表面能和表面张力
液体表面现象

15
§5.2 表面吸附和表面活性物质
•表面吸附和表面活性物质
上一内容
下一内容
回主目录
返回
2019/4/11
16
1、表面吸附原理: Ⅰ Ⅱ
f1 f2 f12
液滴Ⅰ浮在另一种液体Ⅱ的表面上 第Ⅰ种液体的表面张力系数 1 ;
设: 第Ⅱ种液体的表面张力系数 2 ;
两种液体相接触的表面上表面张力系数 12 。
f
f
P
由于液面的附加压强的存在,且总是指向弯曲液面凹面, 所以一般有: 即: P P 凹 P 凸P s 凹 P 凸
上一内容
下一内容 回主目录 返回
2019/4/11 22
3、球形液面的附加压强(内外压强差): 设有一弯曲液面呈球面, 在球面上截取一小部分S,球 的半径为R,液面的表面张力 系数为 ,则: 当液面平衡时,液体内 部必定会产生一与附加压强 相平衡的压强P,设单位长 度分界线上的张力为T.即:
上一内容
下一内容 回主目录 返回
2019/4/11 12
解:一个大的油滴在等温地散布成大量的小油滴时, 能量仅消耗在形成增加的表面积上,即作功全部转 化为小油滴的表面能,易知作功为:
A S
式中是增加的表面积。设n是个小油滴的数目,R是 大油滴的半径,则
S 4 (nr R )
上一内容
下一内容
回主目录
返回
2019/4/11
10
3)表面张力系数与表面能的关系: 若 F 将金属丝向右拖动 Δx 的距离: 液面面积增加:
A B B
S 2 L x
作功:
L
D
2L
Δx
F
C C
W F x
表面张力和表面自由能

这个经验规律称为 Antonoff 规则
表面热力学的基本公式
根据多组分热力学的基本公式
dUT dSpdV B dnB UUS,V,nB B 对需要考虑表面层的系统,由于多了一个表
面相,在体积功之外,还要增加表面功,则基本 公式为
d U T d S p d V d A s B d n B
液体内部分子所受的力可 以彼此抵销,但表面分子受到 体相分子的拉力大,受到气相 分子的拉力小(因为气相密度 低),所以表面分子受到被拉 入体相的作用力。
这种作用力使表面有自动收缩到最小的趋势,并 使表面层显示出一些独特性质,如表面张力、表面吸 附、毛细现象、过饱和状态等。
界面现象的本质
由图可知,液体表面层分子
相
相
h
界面特征
两相间的界面并非几何平面,而是具有 一定厚度的界面层--界面相
体相 α相
界面 相
界面特征:几个分子 厚、结构和性质与两 侧体相均不同
β相 体相
界面现象的本质
表面层分子与内部分子相比所处的环境不同 体相内部分子所受四周邻近相同分子的作用力
是对称的,各个方向的力彼此抵销; 但是处在界面层的分子,一方面受到体相内相
表面自由能的单位: J m 2
表面张力、表面功及表面吉布斯自由能
①力的角度:单位长度
液面的张力。 N·m-1
②功的角度:增加单位 液面面积时外力所作
的功。 N·m·m-2
③能的角度:增加单位 液面面积时增加的表
面自由能。J·m-2
F L
W dA
(dG dA
) T ,P ,n
液体表面的最基本的特性是趋向于收缩。 由于表面层分子的受力不均衡,液滴趋向于 呈球形,水银珠和荷叶上的水珠也收缩为球形。
物理化学界面第9章 表面现象总结

第9章表面现象和胶体化学1 基本概念1.1界面和表面不同物质或同种物质的密切接触的两个相之间的过渡区叫界面,如液态水和冰的接触面,水蒸气和玻璃的接触面等等。
表面是指固体对真空或固体和液体物质与其自身的蒸气相接触的面。
显然,表面包括在界面的概念之内,但通常并没严格区别两者,“表面”和“界面”互相通用。
1.2 表面能、表面函数和表面功表面上的物质微粒比他们处于体相内部时多出的能量叫表面能或总表面能。
由于表面的变化通常在等温等压条件下进行,因此这时的表面能实际上就是表面吉布斯函数。
在等温等压下且组成不变的条件下以可逆方式增加体系的表面积时所做的非体积功叫表面功,它在量值上等于表面吉布斯函数。
1.03 表面张力(比表面能)简单的说,表面张力就是单位面积上的表面能量,即比表面能,因为它与力有相同的量纲,故叫表面张力。
实际上,表面张力是表面层的分子垂直作用在单位长度的线段或边界上且与表面平行或相切的收缩力。
1.04 附加压力弯曲液面下的附加压力是指液面内部承受的压力与外界压力之差,其方向指向曲面球心。
1.5 铺展和铺展系数某一种液滴在另一种不相溶的液体表面上自行展开形成一层液膜的现象叫铺展,也叫展开。
铺展系数就是某液滴B在液体A的表面上铺展时比表面吉布斯函数的变化值,常用符号为S B/A1.6 湿润凡是液体沾湿在固体表面上的现象都叫润湿,其中又分为铺展润湿(液体在固体表面上完全展开),沾湿湿润(液体在固体表面形成平凹透镜)和浸没湿润(固体完全浸渍在液体中),三种湿润程度的差别是:浸没湿润〉铺展湿润〉沾湿湿润1.7 沾湿功和湿润功在定温定压下,将单位面积的固-液界面分开时外界所做的可逆功叫沾湿功。
这一概念对完全不相溶的两种液体间的界面也适用。
结合功是指定温定压下,将单位面积的液柱拉开时外界所做的可逆功,又叫内聚功。
它是同种分子相互吸引能力的量度。
1.08 接触角液体在固体表面达到平衡时,过三相接触点的切线与固-液界面所夹的最大角叫平衡接触角或润湿角,常用符号θ。
表面张力和表面自由能

dl γL
(a) 图平液面表面张力示意图
γ
γ
γ
γ
γ
γ
表面张力
球形液面表面张力示意图
表面张力
表面张力也可以这样来理解: 温度、压力和组成恒定时,可逆地使表面积增加 dA所需要对系统作的非体积功,称为表面功。用公
式表示为: W' dAs
式中 为比例系数,它在数值上等于当T,p 及
组成恒定的条件下,增加单位表面积时所必须对系 统做的可逆非体积功。
界面现象
常见的界面有:气-液界面,气-固界面,液-液 界面,液-固界面,固-固界面。
1.气-液界面
空气
CuSO 4 溶液
气-液 界面
2.气-固界面
气-固界面
3.液-液界面
H 2O
Hg
液-液 界面
4.液-固界面
Hg
液-固界面
H 2O
玻璃板
5.固-固界面
Cr镀层 铁管
固-固界面
界面与界面相
相
分散程度越高,比表面越大,表面能也越高。
可见达到nm级的超细微粒,具有巨大的比表面 积,因而具有许多独特的表面效应,成为新材料和 多相催化方面的研究热点。
§13.1 表面张力及表面Gibbs自由能
表面张力 表面热力学的基本公式 界面张力与温度的关系 溶液的表面张力与溶液浓度的关系
表面张力(surface tension)
液体内部分子所受的力可 以彼此抵销,但表面分子受到 体相分子的拉力大,受到气相 分子的拉力小(因为气相密度 低),所以表面分子受到被拉 入体相的作用力。
这种作用力使表面有自动收缩到最小的趋势,并 使表面层显示出一些独特性质,如表面张力、表面吸 附、毛细现象、过饱和状态等。
表面张力课件

PPT学习交流
14
作用在小面元ΔS周界线Δl上的表面 张力为
Δf =α×Δl
Δf 可以被分解为Δf1和Δf2,由于Δf2与 半径oc垂直,对附加压强不起作用,
故不考虑。
而Δf1的方向指向液体内部,其值为
Δf1 =Δl sinφ=α×Δl sinφ
PPT学习交流
15
作用于ΔS整个周界线--即其周长上的 表面张力,指向液体内部的分力总和为
即增加单位液面所增加的势能。
由上式可知,α在数值上等于增加单位液 面时外力所作的功,从能量的角度看,其大小 等于增加单位液面时所增加的表面自由能。
那么液体表面能的减小可以通过下面任 一种自动过程来实现:
自动减小S;
自动减小α;
S和α两PPT学者习交都流 同时自动减小。
11
二、曲面下的附加压强
Hale Waihona Puke PPT学习交流PC
PA
4
R
PPT学习交流
19
一、毛细现象和气体栓塞 1、 毛细现象
(1)润湿现象 当液体和固体接触 时,液固界面之间会出现两种现象:
润湿和不润湿现象。
PPT学习交流
20
同一种液体,对不同的固体来说,
它可以是润湿的,也可以是不润湿的。 润湿和不润湿现象就是液体和固体接触 处的表面现象。其差别是由液体分子与 固体分子之间的相互作用而形成的。可 以用其分子间相互作用力的大小来解释。
PPT学习交流
4
如果以10-9m为半径作一球面, 显然则只有在这个球面内的分子才 对位于球心上的分子有作用力。
分子作用球——分子引力作用范围是 半 径 为 10-9m 的 球 形 , 球 的 半 径 称 为 分子作用半径。
油墨的表面张力

油墨的表面张力油墨的表面张力是指油墨在涂布或印刷过程中,与空气界面相互作用所施加的力量。
表面张力可以影响油墨的流动性、湿润性和卷曲度,从而影响油墨在印刷中的质量和效果。
下面我们来一步步了解油墨的表面张力。
第一步:什么是表面张力?表面张力是物质分子间相互作用力在表面上的体现。
外力可以使表面张力降低或升高,例如油墨受到机械刮擦时表面张力会升高,而加入表面活性剂可以使表面张力降低。
第二步:表面张力对油墨的影响表面张力直接影响油墨的附着性、流动性和稳定性。
油墨表面张力较高时,油墨不易附着在各种材料表面上,且不易均匀分布,容易在印刷时出现晕染、堆积、漏墨等问题。
而表面张力较低时,油墨容易在材料表面上附着,且容易展开,增加了印刷精度和效果。
第三步:如何影响油墨的表面张力(1)表面能:表面能越大,表面张力越小。
油墨中的某些成分可以增加表面能,例如表面活性剂。
(2)表面积:表面积越大,表面张力越小。
当油墨在材料上均匀分布时,它的表面积会减小,从而使表面张力升高。
(3)温度:随着温度升高,表面张力会下降。
在制造油墨时,可以调整油墨的温度来达到控制表面张力的目的。
第四步:应对表面张力问题的方法(1)加入表面活性剂:表面活性剂可以有效地调整油墨的表面张力,从而改善油墨的印刷效果。
(2)优化油墨配方:油墨中的添加剂和颜料种类、比例、粒度分布等都会影响油墨的表面张力,因此在制造油墨时应该从配方层面优化。
(3)调整印刷三要素:印刷时应该控制好油墨、版材和压力三要素,避免出现表面张力过大或过小的问题。
总之,油墨表面张力是影响油墨印刷效果的重要因素之一。
掌握好油墨表面张力的调控方法,可以达到优秀的印刷效果,提升产品品质。
表面与界面知识点总结 -回复
表面与界面知识点总结 -回复
表面与界面知识点总结:
1. 表面现象:由于固体表面分子的结构不同于其内部,故表面分子有一些特殊的性质,如表面张力、表面能、界面张力等。
2. 表面张力:由于表面分子受到相邻分子的吸引力而对内聚性较强。
表面张力可由液滴的形态及表面积变化计算出来。
3. 表面能:由表面分子吸引而形成的表面存在着一定能量,该能量称为表面能。
表面能越大,表面张力越强。
4. 界面张力:液体与气体、液体与固体之间的接触面上会形成界面张力。
液体-气体界面张力使液体产生球形,液体-固体界面张力使液滴变成半球形。
5. 单层分子膜:将一种分子吸附在固体表面上形成的单层分子膜,具有一定的表面活性和润湿性。
6. 表面增强拉曼散射(SERS):将分子吸附在纳米金属表面上,可在表面增强的作用下使与特定振动光谱相关的光谱峰增强数千倍。
7. 多相反应催化剂:多相反应催化剂是将催化剂固定在固体表面上,可在多相催化反应中提高反应速率和选择性。
8. 界面化学:研究不同相之间的相互作用及二者之间的交换现
象的学科,包括了表面化学、胶体化学等方面的研究。
9. 分散体系:由于存在各种散体而形成的体系,如泡沫、乳液等。
在这些分散体系中,表面的性质是十分重要的。
表面张力
表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。
将水分散成雾滴,即扩大其表面,有许多内部水分子移到表面,就必须克服这种力对体系做功——表面功。
显然这样的分散体系便储存着较多的表面能(surface energy)。
1)定义或解释①促使液体表面收缩的力叫做表面张力[1]。
②液体表面相邻两部分之间,单位长度内互相牵引的力。
(2)单位表面张力的单位在国际单位制中为牛顿/米(N/m),但仍常用达因/厘米(dyn/cm), 1dyn/cm = 1mN/m。
(3)说明①表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
②表面张力是分子力的一种表现。
它发生在液体和气体接触时的边界部分。
是由于表面层的液体分子处于特殊情况决定的。
液体内部的分子和分子间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。
在液体表面附近的分子由于只显著受到液体内侧分子的作用,受力不均,使速度较大的分子很容易冲出液面,成为蒸汽,结果在液体表面层(跟气体接触的液体薄层)的分子分布比内部分子分布来得稀疏。
相对于液体内部分子的分布来说,它们处在特殊的情况中。
表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
因此,如果在液体表面上任意划一条分界线MN把液面分成a、b两部分。
F表示a部分表面层中的分子对b部分的吸引力,F6表示右部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。
这种表面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势,由于表面张力的作用,液体表面总是趋向于尽可能缩小,因此空气中的小液滴往往呈圆球形状。
部分液体或固体的表面张力/表面能数据:(25度)理论纯净水(DI Water) 72 mN/m碳氢类表面活性剂(Hydrocarbon surfactant) 约 35 mN/m聚硅氧烷类表面活性剂(Silicon Surfactant) 约 25 mN/m氟碳氢类表面活性剂(Fluorinate surfactant) 约 < 20 dynes/cm(0.01-0.1%) 环氧树脂(Epoxy Resin) = 47 dynes/cm聚酰胺类聚合物(Polyamide)(尼龙) = 46 dynes/cm纤维素(Cellulose) = 45 dynes/cm聚酯类聚合物(PET Polymer) 约 = 43 dynes/cm聚氯乙烯类聚合物(Polyvinyl Chloride Polymer) 约 = 39 dynes/cm聚丙烯酸酯类聚合物(Poly acrilic polymer) 约 = 35 dynes/cm聚乙烯类聚合物(Poly stylene polymer) 约 = 33 dynes/cm聚胺脂类聚合物(Poly urithane polymer) 约 = 30 dynes/cm矽胶类聚合物(Silicon polymer) 约 = 24 dynes/cmTeflon = 18 dynes/cm摘录自美国杜邦化学数据材料名称温度初始张力要求张力聚乙烯(PE) 20℃ 31达因 38达因聚丙烯(PP) 20℃31达因 38达因聚酯(PET) 20℃ 39达因 52达因聚氯乙烯(PVC) 20℃39达因48达因尼龙(PA) 20℃41达因 56达因测定达因的方法:用达因笔在物料表面画一条线,2~3秒后,观察其百分之九十之面积是否有发生收缩并形成珠点。
材料表面与界面 第五章 表界面热力学与动力学
Wc=2γa 或 Wc=2γb
3 ( a b ) 4
1 Wab ( a b ) 2
由上式可以看出,Wc>Wab,即相同物质间的摩擦要大于 不同物质间的摩擦。
固体的表面自由能和表面张力 与液体相比: (1) 固体的表面自由能中包含了弹性能。表面张力在数值上不 等于表面自由能; (2) 固体的表面张力是各向异性的。 (3) 实际固体的表面绝大多数处于非平衡状态,决定固体表面 形态的主要是形成固体表面时的条件以及它所经历的历史。 (4) 固体的表面自由能和表面张力的测定非常困难。
如果在活动边框上挂一重物,使 重物质量W2与边框质量W1所产 生的重力F与总的表面张力大小 相等方向相反,则金属丝不再滑 动。
F 2 l
l 是滑动边的长度,因膜有两个面, 所以边界总长度为2l, 就是作用 于单位边界上的表面张力。
在两相(特别是气-液)界面上,处处存在着一种张 力,这种力垂直于表面的边界,指向液体方向并 与表面相切。 把作用于单位边界线上的这种力称为表面张力,用 或 表示。 表面张力的单位是:
表面自由能定义
G ( )T , P ,nB As
其物理意义是在等温等压以及恒组成条件下,每增加 单位表面时系统吉布斯自由能的增加
ቤተ መጻሕፍቲ ባይዱ
又可称为表面Gibbs自由能
2
表面自由能的单位: J m
表面张力 (surface tension)
表面自由能 (surface free energy)
界面能
实验证明,界面能 γab约为 1/4~1/2(γa+γb)。如果a、 b两物质 能相互溶解或能形成金属间化合物,其界面能较小,约为
1 ( a b ) 4
若a、b 两物质不能相互溶解,其界面能较大,约为 a、b为同一物质 a、b相互溶解 a、b不能相互溶解
第1章-液体界面性质-1表面能与弯曲液面lidx
W Fdx
肥皂膜
F
表面能: W dA 2l dx
2015-1-12
F F 2l l总
1.1表面张力与表面能
表面张力
( )
Surface Tension
是沿着与表面(球面)相切或与表面(平面)相平行的方向垂直作 用于表面上单位长度的表面收缩力。
•注意 单位为:N · m-1 ;
2015-1-12
界面分子与相内分子所处的环境不同
1.1表面张力与表面能
表面能 Surface Energy
由于净吸力的存在,体相分子要转移到表面,必须克 服净吸力,需要外界提供非体积功 δW’, 因此表面层分子 比体相分子有额外的势能量。 1. 非体积功 δW’称为表面功,是恒温、恒压和组成恒 定时可逆地增加单位表面积需做的可逆非体积功。 2. 根据热力学理论:在T、P及组成恒定时,环境所做 的可逆非体积功,在数值上等于系统吉布斯函数增加值。 所以系统表面扩展时,系统得到的表面功应等于吉布斯函 数增加值。
Gm
对于平液面, 对于曲液面
pl ,曲
p l,平
V
m
dp V( m p l ,曲 - p l,平)
p l,曲 =大气压力+ Δp
pl,平 =大气压力,
凸液面,Δp > 0; 凹液面, Δp < 0.
pl,曲 - pl,平 p
故: Gm Vm p
2015-1-12
l,曲 l,平
pr RT ln p0
Gm Vm p
若液面是球面的一部分,如气泡、液滴等
pr Vm p RT ln p0
2 p r
M RT ln pr 2M Vm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面能和表面张力
1. 介绍
表面能和表面张力是物理学中关于液体和固体界面性质的重要概念。
表面能描
述了液体分子的吸引力和固体界面分子之间的相互作用能力,而表面张力则指液体表面的弹性和抵抗外部扩展的能力。
本文将详细介绍表面能和表面张力的含义、计算方法以及相关应用领域。
2. 表面能
2.1 含义
表面能是描述液体表面性质的重要参数,通常用符号γ表示。
它是指单位面积
内液体分子的吸引力能量。
液体表面分子与内部分子相比,周围没有同种液体分子的引力作用,因此表面的分子受到的吸引力较大,导致表面能较高。
2.2 计算方法
常用的计算液体表面能的方法有两种:Young-Laplace方法和相对法。
Young-Laplace方法是基于气泡和液滴的理论推导,通过测量气泡或液滴的形
态参数来计算表面能。
将Young-Laplace方程应用于液滴或气泡的变形,可以得到
表面能与液滴半径或气泡半径的关系。
相对法则是通过比较液体与不同材料的表面能差异,来计算液体自身的表面能。
可以借助表面张力平衡法或液体浸润法实现。
3. 表面张力
3.1 含义
表面张力是指液体表面上液体分子之间的相互作用力。
液体分子因互相吸引而
紧密排列,使得液体表面呈现较高的张力,能够抵制外界对液体表面的扩展力。
3.2 计算方法
表面张力的计算主要通过测量液体静态平衡或动态平衡状态下的力的大小来实现。
常用的实验方法有杨氏静水压力法和浊度法。
杨氏静水压力法是一种通过测量不同高度的水柱在液体表面产生的压力差来计
算表面张力的方法。
该方法利用液体表面张力的平衡原理,得出表面张力与液体柱高之间的关系。
浊度法是基于光的折射原理,通过测量液体的浊度变化来计算表面张力。
浊度
测量方法适合浑浊液体或液面上有液滴的情况。
4. 应用领域
表面能和表面张力的研究在许多领域具有重要的应用价值:
•材料科学:表面能对于材料的附着、涂覆、打印和涂料的均匀性都具有重要影响,因此在材料科学中有广泛的应用。
•纳米科技:纳米材料表面能和表面张力的研究对于纳米材料的制备、传输和应用具有重要意义。
•药物传递系统:药物的释放和传递常常依赖于液体表面的性质,因此研究表面能和表面张力有助于开发更高效的药物传递系统。
•油污清洁:液体表面张力的研究对于油污清洁和分离有着重要的应用,例如油-water分离等。
•涂覆技术:表面能和表面张力的研究在涂覆技术中被广泛应用,可提高涂料的附着力和光学性能。
5. 结论
表面能和表面张力是液体与固体界面性质的重要参数,对于材料科学、纳米科技、药物传递系统、油污清洁和涂覆技术等领域具有重要应用价值。
通过合适的实验方法和计算方法,可以准确地测量和计算表面能和表面张力,并为相关领域的研究和应用提供支持。