a n4 (D)a n n3或 a n 43、 已知a,b,c 成等比数列,且 x, y 分别为a ca 与b 、b 与c 的等差中项,则的值为x y4、 (B)2 (C )2(D ) 不确定互不相等的三个正数 a,b,c 成等差数列,x 是a,b 的等比中项,y 是b,c 的等比中项,那么,b 2,2y 三个数((A) (C) 成等差数列不成等比数列既成等差数列又成等比数列 (B )成等比数列不成等差数列(D )既不成等差数列,又不成等比数列11118、 数列1—,3 ,5 ,7 ,,前n 项和为()2 4 8 16 /A 、 2 1 彳 2 1 121, 21 1(A) n 1 ( B ) n —7( C ) n n - 1 (D ) n n 百—2n 2n 1 22n 2n 12A4n 2 aa9、 若两个等差数列a n 、b n 的前n 项和分别为A n 、B n ,且满足一上,则」13的值为 ()B n5n 5b s b 137 819 7(A ) -(B )(C )(D )-9720810、已知数列 a n 的前n 项和为S nn 2 5n2,则数列 a n的前10项和为()(A ) 56( B ) 58(C ) 62(D ) 6011、已知数列 a n 的通项公式a nn 5为,从 a n 中依次取出第 3, 9,27,…3n ,…项,按原来的顺序排成一个新的数列,则此数列的前 n 项和为()n(3n 13)3n10n 33n 110n 3(A )(B )3 5(C )(D ) -----------------22212、 下列命题中是真命题的是( )A •数列a n 是等差数列的充要条件是 a n pn q (p 0)n 1C •数列a n 是等比数列的充要条件 a n ab115、已知数列 a n 满足S n 1 a n ,则a n = __________416、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为解答题17、已知数列 a n 是公差d 不为零的等差数列,数列 a b n 是公比为q 的等比数列,018、已知等差数列 a n 的公差与等比数列 b n 的公比相等,且都等于d (d 0,d 1) ,a 1 d B .已知一个数列 a n 的前n 项和为S nan 2bn a ,如果此数列是等差数列 ,那么此数列也是等比数列D •如果一个数列 a n 的前n 项和S n ab n c(a 0, b 0,b1),则此数列是等比数列的充要条件是、填空题13、各项都是正数的等比数列a n ,公比q 1 a 5, a 7,a 8,成等差数列,则公比 q= _______14、已知等差数列 a n ,公差d0, a 1 ,a 5, a 仃成等比数列,则a 1a 5a 17=a ? a 6 a 181,b 2 10, b 3 46,求公比 q 及 b na 3 3b 3,a 5 5b 5,求a n , b n19、有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数。
《等差数列与等比数列》小题专项练习 (含答案 )
《等差数列与等比数列》小题专项练习 一、选择题(本大题共14小题,每小题5分,共70分) 1. 已知在等比数列{an}中,a1=1,a5=9,则a3=( ) A.±5 B.5 C.±3 D.3 2. 已知等比数列{an}满足a1+a2=10,a2+a3=15,则an=( )
A.4×(32)𝑛 B.4×(23)𝑛 C.4×(23)𝑛−1 D.4×(32)𝑛−1 3. 各项为正数的等比数列{an}中,若a1•a7=36,则a4的值是( ) A.6 B.8 C.5 D.7 4. 等比数列an中,a1=2,q=2,Sn=126,则n=( ) A.9 B.8 C.7 D.6 5. 等差数列{an}中,a2+a8=16,则{an}的前9项和为( ) A.56 B.96 C.80 D.72 6. 在数列{an}中,a1=2,2an+1-2an=1,则a101的值为( ) A.52 B.51 C.50 D.49 7.等比数列{an}的前5项的和S5=10,前10项的和S10=50,则它的前20项的和S20=( ) A.160 B.210 C.640 D.850 8.已知等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am2=0,S2m-1=38,则m等于( ) A.38 B.20 C.10 D.9
9. 设等差数列{an},{bn}的前n项和分别为Sn,Tn,且𝑎𝑛𝑏𝑛=3𝑛+21𝑛+1,则𝑆15𝑇15=( ) A.338 B.6 C.5 D.6917
10. 设a1,a2,a3,a4成等比数列,其公比为2,则3𝑎1+𝑎23𝑎3+𝑎4的值为( )
A.1 B.12 C.14 D.18
11. 中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天 的一半,走了6天后到达目的地,请问第三天走了( ) A.60里 B.48里 C.36里 D.24里 12. 已知等差数列{an}的前n项和为Sn,若m>1,且am-1+am+1-am2=0,S2m-1=38,则m等于( ) A.38 B.20 C.10 D.9 13. 对任意等比数列{an},下列说法一定正确的是( ) A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列 C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列
等差等比数列练习题及答案
等差 、 等比数列练习 一、选择题 1、等差数列na中,10120S,那么110aa( ) A. 12 B. 24 C. 36 D. 48 2、已知等差数列na,219nan,那么这个数列的前n项和ns( ) A.有最小值且是整数 B. 有最小值且是分数 C. 有最大值且是整数 D. 有最大值且是分数
3、已知等差数列na的公差12d,8010042aaa,那么100S A.80 B.120 C.135 D.160. 4、已知等差数列na中,6012952aaaa,那么13S A.390 B.195 C.180 D.120 5、从前180个正偶数的和中减去前180个正奇数的和,其差为( ) A. 0 B. 90 C. 180 D. 360
6、等差数列na的前m项的和为30,前2m项的和为100,则它的前3m项的和为( ) A. 130 B. 170 C. 210 D. 260 7、在等差数列na中,62a,68a,若数列na的前n项和为nS,则( )
A.54SS B.54SS C. 56SS D. 56SS 8、一个等差数列前3项和为34,后3项和为146,所有项和为390,则这个数列的项数为( ) A. 13 B. 12 C. 11 D. 10
9、已知某数列前n项之和3n为,且前n个偶数项的和为)34(2nn,则前n个奇数项的和为( )
A.)1(32nn B.)34(2nn C.23n D.321n 10若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边比为( ) A.6 B.8 C.10 D.12 二.填空题
1、等差数列na中,若638aaa,则9s .
2、等差数列na中,若232nSnn,则公差d . 3、在小于100的正整数中,被3除余2的数的和是 4、已知等差数列{}na的公差是正整数,且a4,126473aaa,则前10项的和S10=
等差数列和等比数列习题及答案
等差数列和等比数列习题1.等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .62.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .643.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( )A .6B .7C .8D .94.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A .1+ 2B .1-2C .3+2 2D .3-225.正项等比数列{a n }满足:a 3=a 2+2a 1,若存在a m ,a n ,使得a m ·a n =16a 21,m ,n ∈N *,则1m +9n的最小值为( ) A .2B .16C .114D .326.已知{a n }是等差数列,公差d 不为零,若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=23,d =________. 7.已知数列{a n }中,a 1=1,a 2=2,设S n 为数列{a n }的前n 项和,对于任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,则S 10=___________8.设等比数列{a n }的前n 项和为S n ,若S 3,S 9,S 6成等差数列,且a 2+a 5=4,则a 8的值为_______.9.设数列{a n }的前n 项和为S n ,且S n =4a n -p (n ∈N *),其中p 是不为零的常数.(1)证明:数列{a n }是等比数列;(2)当p =3时,若数列{b n }满足b n +1=a n +b n (n ∈N *),b 1=2,求数列{b n }的通项公式.10.(文)(2017·蚌埠质检)已知数列{a n }是等比数列,S n 为数列{a n }的前n 项和,且a 3=3,S 3=9.(1)求数列{a n }的通项公式;(2)设b n =log 23a 2n +3,且{b n }为递增数列,若c n =4b n ·b n +1,求证:c 1+c 2+c 3+…+c n <1.【参考答案】1. D[解析] 本题主要考查等差数列的通项公式及前n 项和公式.由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D .2. C[解析] 解法一:由条件知:a n >0,且⎩⎪⎨⎪⎧ a 1+a 2=3,a 1+a 2+a 3+a 4=15,∴⎩⎪⎨⎪⎧a 1(1+q )=3,a 1(1+q +q 2+q 3)=15, ∴q =2.∴a 1=1,∴S 6=1-261-2=63. 解法二:由题意知,S 2,S 4-S 2,S 6-S 4成等比数列,即(S 4-S 2)2=S 2(S 6-S 4),即122=3(S 6-15),∴S 6=63.3. D[解析] 由题可得⎩⎪⎨⎪⎧a +b =p >0,ab =q >0,所以a >0,b >0,不妨设a >b ,所以等比数列为a ,-2,b 或b ,-2,a 从而得到ab =4=q ,等差数列为a ,b ,-2或-2,b ,a 从而得到2b =a -2,两式联立解出a =4,b =1,所以p =a +b =5,所以p +q =4+5=9.4. C[解析] 本题主要考查等差数列、等比数列.∵a 1,12a 3,2a 2成等差数列,∴12a 3×2=a 1+2a 2, 即a 1q 2=a 1+2a 1q ,∴q 2=1+2q ,解得q =1+2或q =1-2(舍),∴a 9+a 10a 7+a 8=a 1q 8(1+q )a 1q 6(1+q )=q 2=(1+2)2=3+2 2. 5. C[解析] 设数列{a n }的公比为q ,a 3=a 2+2a 1⇒q 2=q +2⇒q =-1(舍)或q =2,∴a n =a 1·2n -1,a m ·a n =16a 21⇒a 21·2m +n -2=16a 21⇒m +n =6,∵m ,n ∈N *,∴(m ,n )可取的数值组合为(1,5),(2,4),(3,3),(4,2),(5,1),计算可得,当m =2,n =4时,1m +9n 取最小值114. 6.-1[解析] 由题可得(a 1+2d )2=(a 1+d )(a 1+6d ),故有3a 1+2d =0,又因为2a 1+a 2=1,即3a 1+d =1,联立可得d =-1,a 1=23.7.91.[解析] 因为任意的n >1,n ∈N ,S n +1+S n -1=2(S n +1)都成立,所以S n +1-S n =S n -S n -1+2,所以a n +1=a n +2,因为a 3=a 2+2=4,所以a n =a 2+(n -2)×2=2+(n -2)×2=2n -2,n ≥2,所以S 10=a 1+a 2+a 3…+a 10=1+2+4+…+18=1+2×9+9×82×2=91. 8.2.[解析] ∵等比数列{a n }的前n 项和为S n ,S 3,S 9,S 6成等差数列,且a 2+a 5=4,∴⎩⎪⎨⎪⎧2×a 1(1-q 9)1-q =a 1(1-q 3)1-q +a 1(1-q 6)1-q a 1q +a 1q 4=4,解得a 1q =8,q 3=-12, ∴a 8=a 1q 7=(a 1q )(q 3)2=8×14=2. 9.[解析] (1)证明:因为S n =4a n -p (n ∈N *), 则S n -1=4a n -1-p (n ∈N *,n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1,整理得a n =43a n -1. 由S n =4a n -p ,令n =1,得a 1=4a 1-p ,解得a 1=p 3. 所以{a n }是首项为p 3,公比为43的等比数列. (2)因为a 1=1,则a n =(43)n -1, 由b n +1=a n +b n (n =1,2,…),得b n +1-b n =(43)n -1, 当n ≥2时,由累加法得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=2+1-(43)n -11-43=3·(43)n -1-1, 当n =1时,上式也成立.∴b n =3·(43)n -1-1. 10.[解析] (1)设该等比数列的公比为q ,则根据题意有3·(1+1q +1q 2)=9, 从而2q 2-q -1=0,解得q =1或q =-12. 当q =1时,a n =3;当q =-12时,a n =3·(-12)n -3. (2)证明:若a n =3,则b n =0,与题意不符,故a n =3(-12)n -3, 此时a 2n +3=3·(-12)2n , ∴b n =2n ,符合题意.∴c n =42n ·(2n +2)=1n ·(n +1)=1n -1n +1, 从而c 1+c 2+c 3+…+c n =1-1n +1<1.。
等差与等比数列习题和答案
等差与等比数列1.数列1,3,7,15,…的通项公式a n 等于( ). (A )2n (B )2n +1 (C )2n -1 (D )2n -1【提示】排除法.由已知,各项均为奇数.所以(A )、(D )不正确.对于(B ),由于n =1时,21+1=3.所以(B )也不正确.也可以直接归纳出2n -1. 【答案】(C ).2.已知等差数列的公差为d ,它的前n 项和S n =-n 2,那么( ). (A )a n =2 n -1,d =-2 (B )a n =2 n -1,d =2 (C )a n =-2 n +1,d =-2 (D )a n =-2 n +1,d =2 【提示】由S n =-n 2 知,a 1=S 1=-1,a 2=S 2-a 1=-3,从而d =-2,且a n =a 1+(n -1)d =-1+(n -1)〃(-2)=-2 n +1. 【答案】(C ).3.在a 和b (a ≠b )两数之间插入n 个数,使它们与a 、b 组成等差数列,则该数列的公差为( ). (A )na b - (B )1+-n a b (C )1+-n b a (D )2+-n a b【提示】b =a +[(n +2)-1]d . 【答案】(B ).4.数列{a n }中,a n =-2 n +100,当前n 项和S n 达到最大值时,n 等于( ).(A )49 (B )50 (C )51 (D )49或50【提示】令a n =-2 n +100≥0,得n ≤50.即a 49 以前各项均为正数,a 50=0,故S 49 或S 50 最大.【答案】(D ).5.等比数列{a n }的首项a 1=-1,前n 项和为S n ,若510S S =3231,则510a a 等于( ). (A )-321 (B )-21 (C )321 (D )21【提示】由已知可求得q =-21. 【答案】(A ).6.等差数列{a n }中,a 1>0,S 5=S 11,则第一个使a n <0的项是( ). (A )a 7 (B )a 8 (C )a 9 (D )a 10【提示】由S 5=S 11 得2 a 1+15 d =0,又a 1>0,所以d <0.而2 a n =2 a 1+2(n -1)d =(2 n -17)d <0,所以2 n -17>0即n >8.5. 【答案】(C ).7.已知数列{a n }中,a 3,a 10 是方程x 2-3 x -5=0的两根,若{a n }是等差数列,则a 5+a 8=___________________;若{a n }是等比数列,则a 6〃a 7=______________.【提示】a 3+a 10=3,a 3a 10=-5.再利用已知与所求中的关系可求. 【答案】a 5+a 8=a 3+a 10=3;a 6〃a 7=a 3〃a 10=-5.8.在等比数列{a n }中,若其中三项a 1、a 2、a 4 又成等差数列,则公比是_____________.【提示】由已知,得2(a 1q )=a 1+a 1q 3 即q 3-2 q +1=0. 【答案】1或251±-.9.等差数列{a n }的公差d >0.已知S 6=51,a 2〃a 5=52.则S 7=_______________.【提示】列出a 1 和d 的方程组,求a 1 和d .进而求S 7 .或由S 6=2)(661a a +=3(a 2+a 5)=51,得方程组⎩⎨⎧=⋅=+52175252a a a a ,求出a 2,a 5,进而求S 7 . 【答案】70.10.已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9 成等比数列,则1042931a a a a a a ++++=___________.【提示】由已知推出a 1=d (d ≠0),并代入所求式中,消去d 即可. 【答案】1613.11.已知数列{}n a 的通项公式a n =3n -50,则当n=______时,S n 的值最小,S n 的最小值是__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列、等比数列同步练习题等差数列一、选择题1、等差数列-6,-1,4,9,……中的第20项为()A、89B、—101C、101D、-892、等差数列{a n}中,a15 = 33,a45 = 153,则217是这个数列的( )A、第60项B、第61项C、第62项D、不在这个数列中3、在—9与3之间插入n个数,使这n+2个数组成和为—21的等差数列,则n 为A、4B、5C、6D、不存在4、等差数列{a n}中,a1 + a7 = 42,a10 —a3 = 21,则前10项的S10等于()A、720B、257C、255D、不确定5、等差数列中连续四项为a,x,b,2x,那么a:b等于()A、错误!B、错误!C、错误!或1D、错误!6、已知数列{a n}的前n项和S n = 2n2 - 3n,而a1,a3,a5,a7,……组成一新数列{C n },其通项公式为()A、C n= 4n - 3B、C n= 8n— 1C、C n= 4n— 5D、C n= 8n - 97、一个项数为偶数的等差数列,它的奇数项的和与偶数项的和分别是24与30,若此数列的最后一项比第1项大10,则这个数列共有()A、6项B、8项C、10项D、12项8、设数列{a n}和{b n}都是等差数列,其中a1 = 25,b1 = 75,且a100 + b100 = 100,则数列{a n + b n}的前100项和为()A、0B、100C、10000D、505000二、填空题9、在等差数列{a n}中,a n = m,a n+m= 0,则a m= ______。
10、在等差数列{a n}中,a4 +a7 + a10 + a13 = 20,则S16 = ______ 。
11、在等差数列{a n}中,a1 + a2 + a3 +a4 = 68,a6 + a7 +a8 + a9 + a10 = 30,则从a15到a30的和是______ .12、已知等差数列110,116,122,……,则大于450而不大于602的各项之和为______ 。
13、在等差数列{a n}中,已知a1=2,a2 + a3 = 13,则a4 + a5 +a6 =14、如果等差数列{a n}中,a3 +a4 + a5 = 12,那么a1 + a2 +…+ a7 =15、设S n是等差数列{a n}的前n项和,已知a1 = 3,a5 = 11,S7 =16、已知{a n}为等差数列,a1 + a3 + a5 = 105,a2 +a4 + a6 = 99,则a20 =17、设数列{a n}的前n项和S n= n2,则a8 =18、已知等差数列{a n}满足a2 +a4 = 4,a3 + a5 = 10,则它的前10项的和S10 =19、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为20、设S n是等差数列{a n}的前n项和,若S7 = 35,则a4 =21、设Sn是等差数列{a n}的前n项和,若错误!= 错误!,则错误!=22、已知等差数列的首项为31,若此数列从第16项开始小于1,则此数列的公差d的取值范围是23、数列{a n}的通项a n = 2n+1,则由b n =错误!(n∈N*),所确定的数列{b n}的前n项和S n =24、设等差数列{a n}的前n项和为S n,若S9 = 72,则a2 +a4 + a9 =25、设等差数列{a n}的前n项和为S n,若a6 = S3 = 12,则数列的通项公式a n =26、在数列{a n}中,a1 = 1,且对于任意自然数n,都有a n+1 = a n + n,则a100=三、解答题27、已知等差数列{a n}的公差d = 错误!,前100项的和S100 = 145。
求:a1 + a3 +a5 + ……+a99的值。
28、已知等差数列{a n}的首项为a,记b n =错误!(1)求证:{b n}是等差数列(2)已知{a n}的前13项的和与{b n}的前13的和之比为3:2,求{b n}公差29、等差数列{a n}中,a1 = 25,S17 = S9(1)求{a n}的通项公式(2)这个数列的前多少项的和最大?并求出这个最大值.30、等差数列{a n}的前n项的和为S n,且已知S n的最大值为S99,且|a99| < |a100|求使S n〉0的n的最大值.31、等差数列{a n}中,已知a1 = 错误!,a2 + a5 = 4,a n = 33,试求n的值。
32、已知{a n}为等差数列,a3 = —6,a6 = 0。
(1)求{a n}的通项公式(2)若等差数列{b n}满足b1 = —8,b2 = a1 + a2 + a3,求{b n}的前n项和公式33、设S n为数列{a n}的前n项和,S n = 2n2 + n + 1,n∈N*(1)求a1及a n(2)判断数列{a n}是否为等差数列?并阐明理由.34、设等差数列{a n}的前n项和为S n,且S4 = —62,S6 = -75,求:(1){a n}的通项公式a n及前n项的和S n;(2)|a1|+ |a2|+ |a3|+…+ |a14|35、在等差数列{a n}中,a4 = —15,公差d = 3,求数列{a n}的前n项和S n的最小值。
36、已知等差数列{a n}满足:a3 = 7,a5 + a7 = 26,{a n}的前n项和为S n. (1)求a n及S n;(2)令b n = 错误!(n∈N*),求数列{ a n }的前n项和T n等比数列一、选择题1、若等比数列的前3项依次为错误!,错误!,错误!,……则第四项为()A、1B、错误!C、错误!D、错误!2、公比为错误!的等比数列一定是( )A、递增数列B、摆动数列C、递减数列D、都不对3、在等比数列{a n}中,若a4●a7 = -512,a2 + a9 = 254,且公比为整数,则a12 =A、-1024B、-2048C、1024D、20484、已知等比数列的公比为2,前4项的和为1,则前8项的和等于()A、15B、17C、19D、215、设A、G分别是正数a、b的等差中项和等比中项,则有()A、ab≥ AGB、ab < AGC、ab≤ AGD、AG与ab的大小无法确定6、{a n}为等比数列,下列结论中不正确的是()A、{a n2}为等比数列B、{1a n}为等比数列C、{lg a n}为等差数列D、{a n a n+1}为等比数列7、一个等比数列前几项和S n = ab n+ c,a ≠ 0,b ≠ 0且b≠ 1,a、b、c为常数,那么a、b、c必须满足( )A、a + b = 0B、c + b = 0C、c + a = 0D、a + b + c = 08、若a、b、c成等比数列,a、x、b和b、y、c都成等差数列,且xy≠0,则+的值为()A、1B、2C、3D、49、已知{a n }是等比数列,a2 = 2,a5 = 错误!,则公比q =( )A、-错误!B、—2C、2D、错误!10、如果-1,a,b,c,—9成等比数列,那么()A、b = 3,ac = 9B、b = —3,ac = 9C、b = 3,ac = -9D、b = —3,ac = -911、已知数列1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则错误!的值是()A、错误!B、—错误!C、错误!或-错误!D、错误!12、等比数列{a n}中,a6 + a2 = 34,a6 - a2 = 30,那么a4等于()A、8B、16C、±8D、±1613、若等比数列a n满足a n a n+1 = 16n,则公比为()A、2B、4C、8D、±1614、等比数列{ a n }中,|a1|= 1,a5 = —8a2,a5 〉a2,则a n =()A、(—2)n—1B、- (-2)n—1C、(-2)nD、—(-2)n15、已知等比数列{a n}中,a6 —2a3 = 2,a5 —2a2 = 1,则等比数列{a n}的公比是A、-1 B、2 C、3 D、416、正项等比数列{a n}中,a2a5 = 10,则lg a3 + lg a4 =()A、—1B、1C、2D、017、在等比数列{b n}中,b3•b9 = 9,则b6的值为( )A、3B、±3C、-3D、918、在等比数列{a n}中,a2a5a7 =错误!,则tan(a1a4a9)=( )A、—B、C、-错误!D、错误!19、若等比数列{a n} 满足a4 + a8 = -3,则a6(a2+2a6+a10)=( )A、9B、6C、3D、—320、设等比数列{a n}的前n项和为S n,若错误!=3,则错误!=()A、错误!B、错误!C、错误!D、121、在等比数列{a n} 中,a n>0,a2 = 1 —a1,a4 = 9 —a3,则a4 + a5 =( )A、16B、27C、36D、8122、在等比数列{a n} 中a2 = 3,则a1a2a3 =()A、81B、27C、22D、923、等比数列{a n} 中a4,a8是方程x2+3x+2=0 的两根,则a5a6a7 =( )A、8B、±2错误!C、—2错误!D、2错误!24、在等比数列{a n} 中,若a3a4a5a6a7 = 243,则a72a9的值为( )A、9B、6C、3D、225、在3 和9 之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则这两个数的和是( )A、9错误!B、10错误!C、11错误!D、12错误!26、已知等比数列1,a2,9,⋯,则该等比数列的公比为()A、3或—3B、3 或13C、3 D、错误!27、在等比数列{a n}中,前7 项和S7=16,又a12 + a22 +⋯+ a72 = 128,则a1 —a2+ a3 —a4 + a5 - a6 + a7 =()A、8B、错误!C、6D、错误!28、等比数列{a n}的前n项和为S n,a1=1,若4a1,2a2,a3成等差数列,则S4 =()A、7B、8C、16D、15二、填空题29、在等比数列{a n}中,若S4 = 240,a2 + a4 = 180,则a7 = ______,q =______。
30、数列{a n}满足a1 = 3,a n+1 = -错误!,则a n = ______,S n = ______。
31、等比数列a,-6,m,—54,……的通项a n = ___________.32、{a n}为等差数列,a1 = 1,公差d = z,从数列{a n}中,依次选出第1,3,32……3n—1项,组成数列{b n},则数列{b n}的通项公式是__________,它的前几项之和是__________.33、在等比数列{a n}中,(1)若q = 错误!,S6 = 3错误!,则a5 = ;(2) 若S3 = 7a3 ,则q=______;(3)若a1+a2+a3=-3 , a1a2a3=8,则S4 =____.34、在等比数列{a n}中,(1)若a7•a12=5,则a8•a9•a10•a11=____;(2) 若a1+a2=324,a3+a4=36,则a5+a6=______;(3)若q为公比,a k=m,则a k +p=______;35、一个数列的前n项和S n=8n—3,则它的通项公式a n=____36、在2 和30 之间插入两个正数,使前三个成为等比数列,后三个成等差数列,则这两个正数之和是_______.37、已知数列{a n}中,a1=1,a n=2a n-1+3,则此数列的一个通项公式是_________ .38、数列314,4错误!,5错误!,…的前n 项之和是_________。