2-测量误差及数据处理解析

合集下载

分析化学误差和分析数据处理2

分析化学误差和分析数据处理2
重现性:由不同实验室的不同分析工作者 和仪器,共同对同一样品的某物理量进行 反复测量,所得结果接近的程度。
15
(三)准确度与精密度的关系
1. 准确度高,要求精密度一定高,精密度高 是准确度高的前提,但精密度好,准确度不一 定高。 2. 准确度反映了测量结果的正确性,精密度 反映了测量结果的重现性。
12
例: 两人分析同一试样中Cu的含量,其结果ω如下: 甲 0.3610 0.3612 0.3608 乙 0.3641 0.3642 0.3643 已知其含Cu的量的真实值为0.3606,试问何人结果的准 确度高? 解:
x RE % 100% 100%
甲: X =0.3610
16
四、提高分析准确度的方法
1.选择恰当的分析方法 例:测全Fe含量 K2Cr2O7法 40.20% ±0.2%×40.20% 比色法 40.20% ±2.0%×40.20% (常量组分的分析,常采用化学分析,而微量和痕量分 析常采用灵敏度较高的仪器分析方法) 2.减小测量误差 1)称量 例:天平一次的称量误差为 0.0001g,两次的称量误差为 0.0002g,RE%≤ 0.1%,计算最少称样量?
n x
100%
10
滴定分析中时, R d 一般要求<0.2﹪
3. 标准偏差(standard deviation)与相对标准偏差 (1).标准偏差S
S
( xi x)
i 1
n
2
n 1
n

di
i 1
n
2
n-1=f
自由度
n 1
当n→∞,标准偏差用б表示
( xi ) 2 μ 为无限多次测定的平均值(总体平均值) 若无系统误差存在,µ 就是真实值 i 1 n

测量误差分析与数据处理(1)

测量误差分析与数据处理(1)
量的准确度相同吗?
2.1.2 测量误差的表示方法(续)
• 二、相对误差
• 1 、实际相对误差——绝对误差与实际值之比。
A
x A
100%
x
A 100% A
– 只具有大小、正负,但无量纲
– 接上例可得:
A1
1 100
100%
1%;
A2
1 5
100%
20%
– 相对误差可以表征测量的准确程度。
x x A0
• 重点:
– 误差的表示和分类 – 三种误差的特征及其处理方法 – 数据的处理 – 误差的合成
• 难点:
– 三种误差的特征及其处理方法
2.1 测量误差的基本原理
• 2.1.1 误差的定义 • 2.1.2 测量误差的表示方法 • 2.1.3 电子测量仪器误差的表示方法 • 2.1.4 一次直接测量时最大误差的估计
例1:
• 一个被测电压,真值U0=100V,用一只电压 表测量,指示值U为101V,则绝对误差:
U U U0 101100 1V
• 表明: 测得值比真值大1V,为正误差。
2.1.2 测量误差的表示方法(续)
• 2 、修正值(校正值)
C x A x
– 给出:通过校准由上一级标准以表格或曲线的形 式给出受检仪器的修正值。
– 等级度越低,仪器越准确。0.1、0.2是精密仪器 。
2.1.3 电子测量仪器的表示方法(续)
• (2)附加误差
– 是指仪器在超过规定的正常条件下所增加的误差, 与影响误差相似。例如:环境温度、电源电压等
– 例:MF-20型晶体管万用表。
• 基本误差: – 直流电压、电流为±2.5%
• 附加误差:
– 根据误差的性质,测量误差可分为系统误差、 随机误差、疏失(粗大)误差三类。

第2章误差分析与数据处理

第2章误差分析与数据处理

系统误差 随机误差 粗大误差 测量精度
22
2.2 误差的分类
根据测量数据中的误差所呈现的规律及产生的原 因可将其分为系统误差、随机误差和粗大误差。
2.2.1 系统误差 在同一测量条件下,多次测量被测量时,绝对
值和符号保持不变,或在条件改变时,按一定规律 (如线性、 多项式、周期性等函数规律)变化的误 差称为系统误差。前者为恒值系统误差,后者为变 值系统误差。
44
2.3.2 随机误差及其处理
随机误差一般具有以下几个性质: ① 对称性 绝对值相等的正误差与负误差出现的 次数大致相等。 ② 有界性 在一定测量条件下的有限测量值中, 其随机误差的绝对值不会超过一定的界限。 ③ 单峰性 绝对值小的误差出现的次数比绝对值 大的误差出现的次数多。 ④ 抵偿性 对同一量值进行多次测量,其误差的 算术平均值随着测量次数n的增加趋向于零。
的标准条件下所具有的误差。例如,某传感器是在电源
电压(220±5)V、电网频率(50±2)Hz、环境温度
(20±5)℃、湿度65%±5%的条件下标定的。如果传
感器在这个条件下工作,则传感器所具有的误差为基本
误差。仪表的精度等级就是由基本误差决定的。
(5)附加误差 附加条件下出现的误差。例如,温度附加误差、
26
2.2 误差的分类
系统误差也称装置误差,它反映 了测量值偏离真值的程度。凡误差的 数值固定或按一定规律变化者,均属 于系统误差。
系统误差是有规律性的,因此可 以通过实验的方法或引入修正值的方 法计算修正,也可以重新调整测量仪 表的有关部件予以消除。
夏天摆钟变慢的原因是什么? 27
V
A
V
- 3 15
23
2.2 误差的分类

第二章 误差和分析数据处理

第二章 误差和分析数据处理

课堂互动 下面是三位学生练习射击后的射击靶 图,请您用精密度或准确度的概念来评 价这三位学生的射击成绩。
二、系统误差和偶然误差
误差(error):测量值与真实值的差值
根据误差产生的原因及性质,可以将误差分为系统误 差和偶然误差。
1 系统误差 (systematic error) 又称可测误差,由某
§3 有效数字及计算规则
小问题:1与1.0和1.00相等吗? 答:在分析化学中1≠1.0≠1.00 一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字,除最后一 位为可疑数字,其余的数字都是确定的
如:分析天平称量:1.21 23 (g) 滴定管读数:23.20 (ml)
=0.17
S 0.17 RSD 100 % 100 % 1.1% 15.82 X
用标准偏差比用平均偏差更科学更准确。
例: 两组数据
(1) 0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
n=8 n=8 d1=0.28 d2=0.28 s1>s2 s1=0.38 s2=0.29 (2) 0.18, 0.26, -0.25, -0.37, 0.32, -0.28, 0.31,-0.27
(1)绝对误差 (δ) : δ= x-μ (2) 相对误差(RE): R E= δ / μ× 100%
注:
注1:两种误差都有正、负值之分。
小问题1:
买猪肉1000斤少0.5斤和买1斤少0.5斤哪个误差大?
小问题2: 用分析天平称量两个样品,一个是0.0021克,另一 个是0.5432克,两个测量值的绝对误差都是0.0001 克,试通过计算相对误差来说明哪种表示法更好。

第二章 定量分析中的误差及分析数据的处理(上)

第二章 定量分析中的误差及分析数据的处理(上)

第2章定量分析中的误差及分析数据的处理(上)§2-1定量分析的误差§2-1-1 误差的种类、性质及产生的原因1. 系统误差——由某种固定原因引起的误差(1) 特点a.单向性:对分析结果的影响比较恒定;b.重现性:在同一条件下,重复测定,重复出现;c.可测性:可以测定,可以消除。

产生的原因?(2) 系统误差产生的原因a.方法误差——选择的方法不够完善例:重量分析中沉淀的溶解损失;滴定分析中指示剂选择不当。

b.仪器误差——仪器本身的缺陷例:天平两臂不等,砝码未校正;滴定管,容量瓶未校正。

c.试剂误差——所用试剂有杂质例:去离子水不合格;试剂纯度不够(含待测组份或干扰离子)。

d.主观误差——操作人员主观因素造成例:对指示剂颜色辨别偏深或偏浅;滴定管读数不准,洗涤沉淀不充分等。

2.随机误差(偶然误差——由某些无法控制及避免的偶然因素造成的)(1) 特点a.不恒定b.难以校正c.服从正态分布(统计规律)(2) 产生的原因a.偶然因素(温度、电压等)b.分析仪器读数的不确定性方向不定,大小不定,难以预测3. 过失误差重作实验!误差如何定量表示?一、误差与准确度1. 绝对误差E a ──测定结果与真实值之间的差值测得值-真实值(E a =x-x T )真值——有时用标准值或多次测定的平均值代替准确度──分析结果与真实值的接近程度准确度的高低用误差的大小来衡量误差──测得值与真值(客观存在的真实数值)的差值误差的绝对值越小准确度越高,误差一般用绝对误差和相对误差来表示。

§2-1-2准确度与精密度三、准确度和精密度的关系——分析结果的衡量指标。

准确度──分析结果与真实值的接近程度精密度──分析结果相互的接近程度表示方法来源对结果的影响准确度——绝对误差——系统误差——正确性相对误差偶然误差精密度——平均偏差——偶然误差——重现性标准偏差相对平均偏差极差§2-2、提高分析结果准确度的方法1. 系统误差的减免(1) 方法误差——采用标准方法,对照实验用新方法对标准样品进行测定,将测定结果与标准值相对照(2) 仪器误差——校正仪器(3) 试剂误差——作空白实验:通常用蒸馏水代替试样,而其余条件均与正常测定相同2. 偶然误差的减免——增加平行测定的次数:一般分析实验平行测定3-4次3.控制测量的相对误差任何测量仪器的测量精确度都是有限度的由测量精度的限制而引起的误差又称为测量的不确定性,属于随机误差例如,滴定管读数误差滴定管的最小刻度为0.1 mL,要求测量精确到0.01 mL,最后一位数字只能估计最后一位的读数误差在正负一个单位之内,即±0.01 mL在滴定过程中要获取一个体积值V(mL)需要两次读数按最不利的情况考虑,两次滴定管的读数误差相叠加,则所获取的体积值的读数误差为±0.02 mL这个最大可能绝对误差的大小是固定的,是由滴定管本身的精度决定的——绝对误差可以设法控制体积值本身的大小而使由它引起的相对误差在所要求的±0.1%之内§2-3 有效数字及其运算法则2-3-1 有效数字1.实验过程中常遇到的两类数字(1)测量值或计算值。

3.2测量误差和数据处理

3.2测量误差和数据处理

若误差落在区间(-∞,+ ∞ )之中,则其概率 p=1; 若误差落在(-δ,+δ )之中,则上式可改写为:
将上式进行变量置换,设: 则: =2Φ(t)
在实践中常认为δ=±3σ的概率约等于1, 从而将±3σ 称为随机误差的极限误差 随机误差的极限误差。 随机误差的极限误差 即:
δlim=±3σ
算术平均值的极限误差: 算术平均值的极限误差:δlimL=±3σ L
——若某一|υi|>3σ ,则该残余误差为粗大误差,应剔除。 该准则主要适有用于服从正态分布的误差,且重复测量 次数又比较多的情况。
(2)狄克逊准则 ) (3)格罗布斯准则 ) (4)t检验法等 ) 检验法等
§3.2.6 等精度测量结果的处理
步骤如下: (1)判断有无系统误差存在 (2)求算术平均值 (3)计算残余误差 (4)计算标准偏差 σ (5)判断粗大误差并将其剔除 |υ ∣≤3σ (6)求算术平均值的标准偏差 测量结果的表达式: (7)测量结果的表达式: 单次测量时: 单次测量时: L= li±3σ 多次测量时: 多次测量时: 例:(见书P.60)
二、随机误差的评定指标 1.算术平均值 .
对某量进行等精度测量时,由于随机误差的存在,其 获得的测量值不完全相同,此时应以其算术平均值作为最 后的测量结果。即:
由正态分布的性质④可知,当测量次数n增大时,算术平均 值愈趋近于真值。因此——用算术平均值作为最后的测
量结果比用其它任一测量值作为测量结果更可靠。
1、测量器具误差 、 2、方法误差 、 3、标准件误差 、 4、环境误差 、 5、人为误差 、
§ 3.2.2
1.误差分类 .
误差的分类
(1)系统误差 系统误差 在相同条件下,多次测量同一量值时,误差的绝对值和符号 保持不变或按一定规律变化着的误差。 系统误差可分为定值系统误差 变值系统误差 定值系统误差和变值系统误差 定值系统误差 变值系统误差。 (2)随机误差 随机误差 在相同条件下,多次测量同一量值时,绝对值和符号以不可 预定的方式变化着的误差。误差的出现是无规律可循的。 (3)粗大误差 粗大误差 由于测量不正确等原因引起的大大超出规定条件下预计误差 限的那种误差。

大学物理实验课程测量误差与数据处理基础ppt课件

5
◆ 实验报告
实验报告是写给别人看的,所以必须要有条理性,字迹清晰,一定要有实验的结论和对实验结果的讨论、分析或评估。要有主要的数据处理过程,一定要列出实验结果
6
测量与测量误差
物理实验以测量为基础,所谓测量,就是用合适的工具或仪器,通过科学的实验方法找出物理量量值的过程。
2.1 测 量
9
2.2 测量误差
误差 定义:测量值与真实值之差称为误差,即
测量误差又称绝对误差
根据误差的表示方式,误差分为:(1)绝对误差(简称误差)。(2)相对误差:把绝对误差与真实值之比叫相对误差,即
真值
2.2.1 真值与误差
物理量在客观上有着确定的数值
10
任何测量结果都有误差!
根据误差性质和产生原因可将误差主要分为以下两类:
◆ 系统误差 ◆ 随机误差
2.2.2 误差的分类
11
▶ 定 义:在一定条件下,对同一物理量进行多次测量时,其误差按一定的规律变化,测量结果都大于真值或都小于真值。▶ 产生原因:仪器,理论推导,实验方法,操作,环境等。
◆ 系统误差
2).数值的科学记数法
某电阻值为 20000(欧姆),保留三位有效数字时写成 2.00104
又如数据为0.0000325m,使用科学记数法写成3.2510-5m
21
1. 加减法(取小数点位数最少的)2. 乘除法:与参与运算的有效数字最少的那个数位数相同3 乘方开方:与底的有效数字位数相同4 指数、对数。三角函数:由改变量决定。 sin19.580=0.3351227; sin19.590=0.3352871 所以 sin19.580 =0.33515 有多个数值参加运算时,在运算中应按有效数字运算规则定的多保留一位,以防止由于多次取舍引入计算误差。但运算最后仍应舍去。6 对于公式中的常数π、e 等在计算中其有效数字位数一般取比参与运算的各数中有效数字位数最少的还要多一位。

第二章_误差和分析数据处理讲解

• (2)积、商结果的相对标准偏差的平方,等于各 测量值的相对标准偏差的平方和。
化学分析
第二章 误差和分析数据处理
30
• 例 设天平称量时的标准偏差S=0.1mg,求称量试
样时的标准偏差Sm。
• 解:试样量是两次称量所得m1与m2的差值,即

m=m1-m2 或 m=m2-m1
• 读取称量m1与m2时平衡点的偏差,要反映到m中 去,因此
化学分析
第二章 误差和分析数据处理
7
3. 真值与标准值
• 某一物理量本身具有的客观存在的真实数值,即 为该量的真值。一般来说,真值是未知的,但下 列情况的真值可以认为是已知的。
• (1)理论真值:如某化合物的理论组成等。
• (2)约定真值:由国际计量大会定义的单位(国 际单位)及我国的法定计量单位。如长度、质量、 时间、电流强度、热力学温度、发光强度及物质 的量。元素的原子量也为约定真值。
• ②比例误差(proportional error):如果系统误差 的绝对值随试样量的增大而成比例的增大,但相 对值保持不变则称为比例误差。例如,试样中存 在的干扰成分引起的误差,误差绝对值随试样量 的增大而成比例的增大,而其相对值保持不变。
化学分析
第二章 误差和分析数据处理
22
• (二)偶然误差(accidental error) • 1. 定义:又称为随机误差。它是由一些无法控制
23
• 系统误差和偶然误差来源不同,处理方法也不 同。但二者经常同时存在,有时很难分清,从 而将认识不到的系统误差归为偶然误差。
• 除了系统误差和偶然误差外,在分析过程中往 往会遇到由于疏忽或差错引起的所谓“过失”, 其实质是一种错误,不能称为误差。这种错误 主要是由于操作者主观上责任心不强,粗枝大 叶或工作差错(如加错试剂、记录错误等)造 成的。

第二章 实验数据误差分析和数据处理

第二章误差和分析数据处理•2.1 测量值的准确度和精密度•2.2 提高分析结果准确度的方法(自学)•2.3 有效数字及其运算规则•2.4 有限量测量数据的统计处理•2.5 相关分析和回归分析(自学)§2.1 测量值的准确度和精密度误差(Error) : 测量值与真值之差。

➢真值T (True value)某一物理量本身具有的客观存在的真实值。

真值是未知的、客观存在的量。

在特定情况下认为是已知的:1、理论真值(如化合物的理论组成)(如,NaCl中Cl的含量)2、计量学约定真值(如国际计量大会确定的长度、质量、物质的量单位等等)3、相对真值(如高一级精度的测量值相对于低一级精度的测量值)(例如,标准样品的标准值)误差分类•系统误差(Systematic error)—某种固定的因素造成的误差方法误差、仪器误差、试剂误差、操作误差•随机误差(Random error)—不定的因素造成的误差仪器误差、操作误差系统误差与随机误差的比较项目系统误差随机误差产生原因固定因素,有时不存在不定因素,总是存在分类方法误差、仪器与试剂误差、主观误差环境的变化因素、主观的变化因素等性质重现性、单向性(或周期性)、可测性服从概率统计规律、不可测性影响准确度精密度消除或减小的方法校正增加测定的次数系统误差的校正•方法系统误差——方法校正•主观系统误差——对照实验校正(外检)•仪器系统误差——对照实验校正•试剂系统误差——空白实验校正如何判断是否存在系统误差?E a = x –x T 相对误差x <x T 为负误差,说明测定结果偏低x >x T 为正误差,说明测定结果偏高误差越小,分析结果越接近真实值,准确度也越高x -x T x T x T E r = ——= ————常用%表示Ea 绝对误差 误差的表示:对一B 物质客观存在量为T 的分析对象进行分析,得到n 个个别测定值x 1、x 2、x 3、••• x n ,对n 个测定值进行平均,得到测定结果的平均值,那么:个别测定的误差为:T x i -测定结果的绝对误差为:T x E a -=测定结果的相对误差为:%100⨯=TE E a r 平均值偏差(deviation): 单次测量值与测量平均值之差。

第2章 误差及分析数据的统计处理(完成)

第2章误差及分析数据的统计处理2.1 有效数字及其运算规则2.1.1有效数字指在分析工作中实际能测到的数字,它包括所有的准确数字和最后一位可疑数字。

在有效数字中, 只有最后一位数是不确定的,可疑的。

有效数字位数由仪器准确度决定,它直接影响测定的相对误差。

在科学实验中,对于任一物理量的测定,其准确度都是有一定限度的,例如:读取滴定管的刻度,甲得到23.43ml,乙得到23.42ml,丙得到23.44ml,这些四位数字中,前三位都是很准确的,第四位是估读出来的,所以稍有差别,称为可疑数字,但是它并不是臆造的,这4位数字都是有效数字。

有效数字就是实际能测到的数字,其位数的多少,反映测量的精确程度。

1.零的作用:在1.0008中,“0” 是有效数字;在0.0382中,“0”定位作用,不是有效数字;在0.0040中,前面3个“0”不是有效数字,后面一个“0”是有效数字。

在3600中,一般看成是4位有效数字,但它可能是2位或3位有效数字,分别写3.6×103,3.60×103或3.600×103较好。

注意:1.单位变换不影响有效数字的位数。

例如:1.0L=1.0×103ml ,不能写成1000ml2. pH ,pM ,lgc ,lgK 等对数值,有效数字的位数取决于小数部分(尾数)位 数,因整数部分代表该数的方次。

如pH=11.20,有效数字的位数为两位。

3. 有效数字的位数,直接与测定的相对误差有关。

例:测定某物质的含量为0.5180g ,即0.5180±0.0001g 相对误差%02.0%10051801±=⨯±=Er课堂练习:一、下列数据包括几位有效数字:(1)0.0330 (2)10.030(3)0.01020(4)8.7×10-5(5)PKa=4.74(6) PH=10.00二、见课后题第11页11题2.1.2 有效数字的运算规则2.1.2.1有效数字的修约规则在处理数据过程中,涉及到的各测量值的有效数字位数可能不同,因此需要按下面所述的计算规则,确定各测量值的有效数字位数,有效数字确定后,就要将它后面多余的数字舍弃,此过程称为“数字修约”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:用0.5级量程为0~400mA电流表测100mA时,最 大相对误差为
xm 400 x1 s% 0.5% 2% x 100
用1.5级量程为0~100mA电流表测量100mA时的最大 相对误差为 x 100
x2
m
x
S%
100
1.5% 1.5%
分贝误差——相对误差的对数表示
用对数形式表示的误差,单位:dB。 电压增益的测得值为
Ax V 误差为 o Vi
A Ax A
用对数表示为增益测得值的分贝值
Gx 20 lg Ax ( dB)
增益的分贝误差
dB
A Gx G0 20lg(1 ) A
绝对误差?相对误差?
1.4 误差的分类 1.随机误差
第2章 测量误差及数据处理
1 误差的基本概念 2 误差的估计和处理 3 测量不确定度
4 最小二乘法处理(自学)
§1 误差的基本概念 1.1 误差的定义
测量的目的: 获得被测量的真值。
真值: 在一定的时间和空间环境条件下,被测量 本身所具有的真实数值。
测量误差 :
x x A
“测不准原理”:所有测量都有误差
x n x n
i 1 i
随机误差大小:测量结果与在重复性条件下,对同一被测 量进行无限多次测量所得结果的平均值之差
i xi x
( n )
2.系统误差
定义:在同一测量条件下,多次测量重复同一量时,测量 误差的绝对值和符号都保持不变,或在测量条件改变时按 一定规律变化的误差例如仪器的刻度误差和零位误差,或 值随温度变化的误差。 主要原因 : 仪器的制造、安装或使用方法不正确,环境因 素(温度、湿度、电源等)影响,测量原理中使用近似计 算公式,测量人员不良的读数习惯等。 系统误差表明了一个测量结果偏离真值或实际值的程度。 系差越小,测量就越准确。 在重复性条件下,对同一被测量进行无限多次测量所得结 果的平均值与被测量的真值之差。即
定义: 在同一测量条件下(指在测量环境、测量人员、 测量技术和测量仪器都相同的条件下),多次重复测 量同一量值时(等精度测量),每次测量误差的绝对 值和符号都以不可预知的方式变化,称为随机误差或 偶然误差,简称随差。
对测量值影响微小但却互不相关的大量因素共同造成。 噪声干扰、电磁场微变、零件的摩擦和配合间隙、热 起伏、空气扰动、大地微震、测量人员感官的无规律 变化等。
随机误差(续)
例:对一不变的电压在相同情况下,多次测量得到 1.235V,1.237V,1.234V,1.236V,1.235V, 1.237V。
单次测量的随差没有规律,
但多次测量的总体却服从统计规律。 可通过数理统计的方法来处理 x1 x2 xn ,即求算术平均值 1 n
1.3 误差的表示方法
绝对误差、相对误差 1.绝对误差
(1)定义:由测量所得到的被测量值与其真值之差
x x A0
实际应用中常用实际值A(高一级以上的测量仪器或计量器具 测量所得之值)来代替真值。
x x A
(2)修正值
修正值可以通过上一级标准的检定给出,可以是数值表格、 曲线或函数表达式等形式。
C x A x
2.相对误差
测量准确程度,不仅与绝对误差的大小,而且 与这个量本身的大小有关。 x 100% (1)相对真误差:与真值之比
A0
(2)实际相对误差:实际值之比
A
x 100% A
x (3)示值(标称)相对误差:用测量值之比 x x 100%
射击误差 示意图
1.6 有效数字的处理(自学)
1. 数字修约规则
由于测量数据和测量结果均是近似数,其位数各不相同。 为了使测量结果的表示准确唯一,计算简便,在数据处理 时,需对测量数据和所用常数进行修约处理。 数据修约规则: (1)小于5舍去——末位不变。 (2)大于5进1——在末位增1。 (3)等于5时,取偶数——当末位是偶数,末位不变;末位 是奇数,在末位增1(将末位凑为偶数)。 舍入应一次到位,不能逐位舍入。如0.69499 → 0.69 , 错误做法是:0.69499→0.6950→0.695→0.70。
测量点的最大相对误差
xm x S%ቤተ መጻሕፍቲ ባይዱx
在使用这类仪表测量时,应选择适当的量程,使示值尽可 能接近于满度值,指针最好能偏转在不小于满度值2/3以 上的区域。
某待测电流约为 100mA ,现有 0.5 级量程为 0 ~ 400mA和1.5级量程为0~100mA的两个电流表, 问用哪一个电流表测量较好?
x A0
系差和随差之间在一定条件下可以相互转化
3.粗大误差
粗大误差是一种显然与实际值不符的误差。 产生原因: ①测量操作疏忽和失误 如测错、读错、记错以及实验条 件未达到预定的要求而匆忙实验等。 ②测量方法不当或错误 如用普通万用表电压档直接测高 内阻电源的开路电压
③测量环境条件的突然变化 如电源电压突然增高或降低, 雷电干扰、机械冲击等引起测量仪器示值的剧烈变化 等。 含有粗差的测量值称为坏值或异常值,在数据处理时,应 剔除掉。
1.2 误差的来源
仪器误差:仪器设计、制造、检定等不完善,仪 器使用过程中老化、磨损、疲劳。 影响误差:环境(温度、湿度、振动、电源、电 磁场等)变化引起。
理论/方法误差:测量原理、近似公式、测量方法 不合理而造成的误差。
人身误差:测量人员感官的分辨能力、反应速度、 视觉疲劳、固有习惯、操作不当等引起的。 测量对象变化误差:测量过程中测量对象变化而 使得测量值不准确,引起动态误差等。
1.5 测量结果的表征
准确度: 系统误差。系统误差越小,则准确度越高,即测 量值与实际值符合的程度越高。 精密度: 随机误差。精密度越高,表示随机误差越小。随 机因素使测量值呈现分散而不确定,但总是分布在平均值 附近。
精确度:系统误差和随机误差的综合影响。精确度越高, 表示正确度和精密度都高,意味着系统误差和随机误差都 小。
(4)满度相对误差(引用相对误差): 一个量程范围内的最大绝对误差与该量程 值(上限值-下限值)之比
xm m 100% xm
xm m xm
满度相对误差应用 电工仪表就是按引用误差进行分级的。是仪表在工作条件 下不应超过的最大引用相对误差
我国电工仪表共分七级:0.1,0.2,0.5,1.0,1.5,2.5 及5.0。如果仪表为S级,则说明该仪表的最大引用误差 不超过S%
相关文档
最新文档