函数zhuanti

合集下载

中考数学考点:专题(50)函数的应用(含答案)

中考数学考点:专题(50)函数的应用(含答案)

专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

假设组团参加甲、乙两家旅行社两日游的人数均为x 人。

(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。

高中数学函数图象专题例题+练习

高中数学函数图象专题例题+练习

高中数学函数图象例1.作图:(1)y =a |x -1|,(2)y =log |(x -1)|a ,(3)y =|log a (x -1)|(a >1).例2.函数y =ln 1|2x -3|的图象为( )例3.函数f (x )=11+|x |的图象是( )例4.若函数y =(12)|1-x |+m 的图像与x 轴有公共点,则m 的取值范围是________.例5.已知函数f (x )=|x 2-4x +3|(1)求函数f (x )的单调区间,并指出其增减性;(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.1、设10<<a ,在同一直角坐标系中,函数xa y -=与)(log x y a -=的图象是( )2、函数||log 2x y =的图象大致是 ( )3、当1>a 时,在同一坐标系中函数xa y -=与xy a log =的图像( )4、 .函数y =1-11-x 的图象是( )5、已知下图①的图象对应的函数为y =f(x),则图②的图象对应的函数在下列给出的四式中,只可能是( )A .y =f(|x|)B .y =|f(x)|C .y =f(-|x|)D .y =-f(|x|)6、二次函数b ax y +=2与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为( )7、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11118、当a ≠0时,函数y a x b=+和y b a x=的图象只可能是 ( )9.函数y=2x+1的图象是( )10、函数lg ||x y x=的图象大致是 ( )。

指数函数复习专题(含详细解析)

指数函数复习专题(含详细解析)

第讲指数函数时间:年月日刘老师学生签名:一、兴趣导入二、学前测试1.在区间上为增函数的是( B )A.B.C .D.2.函数是单调函数时,的取值范围( A )A.B. C .D.3.如果偶函数在具有最大值,那么该函数在有( A )A.最大值B .最小值 C .没有最大值D.没有最小值4.函数,是( B )A.偶函数B .奇函数C.不具有奇偶函数D.与有关5.函数在和都是增函数,若,且那么( D )A .B.C.D.无法确定6.函数在区间是增函数,则的递增区间是( B )A.B.C.D.12三、方法培养☆专题1:指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .例1指出下列函数那些是指数函数:(1)4xy =(2)xy 4=(3)4xy -= (4))4(-=xy (5)π=y x(6)xy 24=(7)xxy =(8))1,21(()12≠>=-a a y a x解析:利用指数函数的定义解决这类问题。

解:(1),(5),(8)为指数函数变式练习1 1函数2(33)xy a a a=-+⋅是指数函数,则有( )A.a=1或a=2 B.a=1 C.a=2 D.a>0且1≠a 答案:C 2. 计算:105432)(0625.0833416--+++π; 解:(1)105432)(0625.0833416--+++π =(425)21+(827)31+(0.062 5)41+1-21=(25)2×21+(23)313⨯+(0.5)414⨯+21 =25+23+0.5+21 =5;☆专题2:指数函数的图像与性质一般地,指数函数y=a x在底数a >1及0<a <1这两种情况下的图象和性质如下表所示:a >10<a <1图象3性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时y=1④在R 上是增函数,当x <0时,0<y <1;当x >0时,y >1④在R 上是减函数,当x <0时,y >1;当x >0时,0<y <1在同一坐标系中作出y=2x和y=(21)x两个函数的图象,如图2-1-2-3.经过仔细研究发现,它们的图象关于y 轴对称.图2-1-2-3例3比较下列各题中的两个值的大小:(1)1.72.5与1.73; (2)0.8-0.1与0.8-0.2; (3)1.70.3与0.93.1. 利用函数单调性,①1.72.5与1.73的底数是1.7,它们可以看成函数y=1.7x,当x=2.5和3时的函数值;因为1.7>1,所以函数y=1.7x 在R 上是增函数,而2.5<3,所以1.72.5<1.73;②0.8-0.1与0.8-0.2的底数是0.8,它们可以看成函数y=0.8x,当x=-0.1和-0.2时的函数值;因为0<0.8<1,所以函数y=0.8x 在R 上是减函数,而-0.1>-0.2,所以0.8-0.1<0.8-0.2;③因为1.70.3>1,0.93.1<1,所以1.70.3>0.93.1..变式练习31.已知a=0.80.7,b=0.80.9,c=1.20.8,按大小顺序排列a,b,c.答案:b<a<c(a 、b 可利用指数函数的性质比较,而c 是大于1的).2. 若指数函数y=(2a -1)x是减函数,则a 的范围是多少? 答案:21<a <1. 3. 设m<1,f(x)=244+x x,若0<a<1,试求:(1)f(a)+f(1-a)的值; (2))10011000()10013()10012()10011(f f f f ++++ 的值. 活动:学生思考,观察,教师提示学生注意式子的特点,做这种题目,一定要有预见性,即第(2)问要用到第(1)问的结果,联系函数的知识解决.解:(1)f(a)+f(1-a)=24424411+++--a aa a=24444244+++a a a a=a a a 4244244•+++4=aa a 422244+++=2424++a a =1. (2))10011000()10013()10012()10011(f f f f ++++ =[)]1001501()1001500([)]1001999()10002([)]10011000()10001([f f f f f f ++++++=500×1=500.☆专题3:求函数的定义域与值域 例4求下列函数的定义域 (1)241-=x y (2)15-=x y解析:求定义域注意分母不为零,偶次根式里面为非负数。

函数专题复习

函数专题复习

函数 专题复习第一节 函数的概念教学目标:了解映射的概念,在此基础上加深对函数概念的理解;能根据函数的三要素判断两个函数是否为同一函数;理解分段函数的意义.教学重点:函数是一种特殊的映射,而映射是一种特殊的对应;函数的三要素中对应法则是核心,定义域是灵魂.教学内容:(一)主要知识:1.映射与函数的概念;2.函数的三要素及表示法,两个函数相同的条件;3.正确理解函数值的含义,掌握函数值的求法,会灵活解决有关函数值的问题;特别是涉及分段函数或复合函数的值的问题. (二)主要方法:1.对映射有两个关键点:一是有象,二是象惟一,缺一不可;2.对函数三要素及其之间的关系给以深刻理解,这是处理函数问题的关键; 3.理解函数和映射的关系,函数式和方程式的关系. (三)例题分析: 例1.(1)A R =,{|0}B y y =>,:||f x y x →=; (2)*{|2,}A x x x N =≥∈,{}|0,B y y y N =≥∈,2:22f x y x x →=-+;(3){|0}A x x =>,{|}B y y R =∈,:f x y →= 上述三个对应 是A 到B 的映射.例2.已知集合{}(,)|1M x y x y =+=,映射:f M N →,在f 作用下点(,)x y 的象是(2,2)x y ,则集合N =( )()A {}(,)|2,0,0x y x y x y +=>> ()B {}(,)|1,0,0x y xy x y =>>()C {}(,)|2,0,0x y xy x y =<< ()D {}(,)|2,0,0x y xy x y =>>例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是 ( )()A 8个 ()B 12个 ()C 16个 ()D 18个例4 设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)U (0,∞+) (D )(∞-,1-) (1,∞+)例5.矩形ABCD 的长8AB =,宽5AD =,动点E 、F 分别在BC 、CD 上,且CE CF x ==,(1)将AEF ∆的面积S 表示为x 的函数()f x ,求函数()S f x =的解析式; (2)求S 的最大值. (四)高考回顾:考题1 (2005山东)函数21sin(),10,(),0.x x x f x e x π-⎧-<<⎪=⎨≥⎪⎩,若()()21=+a f f 则a 的所有可能值为( )( A )1 (B )2-(C )1,2- (D )1,2考题2(2005浙江)设f (x )=|x -1|-|x |,则f [f (21)]= ( )(A) -21 (B)0 (C)21(D) 1考题3(2005江苏)若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(-1,0)和(0,1),则 ( )(A)a=2,b=2 (B)a= 2 ,b=2 (C)a=2,b=1 (D)a= 2 ,b= 2考题4(2006辽宁文)设0()ln 0x e x g x x x ⎧=⎨>⎩ ,, ,≤则12g g ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭考题5(2006安徽)函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =- 则()()5f f =_______________。

专题05 函数:定义域归类大全-

专题05 函数:定义域归类大全-

专题5 函数:定义域归类大全目录【题型一】开偶次方根函数定义域 .......................................................................................................................... 2 【题型二】解绝对值函数不等式求定义域 .............................................................................................................. 3 【题型三】抽象函数定义域1:(x)→f(g(x))型........................................................................................................ 4 【题型四】抽象函数定义域2:f(g(x))→f(x)型 ...................................................................................................... 6 【题型五】抽象函数定义域3:f(g(x))→f(h (x ))型 ............................................................................................ 7 【题型六】抽象函数定义域4:f(x)→ f(g (x ))+f(h (x )) ........................................................................... 8 【题型七】抽相与具体函数混合型 ........................................................................................................................ 10 【题型八】嵌入型(内外复合)函数型定义域 .................................................................................................... 11 【题型九】恒成立含参型 ........................................................................................................................................ 12 【题型十】对数函数定义域 .................................................................................................................................... 14 【题型十一】定义域:解指数函数不等式 ............................................................................................................ 15 【题型十二】 正切函数定义域 .............................................................................................................................. 16 【题型十三】解正弦函数不等式求定义域 ............................................................................................................ 17 【题型十四】解余弦函数不等式求定义域 ............................................................................................................ 19 【题型十五】求分段函数定义域 ............................................................................................................................ 20 【题型十六】实际应用题中的定义域应用 ............................................................................................................ 22 培优第一阶——基础过关练 .................................................................................................................................... 23 培优第二阶——能力提升练 .................................................................................................................................... 27 培优第三阶——培优拔尖练 (30)综述:常考函数的定义域: ①. ()()00f x f x ⇒≠⎡⎤⎣⎦; ②. ()()10f x f x ⇒≠; ()()0f x f x ⇒≥;②. ()()log 0a f x f x ⇒>; ②.()()tan ,2f x f x k k Z ππ⇒≠+∈;②.实际问题中,需根据实际问题限制范围.【题型一】开偶次方根函数定义域【典例分析】(2021·福建·厦门市海沧中学高一期中)函数()()31f x x x x -- ) A .[]0,3 B .[]1,3 C .[)3,+∞ D .(]1,3【答案】D【分析】根据二次根式的性质及二次不等式的解法即可得出结果.【详解】解:由题意可得()3010x x x ⎧-≥⎨->⎩,解得13x <≤. 【提分秘籍】 基本规律有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于01.(2022·全国·高一专题练习)已知函数()f x a x =-(,1]-∞,则实数a 的取值集合为( ) A .{1} B .(,1]-∞ C .[1,)+∞ D .(,1)(1,)-∞⋃+∞ 【答案】A【分析】求出函数的定义域,对比即可得出.【详解】由0a x -≥可得x a ≤,即()f x 的定义域为(,]a -∞,所以1a =, 则实数a 的取值集合为{}1. 故选:A.2.(2022·山东·临沂二十四中高一阶段练习)函数 2311y x x - 的定义域是( ) A .(],1-∞ B .()()1,00,1- C .[)(]1,00,1-D .(]0,1 【答案】C【分析】函数定义域满足23100x x ⎧-≥⎨≠⎩,求解即可【详解】由题, 函数定义域满足23100x x ⎧-≥⎨≠⎩,解得[)(]1,00,1x ∈-.故选:C3.(2022·全国·高一专题练习)函数()0(1)32f x x x =--的定义域为( ) A .2,3⎛⎫+∞ ⎪⎝⎭ B .()2,11,3∞⎛⎫⋃+ ⎪⎝⎭C .()2,11,3∞⎡⎫⋃+⎪⎢⎣⎭D .2,3⎡⎫-+∞⎪⎢⎣⎭【答案】B【分析】根据二次根式的被开方数大于等于0,分式的分母不为0,以及零次幂的底数不等于0,建立不等式组,求解即可.【详解】解:由已知得32>010x x -⎧⎨-≠⎩,解得2>3x 且1x ≠,所以函数()0(1)32f x x x =--的定义域为()2,11,3∞⎛⎫⋃+ ⎪⎝⎭, 故选:B.【题型二】解绝对值函数不等式求定义域【典例分析】.(2022·江苏·高一)函数0y x x=+ )A .()0,∞+B .(),0∞-C .()()0,11,+∞D .()()(),11,00,-∞-⋃-⋃+∞【答案】C【分析】根据0次幂的底数不等于0,偶次根式的被开方数非负,分母不等于0列不等式,解不等式即可求解.【详解】由题意可得:1000x x x x x ⎧-≠⎪+≥⎨⎪+≠⎩,解得:0x >且1x ≠,所以原函数的定义域为()()0,11,+∞,【提分秘籍】 基本规律 绝对值不等式:1.|f ()|()()f ()()x g x g x x g x <⇔-<<2.|f ()|()f ()()f ()()x g x x g x x g x >⇔><-或者【变式训练】1.(2022·广东·广州六中高一期末)函数24x y x x--___________.【答案】[2,0)-【分析】利用根式、分式的性质求函数定义域即可.【详解】由解析式知:240||0x x x ⎧-≥⎨-≠⎩,则220x x -≤≤⎧⎨<⎩,可得20x -≤<,②函数的定义域为[2,0)-. 故答案为:[2,0)-.2.(2021·江苏·常州市第二中学高一期中)函数()2|12|f x x =--________. 【答案】13,22⎡⎤-⎢⎥⎣⎦##1322x x ⎧⎫-≤≤⎨⎬⎩⎭【分析】根据解析式的形式得到关于x 的不等式,解不等式后可得函数的定义域. 【详解】解:由题设可得2120x --≥,即122x -≤,故2122x -≤-≤,所以1322x -≤≤,故答案为:13,22⎡⎤-⎢⎥⎣⎦.3.(2021·北京市第九中学高一期中)函数|23|1y x =--________. 【答案】(,1][2,)-∞⋃+∞【分析】满足函数有意义的条件,即2310x --≥,解得定义域. 【详解】由题知,2310x --≥, 解得2x ≥或1x ≤,故函数的定义域为:(,1][2,)-∞⋃+∞ 故答案为:(,1][2,)-∞⋃+∞【题型三】抽象函数定义域1:(x)→f(g(x))型【典例分析】(2022·江西·修水中等专业学校模拟预测)已知函数()y f x =的定义域为[]1,5-,则函数()221y f x =-的定义域为( )A .[]0,3B .[]3.3-C .[3,3]-D .[]3,0-【答案】C【分析】由题可知解21215x -≤-≤即可得答案.【详解】解:因为函数()y f x =的定义域为[]1,5-, 所以,21215x -≤-≤,即203x ≤≤,解得33x ≤≤所以,函数()221y f x =-的定义域为[3,3]故选:C【提分秘籍】 基本规律已知()f x 的定义域为[,]a b ,求(())f g x 的定义域:解不等式()a g x b ≤≤即可得解1.(2022·全国·高一专题练习)已知()13x f x x--,则()1f x +的定义域为( )A .()(),11,3-∞⋃B .()(),22,4-∞⋃C .)(),00,2-∞ D .(),2-∞【答案】C【分析】先求得()f x 的定义域,然后将1x +看作一个整体代入计算即可.【详解】由题可知:10330x x x -≠⎧⇒<⎨->⎩且1x ≠ 所以函数定义域为{3x x <且}1x ≠令13x +<且11x +≠,所以2x <且0x ≠所以()(),00,2x ∈-∞,所以()1f x +的定义域为()(),00,2-∞故选:C2.(2015·上海·闵行中学高一期中)已知函数()1y f x =+的定义域为[]23-,,则函数()21y f x =-的定义域为( )A .502⎡⎤⎢⎥⎣⎦,B .[]14-,C .5522⎡⎤-⎢⎥⎣⎦,D .3722⎡⎤-⎢⎥⎣⎦,【答案】C【分析】先求1x +取值范围,再根据两函数关系得21x -取值范围,解得结果为所求定义域. 【详解】因为函数()1y f x =+的定义域为[]23-,,所以1[1,4]x +∈-,因此55[1,4]02||51222x x x ∈-∴≤≤∴≤≤--即函数()21y f x =-的定义域为5522⎡⎤-⎢⎥⎣⎦,故选:C3.(2018·江西·南康中学高一期中)已知函数()f x 的定义域为[3,)+∞,则函数1(1)f x+的定义域为( )A .4(,]3-∞B .4(1,]3C .1(0,]2D .1(,]2-∞【答案】C【分析】由已知函数定义域,可得113x+≥,求解分式不等式得答案.【详解】解:②函数()f x 的定义域为[3,)+∞,②由113x +≥,得12x ≥,则102x <≤.②函数1(1)f x +的定义域为1(0,]2.故选:C .【题型四】抽象函数定义域2:f(g(x))→f(x)型【典例分析】(2023·全国·高一专题练习)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【分析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+, 1y x x =-在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,f x ∴的定义域为1,2.故答案为:1,2.【提分秘籍】 基本规律已知(())f g x 的定义域为[,]a b ,求()f x 的定义域:求出()y g x =在[,]a b 上的值域即可得解1.(2019·陕西·渭南市尚德中学高一阶段练习)若函数(1)f x -的定义域为[1,2]-,那么函数()f x 中的x 的取值范围是________. 【答案】[2,1]-【分析】根据函数(1)f x -的定义域求出()f x 的定义域即可. 【详解】解:函数(1)f x -的定义域为[1-,2], 即12x -≤≤ 211x ∴-≤-≤ 1[2x ∴-∈-,1],故函数()f x 的定义域为[2,1]-, 故答案为:[2,1]-.2.(2020·山西·太原五中高一阶段练习)若函数(21)f x -的定义域为[0,1],则函数()f x 的定义域为( ) A .[1,0]- B .[3,0]- C .[0,1] D .[1,1]- 【答案】D【解析】由函数(21)f x -的定义域为[0,1],可求出1211-≤-≤x ,令x 代替21x -,可得11x -≤≤,即可求出函数()f x 的定义域.【详解】因为函数(21)f x -的定义域为[0,1], 由01x ,得1211-≤-≤x , 所以()y f x =的定义域是[1,1]-, 故选:D3.(2023·全国·高一专题练习)已知()21f x -的定义域为3,3⎡⎤-⎣⎦,则()f x 的定义域为 ( )A .[]22-,B .[]0,2C .[]1,2-D .3,3⎡-⎣【答案】C【分析】由33x -≤21x -的范围,然后可得答案. 【详解】因为2(1)f x -的定义域为[3,3],所以33x -≤所以2112x -≤-≤,所以()f x 的定义域为[1,2]-. 故选:C【题型五】抽象函数定义域3:f(g(x))→f(h (x ))型【典例分析】(2022·全国·高一课时练习)函数()3=-y f x 的定义域为[]4,7,则()2y f x =的定义域为( ) A .()1,4B .[]1,2C .()()2,11,2--⋃D .[][]2,11,2-- 【答案】D【分析】利用抽象函数的定义域解法结合一元二次不等式的解法即可求解. 【详解】解:因为函数()3=-y f x 的定义域为[]4,7所以47x ≤≤即134x ≤-≤所以214x ≤≤解得:[][]2,11,2x ∈--⋃所以()2y f x =的定义域为[][]2,11,2--故选:D.【提分秘籍】 基本规律已知(())f g x 的定义域为[,]a b ,求(h x )f ()的定义域:一般情况下,g (x )在[,]a b 值域与h (x )值域一致,解出其x 值即可1.(2021·辽宁·沈阳市第一中学高一期中)函数()1f x +的定义域为[]1,2-,则函数()2f x 的定义域为( )A .1,12⎡⎤-⎢⎥⎣⎦B .1,12⎡⎤⎢⎥⎣⎦C .31,2⎡⎤⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦【答案】D【分析】当[]1,2x ∈-得到[]1,13x +∈,根据123x ≤≤解得答案.【详解】函数()1f x +的定义域为[]1,2-,即[]1,2x ∈-,故[]0,2x ∈,[]1,13x +∈.123x ≤≤,解得13,22x ⎡⎤∈⎢⎥⎣⎦.故选:D.2.(2022·全国·高一课时练习)若函数()22f x -的定义域为[]1,3-,则函数()f x的定义域为______;若函数()23f x -的定义域为[)1,3,则函数()13f x -的定义域为______.【答案】 []2,7- 22,33⎛⎤- ⎥⎝⎦【分析】根据抽象函数定义域求解即可.【详解】因为函数()22f x -的定义域为[]1,3-,即13x -≤≤,所以209x ≤≤,2227x -≤-≤,故函数()f x 的定义域为[]2,7-.因为函数()23f x -的定义域为[)1,3,即13x ≤<,所以1233x -≤-<,则函数()f x 的定义域为[)1,3-,令1133x -≤-<,得2233x -<≤,所以函数()13f x -的定义域为22,33⎛⎤- ⎥⎝⎦.故答案为: []2,7-,22,33⎛⎤- ⎥⎝⎦3.(2022·黑龙江·牡丹江市第三高级中学高一阶段练习)(21)f x -的定义域为[0,1),则(13)f x -的定义域为( )A .(2,4]-B .12,2⎛⎤- ⎥⎝⎦ C .20,3⎛⎤ ⎥⎝⎦ D .10,6⎛⎤⎥⎝⎦【答案】C【分析】先由[0,1)x ∈,求出21x -的范围,可求出()f x 的定义域,而对于相同的对应关系,21x -的范围和13x -相同,从而可求出(13)f x -的定义域. 【详解】因为01x ≤<,所以022x ≤<,所以1211x -≤-<,所以()f x 的定义域为[1,1)-,所以由1131x -≤-<,得203x <≤,所以(13)f x -的定义域为20,3⎛⎤⎥⎝⎦,故选:C【题型六】抽象函数定义域4:f(x)→ f(g (x ))+f(h (x ))【典例分析】(2021·全国·高一单元测试)已知函数()f x 的定义域为0,1,若10,2c ⎛⎫∈ ⎪⎝⎭,则函数()()()g x f x c f x c =++-的定义域为( )A .(),1c c --B .(),1c c -C .()1,c c -D .(),1c c +【答案】B【分析】由已知函数的定义域有0101x c x c <+<⎧⎨<-<⎩,即可求复合函数的定义域.【详解】由题意得:0101x c x c <+<⎧⎨<-<⎩,即11c x c c x c-<<-⎧⎨<<+⎩,又10,2c ⎛⎫∈ ⎪⎝⎭,②1c x c <<-. 故选:B【提分秘籍】基本规律1.如f(x)→ f(g (x ))+f(h (x ))型,则 f(g (x ))与f(h (x ))定义域交集即可2.f(r (x ))→ f(g (x ))+f(h (x ))型,同上,思维一致。

专题02 函数的概念与基本初等函数(解析版)

专题02 函数的概念与基本初等函数(解析版)

专题02函数的概念与基本初等函数1.【2019年天津理科06】已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为()A.a<c<b B.a<b<c C.b<c<a D.c<a<b【解答】解:由题意,可知:a=log52<1,b=log0.50.2log25>log24=2.c=0.50.2<1,∴b最大,a、c都小于1.∵a=log52,c=0.50.2.而log25>log24=2,∴.∴a<c,∴a<c<b.故选:A.2.【2019年天津理科08】已知a∈R.设函数f(x)若关于x的不等式f(x)≥0在R上恒成立,则a的取值范围为()A.[0,1] B.[0,2] C.[0,e] D.[1,e]【解答】解:当x=1时,f(1)=1﹣2a+2a=1>0恒成立;当x<1时,f(x)=x2﹣2ax+2a≥0⇔2a恒成立,令g(x)(1﹣x2)≤﹣(22)=0,∴2a≥g(x)max=0,∴a>0.当x>1时,f(x)=x﹣alnx≥0⇔a恒成立,令h(x),则h′(x),当x>e时,h′(x)>0,h(x)递增,当1<x<e时,h′′(x)<0,h(x)递减,∴x=e时,h(x)取得最小值h(e)=e,∴a≤h(x)e,综上a的取值范围是[0,e].故选:C.3.【2019年新课标3理科11】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)【解答】解:∵f(x)是定义域为R的偶函数∴,∵log34>log33=1,,∴0f(x)在(0,+∞)上单调递减,∴,故选:C.4.【2019年全国新课标2理科12】设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x﹣1).若对任意x∈(﹣∞,m],都有f(x),则m的取值范围是()A.(﹣∞,] B.(﹣∞,] C.(﹣∞,] D.(﹣∞,]【解答】解:因为f(x+1)=2f(x),∴f(x)=2f(x﹣1),∵x∈(0,1]时,f(x)=x(x﹣1)∈[,0],∴x∈(1,2]时,x﹣1∈(0,1],f(x)=2f(x﹣1)=2(x﹣1)(x﹣2)∈[,0];∴x∈(2,3]时,x﹣1∈(1,2],f(x)=2f(x﹣1)=4(x﹣2)(x﹣3)∈[﹣1,0],当x∈(2,3]时,由4(x﹣2)(x﹣3)解得m或m,若对任意x∈(﹣∞,m],都有f(x),则m.故选:B.5.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.6.【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.C.D.【解答】解:由函数y,y=1og a(x),当a>1时,可得y是递减函数,图象恒过(0,1)点,函数y=1og a(x),是递增函数,图象恒过(,0);当1>a>0时,可得y是递增函数,图象恒过(0,1)点,函数y=1og a(x),是递减函数,图象恒过(,0);∴满足要求的图象为:D故选:D.7.【2019年浙江09】设a,b∈R,函数f(x)若函数y=f(x)﹣ax﹣b 恰有3个零点,则()A.a<﹣1,b<0 B.a<﹣1,b>0 C.a>﹣1,b<0 D.a>﹣1,b>0【解答】解:当x<0时,y=f(x)﹣ax﹣b=x﹣ax﹣b=(1﹣a)x﹣b=0,得x;y=f(x)﹣ax﹣b最多一个零点;当x≥0时,y=f(x)﹣ax﹣b x3(a+1)x2+ax﹣ax﹣b x3(a+1)x2﹣b,y′=x2﹣(a+1)x,当a+1≤0,即a≤﹣1时,y′≥0,y=f(x)﹣ax﹣b在[0,+∞)上递增,y=f(x)﹣ax﹣b最多一个零点.不合题意;当a+1>0,即a<﹣1时,令y′>0得x∈[a+1,+∞),函数递增,令y′<0得x∈[0,a+1),函数递减;函数最多有2个零点;根据题意函数y=f(x)﹣ax﹣b恰有3个零点⇔函数y=f(x)﹣ax﹣b在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如右图:∴0且,解得b<0,1﹣a>0,b(a+1)3.故选:C.8.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9.【2018年新课标2理科11】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.10.【2018年新课标3理科12】设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3,b=log20.3,∴,,∵,,∴ab<a+b<0.故选:B.11.【2018年上海16】设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1),,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.12.【2018年北京理科04】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f【解答】解:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为:.故选:D.13.【2018年天津理科05】已知a=log2e,b=ln2,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log2e>1,0<b=ln2<1,c log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.14.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.15.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.16.【2017年浙江05】若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()A.与a有关,且与b有关B.与a有关,但与b无关C.与a无关,且与b无关D.与a无关,但与b有关【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x为对称轴的抛物线,①当1或0,即a<﹣2,或a>0时,函数f(x)在区间[0,1]上单调,此时M﹣m=|f(1)﹣f(0)|=|a+1|,故M﹣m的值与a有关,与b无关②当1,即﹣2≤a≤﹣1时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)>f(1),此时M﹣m=f(0)﹣f(),故M﹣m的值与a有关,与b无关③当0,即﹣1<a≤0时,函数f(x)在区间[0,]上递减,在[,1]上递增,且f(0)<f(1),此时M﹣m=f(1)﹣f()=1+a,故M﹣m的值与a有关,与b无关综上可得:M﹣m的值与a有关,与b无关故选:B.17.【2017年北京理科05】已知函数f(x)=3x﹣()x,则f(x)()A.是奇函数,且在R上是增函数B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数D.是偶函数,且在R上是减函数【解答】解:f(x)=3x﹣()x=3x﹣3﹣x,∴f(﹣x)=3﹣x﹣3x=﹣f(x),即函数f(x)为奇函数,又由函数y=3x为增函数,y=()x为减函数,故函数f(x)=3x﹣()x为增函数,故选:A.18.【2017年北京理科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴1093,故选:D.19.【2017年天津理科06】已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b =g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.20.【2017年天津理科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A.[,2] B.[,] C.[﹣2,2] D.[﹣2,]【解答】解:当x≤1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣x2+x﹣3a≤x2﹣x+3,即有﹣x2x﹣3≤a≤x2x+3,由y=﹣x2x﹣3的对称轴为x1,可得x处取得最大值;由y=x2x+3的对称轴为x1,可得x处取得最小值,则a①当x>1时,关于x的不等式f(x)≥|a|在R上恒成立,即为﹣(x)a≤x,即有﹣(x)≤a,由y=﹣(x)≤﹣22(当且仅当x1)取得最大值﹣2;由y x22(当且仅当x=2>1)取得最小值2.则﹣2a≤2②由①②可得,a≤2.另解:作出f(x)的图象和折线y=|a|当x≤1时,y=x2﹣x+3的导数为y′=2x﹣1,由2x﹣1,可得x,切点为(,)代入y a,解得a;当x>1时,y=x的导数为y′=1,由1,可得x=2(﹣2舍去),切点为(2,3),代入y a,解得a=2.由图象平移可得,a≤2.故选:A.21.【2019年全国新课标2理科14】已知f(x)是奇函数,且当x<0时,f(x)=﹣e ax.若f(ln2)=8,则a=.【解答】解:∵f(x)是奇函数,∴f(﹣ln2)=﹣8,又∵当x<0时,f(x)=﹣e ax,∴f(﹣ln2)=﹣e﹣aln2=﹣8,∴﹣aln2=ln8,∴a=﹣3.故答案为:﹣322.【2019年江苏04】函数y的定义域是.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y的定义域是[﹣1,7].故答案为:[﹣1,7].23.【2019年江苏14】设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x),g(x)其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x),x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k(k>0),∵两点(﹣2,0),(1,1)连线的斜率k,∴k.即k的取值范围为[,).故答案为:[,).24.【2018年江苏05】函数f(x)的定义域为.【解答】解:由题意得:log2x≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).25.【2018年江苏09】函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x),则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1|,f()=cos()=cos,即f(f(15)),故答案为:26.【2018年浙江11】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.27.【2018年浙江15】已知λ∈R,函数f(x),当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.【解答】解:当λ=2时函数f(x),显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).28.【2018年上海04】设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.29.【2018年上海07】已知α∈{﹣2,﹣1,,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.30.【2018年上海11】已知常数a>0,函数f(x)的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=.【解答】解:函数f(x)的图象经过点P(p,),Q(q,).则:,整理得:1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:631.【2018年北京理科13】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是.【解答】解:例如f(x)=sin x,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sin x.32.【2018年天津理科14】已知a>0,函数f(x).若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a,设g(x),则g′(x),由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a设h(x),则h′(x),由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)33.【2017年江苏14】设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x),其中集合D={x|x,n∈N*},则方程f(x)﹣lgx=0的解的个数是.【解答】解:∵在区间[0,1)上,f(x),第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x),此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点,且除了(1,0),其他交点横坐标均为无理数;即方程f(x)﹣lgx=0的解的个数是8,故答案为:834.【2017年新课标3理科15】设函数f(x),则满足f(x)+f(x)>1的x的取值范围是.【解答】解:若x≤0,则x,则f(x)+f(x)>1等价为x+1+x1>1,即2x,则x,此时x≤0,当x>0时,f(x)=2x>1,x,当x0即x时,满足f(x)+f(x)>1恒成立,当0≥x,即x>0时,f(x)=x1=x,此时f(x)+f(x)>1恒成立,综上x,故答案为:(,+∞).35.【2017年浙江17】已知a∈R,函数f(x)=|x a|+a在区间[1,4]上的最大值是5,则a的取值范围是.【解答】解:由题可知|x a|+a≤5,即|x a|≤5﹣a,所以a≤5,又因为|x a|≤5﹣a,所以a﹣5≤x a≤5﹣a,所以2a﹣5≤x5,又因为1≤x≤4,4≤x5,所以2a﹣5≤4,解得a,故答案为:(﹣∞,].36.【2017年上海08】定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)为奇函数,则f﹣1(x)=2的解为.【解答】解:若g(x)为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2,可得f﹣1(x)=2的解为x.故答案为:.37.【2017年上海09】已知四个函数:①y=﹣x,②y,③y=x3,④y,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为.【解答】解:给出四个函数:①y=﹣x,②y,③y=x3,④y,从四个函数中任选2个,基本事件总数n,③④有两个公共点(0,0),(1,1).事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A).故答案为:.38.【2019年江苏18】如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB (AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA,规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•1,解得x1=﹣17,所以P(﹣17,0),PB15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•1,解得x2,Q(,0),由﹣17<﹣8,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.39.【2018年上海19】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f (x )=2x90>40,即x 2﹣65x +900>0,解得x <20或x >45,∴x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2)当0<x ≤30时,g (x )=30•x %+40(1﹣x %)=40;当30<x <100时,g (x )=(2x 90)•x %+40(1﹣x %)x +58;∴g (x );当0<x <32.5时,g (x )单调递减; 当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2 B .4C .2±D .4±【答案】C 【解析】依题意,函数()f x 为偶函数.由于()sin m x x =为奇函数,故(()ln g x ax =也为奇函数.而(()ln g x ax -=-+,故((()()ln ln 0g x g x ax ax -+=-+++=,即()222ln 140x a x +-=,解得2a =±.故选:C.2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 【答案】B 【解析】根据题意,因为f (x )是定义在R 上的偶函数,且在区间(一∞,0]为增函数, 所以函数f (x )在[0,+∞)上为减函数,由f (3)=0,则不等式f (1﹣2x )>0⇒f (1﹣2x )>f (3)⇒|1﹣2x|<3, 解可得:﹣1<x <2,即不等式的解集为(﹣1,2). 故选:B .3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<【答案】C 【解析】∵f (x )为偶函数∴()()22f log 3?f log 3-= ∵320log 21,log 31,< f (x )在[0,+∞)内单调递减,∴()()()23f log 3f log 2f 0<<,即()()()23f log 3f log 2f 0-<<故选:C4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln 3c =,则( ) A .a b c >> B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】1.21222a =>=5552log 2log 4log 51b ==<=且55log 4log 10b =>=1ln ln3ln 13c e ==-<-=-即1012c b a <-<<<<<a b c ∴>>本题正确选项:A5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -【答案】B 【解析】因为()()()()22222213log log log 42222x xf x f x x x -++-=+==--- 故函数()f x 关于点(2,1)对称,则()4f a -=2b - 故选:B6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称【答案】D 【解析】由题意知:()()()()()()222222122111x x x x x x xf x x x x ----'===---当()0,1x ∈时,()0f x '<,则()f x 在()0,1上单调递减,A 错误; 当10x -<时,()0f x <,可知()f x 最小值为4不正确,B 错误;()()()22221x f x f x x --=≠--,则()f x 不关于1x =对称,C 错误; ()()()()2211114x x f x f x xx+-++-=+=-,则()f x 关于()1,2对称,D 正确.本题正确选项:D7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-1【答案】B 【解析】由()()()42f x f x f x +=-+=得:()f x 的周期为4 又()f x 为奇函数()11f ∴=,()()200f f =-=,()()()3111f f f =-=-=-,()()400f f ==即:()()()()12340f f f f +++=()()()()()()()()()1232019505123440f f f f f f f f f ∴+++⋅⋅⋅=⨯+++-=⎡⎤⎣⎦本题正确选项:B8.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞- B .()1,0-C .()0,4D .()()0,11,4【答案】D 【解析】 解:y 211111111x x x x x x x -+-⎧==⎨----⎩,>或<,<<, 画出函数y =kx ﹣2,y 211x x -=-的图象,由图象可以看出,y =kx ﹣2图象恒过A (0,﹣2),B (1,2),AB 的斜率为4,①当0<k <1时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;②当k =1时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点,即方程211x x -=-kx ﹣2有1个不同的实数根;③当1<k <4时,函数y =kx ﹣2,y 211x x -=-的图象有两个交点,即方程211x x -=-kx ﹣2有两个不同的实数根;④当k 0≤时,函数y =kx ﹣2,y 211x x -=-的图象有1个交点.因此实数k 的取值范围是0<k <1或1<k <4. 故选:D .9.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】()12xf x ⎛⎫= ⎪⎝⎭在R 上递减,∴若011,0,122m nm n m n -⎛⎫⎛⎫<-<>= ⎪ ⎪⎝⎭⎝⎭充分性成立, 若112m n-⎛⎫> ⎪⎝⎭,则01122m n-⎛⎫⎛⎫> ⎪⎪⎝⎭⎝⎭, 0,m n m n -<<必要性成立,即“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的充要条件,故选C.10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

专题12 一次函数(归纳与讲解)(解析版)

专题12 一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x 轴交点的横坐标.3、y=kx+b与不等式kx+b>0从函数值的角度看,不等式kx+b>0的解集为使函数值大于零(即kx+b>0)的x的取值范围;从图象的角度看,由于一次函数的图象在x轴上方时,y>0,因此kx+b>0的解集为一次函数在x 轴上方的图象所对应的x的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值. 2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式. 4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值. 5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值. 【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是( )7.若函数y =⎩⎪⎨⎪⎧x 2+6(x≤3),5x (x>3),则当y =20时,自变量x 的值是( )A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围. 【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是( )11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0. 参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1, 解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1, 当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x =1时y =9,即k +b =9. ②若k<0,则y 随x 的增大而减小, 则当x =1时y =1,即k +b =1. 综上可知,k +b 的值为9或1. 5.解:因为点P 到x 轴的距离为4,所以|a|=4,所以a =±4,当a =4时,P(2,4), 此时4=-2+m ,解得m =6. 当a =-4时,同理可得m =-2. 综上可知,m 的值为-2或6.6.D 7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y =450-9x ,自变量x 的取值范围是0≤x≤50,且x 为整数. 9.D 10.A 11.<;≥技巧2:一次函数的两种常见应用 【类型】一、利用一次函数解决实际问题 题型1:行程问题1.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km )与甲车行驶的时间t(h )之间的函数关系如图所示,则下列结论:①A ,B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ; ③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154.其中正确的结论有( )A .1个B .2个C .3个D .4个2.甲、乙两地相距300 km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km )与时间x(h )之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km )与时间x(h )之间的函数关系,根据图像,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ; (2)求线段DE 对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h )之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P 在CD 上运动时S 与t 之间的函数表达式; (3)当t 为何值时,△APD 的面积为10 cm 2?题型5:利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A→B→C→D 的方向运动到点D.如图,设动点P 所经过的路程为x ,△APD 的面积为y.(当点P 与点A 或D 重合时,y =0)(1)写出y 与x 之间的函数表达式; (2)画出此函数的图像.参考答案 1.B 2.解:(1)0.5(2)设线段DE 对应的函数表达式为y =kx +b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y =kx +b 可得⎩⎪⎨⎪⎧80=2.5k +b ,300=4.5k +b.解得⎩⎪⎨⎪⎧k =110,b =-195.所以y =110x -195(2.5≤x≤4.5).(3)设线段OA 对应的函数表达式为y =k 1x(0≤x≤5). 将A(5,300)的坐标代入y =k 1x 可得300=5k 1, 解得k 1=60.所以y =60x(0≤x≤5). 令60x =110x -195,解得x =3.9.故轿车从甲地出发后经过3.9-1=2.9(h )追上货车.3.解:(1)设甲组加工零件的数量y 与时间x 之间的函数表达式为y =kx ,因为当x =6时,y =360,所以k =60,即甲组加工零件的数量y 与时间x 之间的函数表达式为y =60x(0≤x≤6). (2)a =100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h 时共加工零件100+60×2.8=268(件), 所以装满第1箱的时刻在2.8 h 后. 设经过x 1 h 恰好装满第1箱.则60x 1+100÷2×2(x 1-2.8)+100=300,解得x 1=3.从x =3到x =4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件), 所以x>4.8时,才能装满第2箱,此时只有甲组继续加工. 设装满第1箱后再经过x 2 h 装满第2箱. 则60x 2+(4.8-3)×100÷2×2=300,解得x 2=2.故经过3 h 恰好装满第1箱,再经过2 h 恰好装满第2箱. 4.解:(1)y 甲=477x ,y 乙=⎩⎪⎨⎪⎧530x (0≤x≤3),424x +318(x >3).(2)当477x =424x +318时, 解得x =6,即当x =6时,到甲、乙两个商场购买所需费用相同; 当477x<424x +318时,解得x<6,又x≥4,于是当4≤x <6时,到甲商场购买合算; 当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题. 6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10 cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时, y =12×4x =2x ; ②当点P 在边BC 上运动,即3≤x <7时, y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x≤10时, y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数表达式为 y =⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x≤10). (2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用 【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2的解为( )A .⎩⎪⎨⎪⎧x =3y =1B .⎩⎪⎨⎪⎧x =1y =3C .⎩⎪⎨⎪⎧x =0y =4D .⎩⎪⎨⎪⎧x =4y =02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)用作图像的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( ) A .(4,6) B .(-4,6) C .(4,-6) D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝⎛⎭⎫0,-37D .⎝⎛⎭⎫-37,0 【类型】三、方程组的解与两个一次函数图像位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( )A .无解B .有唯一解C .有两个解D .有无数解 【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式. 9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案 1.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解是⎩⎪⎨⎪⎧x =1,y =2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3. 3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1),所以方程组的解为⎩⎪⎨⎪⎧x =3,y =1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 轴的交点坐标为⎝⎛⎭⎫52,0,又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×⎝⎛⎭⎫4-52×1=34. 4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =-1,-k +b =3,解得⎩⎪⎨⎪⎧k =-2,b =1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以B ⎝⎛⎭⎫34,0, 把A(3,-3),B ⎝⎛⎭⎫34,0的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1. 则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1), 所以OC =1,又B ⎝⎛⎭⎫34,0,所以OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______. 【答案】m=﹣3 【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数, ∵29030m m -⎧⎨-≠⎩=解得m=-3. 故答案是:-3.【题型】二、正比例函数的图像与性质 例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为( ) A .12y y < B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点, ∵112y =,21y =, ∵112<, ∵12y y <. 故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可. 【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小, ∵k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可. 【详解】解:∵m <﹣2, ∵m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限, 故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是( ) A .2k + B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案. 【详解】∵一次函数2y kx =+中0k <, ∵y 随x 的增大而减小, ∵12x ≤≤,∵当1x =时,122y k k =⨯+=+最大, 故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集. 【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∵直线解析式为:112y x =-+, 将y=2代入得1212x =-+,解得x=-2,∵不等式2kx b +≤的解集是2x ≥-, 故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( ) A .5x =- B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∵将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0) ∵当y=0时,方程()530k x -+=的解为x=3, 故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-, 整理kx b x +≥得,()10k x b -+≥, ∵0bx b -+≥, 由图像可知0b >, ∵10x -≤, ∵1x ≤, 故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则∵AOB 的面积为( ) A .2 B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y=x+3中,令y=0,得x=﹣3,解32y xy x=+⎧⎨=-⎩得,12xy=-⎧⎨=⎩,∵A(﹣3,0),B(﹣1,2),∵∵AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y =kx+b ,得 0 1.680 2.6k bk b =+⎧⎨=+⎩,解得: 80128k b =⎧⎨=-⎩,∵y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1); (2)根据图象可知:货车甲的速度是80÷1.6=50(km/h ) ∵货车甲正常到达B 地的时间为200÷50=4(小时), 18÷60=0.3(小时),4+1=5(小时), 当y =200﹣80=120 时, 120=80x ﹣128, 解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时, ∵1.6v≥120, 解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是( )A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2, ∵y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4), ∵它的图象可能是B 选项, 故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是( ) A .0k > B .0k = C .0k < D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论. 【详解】∵1212,y y -<>, ∵函数y 随x 的增大而减小. ∵k <0, 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键. 3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为( ) A.-1 B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限, ∵0m >,∵m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过( )A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可. 【详解】解:∵31y x =-+中0k <, ∵一次函数图象经过第二、四象, ∵ 0b >,∵ 一次函数图象经过一、二、四象限. 故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键. 5.若23y x b =+-,y 是x 的正比例函数,则b 的值是( ) A .0 B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值. 【详解】解:∵y 是x 的正比例函数, ∵23=0b -, 解得:23b =, 故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______. 【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-, 故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________. 【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4, 即y =2x -4, 故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式. (2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠? 【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =, ∵184020k =, ∵142k =, ∵1142y x =;乙商店:当0<x≤20时,设22y k x =, ∵2100020k =, ∵250k =, ∵250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+, ∵()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=, ∵x =100,y =4200, ∵m =100,∵m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元; (3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-的图象如图所示,()01k -有意义的k 的值可能为( )A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意. 故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若∵ABC 的面积为6,则m 的值为( ) A .1 B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据∵ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点, 当x =0时,y =4, ∵点B (0,4), ∵OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点, ∵AC =m ,∵∵ABC 的面积为6, ∵1462m , 解得:m =3. 故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是( )A .B .C .D .【答案】C【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小, ∵-k <0,即k >0,∵一次函数y =-kx +k 的图象经过一、二、四象限. 故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质: ∵当k >0,b >0时,图象过一、二、三象限; ∵当k >0,b <0时,图象过一、三、四象限; ∵当k <0,b >0时,图象过一、二、四象限; ∵当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为( ) A .1 B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中, 令0x =,则2y m =,∵一次函数32y x m =-+与y 轴的交点为(0,2m ), ∵点(0,2m )与原点关于直线1y =对称, ∵22m =, ∵1m =; 故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题. 5.甲、乙两自行车运动爱好者从A 地出发前往B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是( )A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km 【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意; 甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ), 3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;。

函数性质专题(含详细答案)


,故其周期为 ,
对称.
.所以做示意图
第 10页(共 18 页)
17. D 【解析】由
函数,且
,所以
知, ,
的周期 ,
,又 ,故
是定义在 上的奇
18. B 【解析】对于选项 A,
为增函数,
为减函数,故
对于选项 B,
,故
为增函数,
对于选项 C,函数的定义域为
,不为 ,
对于选项 D,函数
为偶函数,在
上单调递减,在
时,都有
,设
,则
,故函数

上是增函数,根据对称性,易知函数

上是减函数,根据周期性,函数
A.
B.
18. 下列函数中,定义域是 且为增函数的是
A.
B.
19. 对于函数 ,所得出的正确结果可能是
A. 和
B. 和
C.
D.
C.
D.
,选取 , , 的一组值计算

C. 和
D. 和
20. 设函数
的最小值为 ,则实数 的取值范围是
A.
B.
C.
D.
21. 已知函数
,给出下列命题:①
必是偶函数;②当
时,
的图象必关于直线
对称;③若
,则
在区间
上是增函数;④
有最大值
,其中正确命题是
A. ①②
B. ②③
C. ①③
D. ③
22. 定 义 在
上的函数
满足
,当
时,
;当
时,
,则
A.
B.
23. 已知定义在 上的奇函数
满足
C.
D.
,且在区间

全国高考数学复习:专题(含参函数的单调性讨论)重点讲解与练习(附答案)

全国高考数学复习:专题(含参函数的单调性讨论)重点讲解与练习【方法总结】分类讨论思想研究函数的单调性讨论含参函数的单调性,其本质就是讨论导函数符号的变化情况,所以讨论的关键是抓住导函数解析式中的符号变化部分,即导数的主要部分,简称导主.讨论时要考虑参数所在的位置及参数取值对导函数符号的影响,一般来说需要进行四个层次的分类:(1)最高次幂的系数是否为0,即“是不是”;(2)导函数是否有变号零点,即“有没有”;(3)导函数的变号零点是否在函数定义域或指定区间内,即“在不在”;(4)导函数的变号零点之间的大小关系,即“大不大”.牢记:十二字方针“是不是,有没有,在不在,大不大”.考点一 导主一次型【例题选讲】[例1]已知函数f(x)=x-a ln x(a∈R),讨论函数f(x)的单调性.【对点训练】1.已知函数f(x)=a ln x-ax-3(a∈R).讨论函数f(x)的单调性.2.已知函数f(x)=ln x-ax(a∈R),讨论函数f(x)的单调性.考点二 导主二次型【方法总结】此类问题中,导数的解析式通过化简变形后,通常可以转化为一个二次函数的含参问题.对于二次三项式含参问题,有如下处理思路:(1)首先需要考虑二次项系数是否含有参数.如果二次项系数有参数,就按二次项系数为零、为正、为负进行讨论;(2)其次考虑二次三项式能否因式分解,如果二次三项式能因式分解,这表明存在零点,只需讨论零点是否在定义域内,如果x1,x2都在定义域内,则讨论个零点x1,x2的大小;如果二次三项式不能因式分解,这表明不一定存在零点,需讨论判别式Δ≤0和Δ>0分类讨论;【例题选讲】命题点1是不是+有没有+在不在[例2](2021ꞏ全国乙节选)已知函数f(x)=x3-x2+ax+1.讨论f(x)的单调性.[例3](2018ꞏ全国Ⅰ节选)已知函数f(x)=1x-x+a ln x,讨论f(x)的单调性.[例4]设函数f(x)=a ln x+x-1x+1,其中a为常数.讨论函数f(x)的单调性.【对点训练】3.(2020ꞏ全国Ⅲ节选)已知函数f(x)=x3-kx+k2.讨论f(x)的单调性.4.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.5.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性.命题点2 是不是+在不在+大不大[例5] 已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性.[例6] 已知函数f (x )=x 2e -ax-1(a 是常数),求函数y =f (x )的单调区间.[例7] 已知函数f (x )=(a +1)ln x +1x -ax +2(a ∈R ).讨论f (x )的单调性.[例8] 已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.[例9] (2016ꞏ山东)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.【对点训练】6.已知函数f (x )=122-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.7.已知函数f (x )=x 2e ax +1+1-a (a ∈R ),求函数f (x )的单调区间.8.已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性.9.已知函数f (x )=⎝⎛⎭⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性.10.已知函数f (x )=ln(x +1)-ax 2+x(x +1)2,且1<a <2,试讨论函数f (x )的单调性.考点三 导主指对型 【例题选讲】[例10] 已知函数f (x )=e x (e x -a )-a 2x ,讨论函数f (x )的单调性.[例11] 已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.【对点训练】11.已知函数f (x )=e x -ax -1的定义域为(0,+∞),讨论函数f (x )的单调性.12.已知函数f (x )=(x 2-2ax )ln x -122+2ax (a ∈R ).(1)若a =0,求f (x )的最小值; (2)求函数f (x )的单调区间.考点四 导主正余型【例题选讲】[例12](2017山东理)已知函数f(x)=x2+2cos x,g(x)=e xꞏ(cos x-sin x+2x-2),其中e是自然对数的底数.(1)求函数g(x)的单调区间;(2)讨论函数h(x)=g(x)-af (x)(a∈R)的单调性.【对点训练】13.(2017ꞏ山东)已知函数f(x)=13x 3-12ax2,其中参数a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性参考答案【例题选讲】[例1] 已知函数f (x )=x -a ln x (a ∈R ),讨论函数f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a , ①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增, ②当a >0时,x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0,综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.【对点训练】1.已知函数f (x )=a ln x -ax -3(a ∈R ).讨论函数f (x )的单调性. 1.解析 函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x ,令f ′(x )=0,得x =1,当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当a <0时,f (x )在(1,+∞)上单调递增,在(0,1)上单调递减; 当a =0时,f (x )为常函数.2.已知函数f (x )=ln x -ax (a ∈R ),讨论函数f (x )的单调性. 2.解析 f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )在(0,+∞)上单调递增. ②当a >0时,令f ′(x )=1x -a =1-ax x =0,可得x =1a , 当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0, 故函数f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. 考点二 导主二次型 【方法总结】此类问题中,导数的解析式通过化简变形后,通常可以转化为一个二次函数的含参问题.对于二次三项式含参问题,有如下处理思路:(1)首先需要考虑二次项系数是否含有参数.如果二次项系数有参数,就按二次项系数为零、为正、为负进行讨论;(2)其次考虑二次三项式能否因式分解,如果二次三项式能因式分解,这表明存在零点,只需讨论零点是否在定义域内,如果x 1,x 2都在定义域内,则讨论个零点x 1,x 2的大小;如果二次三项式不能因式分解,这表明不一定存在零点,需讨论判别式Δ≤0和Δ>0分类讨论;【例题选讲】命题点1 是不是+有没有+在不在[例2] (2021ꞏ全国乙节选)已知函数f (x )=x 3-x 2+ax +1.讨论f (x )的单调性.解析 由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ). ①当a ≥13时,f ′(x )≥0,f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3, 令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )在⎝ ⎛⎭⎪⎫-∞,1-1-3a 3上单调递增,在⎝ ⎛⎪⎫1-1-3a 3,1+1-3a 上单调递减,在⎝ ⎛⎭⎪⎫1+1-3a 3,+∞上单调递增.[例3] (2018ꞏ全国Ⅰ节选)已知函数f (x )=1x -x +a ln x ,讨论f (x )的单调性. 解析 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2. ①当a ≤2时,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②当a >2时,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42. 当x ∈⎝ ⎛⎪⎫0,a -a 2-4∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0. 所以f (x )在⎝ ⎛⎪⎫0,a -a 2-4,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增. 综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.[例4] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.讨论函数f (x )的单调性. 解析 函数f (x )的定义域为(0,+∞).f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1).(1)当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.(2)当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. (3)当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a. 由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减; 当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增. 【对点训练】3.(2020ꞏ全国Ⅲ节选)已知函数f (x )=x 3-kx +k 2.讨论f (x )的单调性. 3.解析 由题意,得f ′(x )=3x 2-k ,当k ≤0时,f ′(x )≥0恒成立,所以f (x )在(-∞,+∞)上单调递增; 当k >0时,令f ′(x )=0,得x =±k 3,令f ′(x )<0,得-k3<x <k3,令f ′(x )>0,得x <-k3或x >k 3,所以f (x )在⎝⎛⎭⎫-k 3,k 3上单调递减,在⎝⎛⎭⎫-∞,-k 3,⎝⎛⎭⎫k 3,+∞上单调递增. 4.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.4.解析 由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2. 设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数. ②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2, x ∈(0,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增.此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在(a -a 2-82,a +a 2-82)上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.5.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性. 5.解析 由题易得f ′(x )=(ax 2+2ax +1)e x ,当a =0时,f ′(x )=e x >0,此时f (x )在R 上单调递增. 当a >0时,方程ax 2+2ax +1=0的判别式Δ=4a 2-4a .①当0<a ≤1时,Δ≤0,ax 2+2ax +1≥0恒成立,所以f ′(x )≥0,此时f (x )在R 上单调递增; ②当a >1时,令f ′(x )=0,解得x 1=-1-1-1a ,x 2=-1+1-1a .x ∈(-∞,x 1)时,f ′(x )>0,函数f (x )单调递增; x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减; x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增. 所以f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增,在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减.综上,当0≤a ≤1时,f (x )在R 上单调递增;当a >1时,f (x )在⎝⎛⎭⎫-∞,-1-1-1a 和⎝⎛⎭⎫-1+1-1a ,+∞上单调递增,在⎝⎛⎭⎫-1-1-1a ,-1+1-1a 上单调递减.命题点2 是不是+在不在+大不大[例5] 已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性. 解析 因为f (x )=ln x +ax 2-(2a +1)x ,所以f ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x. 由题意知函数f (x )的定义域为(0,+∞),令f ′(x )=0得x =1或x =12a , 若12a <1,即a >12,由f ′(x )>0得x >1或0<x <12a ,由f ′(x )<0得12a <x <1, 即函数f (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上单调递减;若12a >1,即0<a <12,由f ′(x )>0得x >12a 或0<x <1,由f ′(x )<0得1<x <12a ,即函数f (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12,则在(0,+∞)上恒有f ′(x )≥0,即函数f (x )在(0,+∞)上单调递增.综上可得,当0<a <12时,函数f (x )在(0,1)上单调递增,在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递增;当a >12时,函数f (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增.[例6] 已知函数f (x )=x 2e -ax -1(a 是常数),求函数y =f (x )的单调区间.解析 根据题意可得,当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a ≠0时,f ′(x )=2x e-ax +x 2(-a )e -ax =e -ax (-ax 2+2x ). 因为e -ax >0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a(1)当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0,即f ′(x )≥0,函数y =f (x )单调递增. (2)当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )单调递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0,即f ′(x )≤0,函数y =f (x )单调递减. 综上所述,当a =0时,函数y =f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0);当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0. [例7] 已知函数f (x )=(a +1)ln x +1x -ax +2(a ∈R ).讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),且f ′(x )=-(x -1)(ax -1)x 2.令f ′(x )=0,得x =1或x =1a . 当a ≤0时,ax -1<0,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当0<a <1时,f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减; 当a =1时,f (x )在(0,+∞)上单调递减;当a >1时,f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎭⎫1a ,1上单调递增,在(1,+∞)上单调递减. [例8] 已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.解析 f ′(x )=a x +1-a -2x =-2x ⎝⎛⎭⎫x +2+a 2x +1, 令f ′(x )=0,得x =0或x =-a +22,又f (x )的定义域为(-1,+∞),①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.②当-1<-a +22<0,即-2<a <0时,若x ∈⎝⎛⎭⎫-1,-a +22,f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫-a +22,0,f ′(x )>0,则f (x )单调递增; 若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减;若x ∈⎝⎛⎭⎫0,-a +22,f ′(x )>0,则f (x )单调递增;若x ∈⎝⎛⎭⎫-a +22,+∞,f ′(x )<0,则f (x )单调递减. 综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )在⎝⎛⎭⎫-1,-a +22上单调递减,在⎝⎛⎭⎫-a +22,0上单调递增,在(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减;当a <-2时,f (x )在(-1,0)上单调递减,在⎝⎛⎭⎫0,-a +22上单调递增,在⎝⎛⎭⎫-a +22,+∞上单调递减.[例9] (2016ꞏ山东)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.解析 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3. 当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . ①若0<a <2,则2a >1,当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减.②若a =2,则2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0<2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增. 【对点训练】6.已知函数f (x )=122-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.6.解析 函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x. ①当0<a <1时,1a >1,∴x ∈(0,1)和⎝⎛⎭⎫1a ,+∞时,f ′(x )>0;x ∈⎝⎛⎭⎫1,1a 时,f ′(x )<0, ∴函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; ②当a =1时,1a =1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增; ③当a >1时,0<1a <1,∴x ∈⎝⎛⎭⎫0,1a 和(1,+∞)时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0, ∴函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 综上,当0<a <1时,函数f (x )在(0,1)和⎝⎛⎭⎫1a ,+∞上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝⎛⎭⎫0,1a 和(1,+∞)上单调递增,在⎝⎛⎭⎫1a ,1上单调递减. 7.已知函数f (x )=x 2e ax +1+1-a (a ∈R ),求函数f (x )的单调区间. 7.解析 f (x )=x 2e ax +1+1-a (a ∈R )的定义域为(-∞,+∞),f ′(x )=x (ax +2)e ax +1 . ①当a =0时,x >0,f ′(x )>0;x <0,f ′(x )<0,所以函数f (x )的单调递增区间为(0,+∞),单调递减区间为(-∞,0).②当a >0时,x ∈⎝⎛⎭⎫-∞,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,0,f ′(x )<0;x ∈(0,+∞),f ′(x )>0, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,-2a ,(0,+∞),单调递减区间为⎝⎛⎭⎫-2a ,0. ③当a <0时,x ∈(-∞,0),f ′(x )<0;x ∈⎝⎛⎭⎫0,-2a ,f ′(x )>0;x ∈⎝⎛⎭⎫-2a ,+∞,f ′(x )<0, 所以函数f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫-2a ,+∞,单调递增区间为⎝⎛⎭⎫0,-2a . 8.已知函数f (x )=(a -1)ln x +ax 2+1,讨论函数f (x )的单调性.8.解析 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x. (1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;(2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;(3)当0<a <1时,令f ′(x )=0,解得x =1-a 2a , 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0;当x ∈(1-a 2a ,+∞)时,f ′(x )>0, 故f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减,在(1-a 2a ,+∞)上单调递增. 9.已知函数f (x )=⎝⎛⎭⎫k +4k ln x +4-x 2x ,其中常数k >0,讨论f (x )在(0,2)上的单调性. 9.解 因为f ′(x )=k +4k x -4x 2-1=⎝⎛⎭⎫k +4k x -4-x 2x 2=-(x -k )⎝⎛⎭⎫x -4k x 2(x >0,k >0). ①当0<k <2时,4k k >0,且4k >2,所以当x ∈(0,k )时,f ′(x )<0,当x ∈(k ,2)时,f ′(x )>0,所以函数f (x )在(0,k )上是减函数,在(k ,2)上是增函数;②当k =2时,4k =k =2,f ′(x )<0在(0,2)上恒成立,所以f (x )在(0,2)上是减函数;③当k >2时,0<4k <2,k >4k ,所以当x ∈⎝⎛⎭⎫0,4k 时,f ′(x )<0;当x ∈⎝⎛⎭⎫4k ,2时,f ′(x )>0, 所以函数f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数.综上可知,当0<k <2时,f (x )在(0,k )上是减函数,在(k ,2)上是增函数;当k =2时,f (x )在(0,2)上是减函数;当k >2时,f (x )在⎝⎛⎭⎫0,4k 上是减函数,在⎝⎛⎭⎫4k ,2上是增函数. 10.已知函数f (x )=ln(x +1)-ax 2+x (x +1)2,且1<a <2,试讨论函数f (x )的单调性. 10.解析 函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,x >-1. ①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,f (x )单调递增,当2a -3<x <0时,f ′(x )<0,f (x )单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即32<a <2时,当-1<x <0或x >2a -3时,f ′(x )>0,则f (x )在(-1,0),(2a -3,+∞)上单调递增.当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a <2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.考点三 导主指对型【例题选讲】[例10] 已知函数f (x )=e x (e x -a )-a 2x ,讨论函数f (x )的单调性.解析 函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.②若a >0,则由f ′(x )=0,得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0. 故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a 2.当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0;当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0;故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. [例11] 已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.解析 易得f (x )的定义域为(0,+∞),f ′(x )=(2x -a )ln x +x -a -3x +2a =(2x -a )ln x -(2x -a )=(2x -a )(ln x -1),令f ′(x )=0得x =a 2或x =e .当a ≤0时,因为x >0,所以2x -a >0,令f ′(x )<0得x <e ,所以f (x )的单调递减区间为(0,e).当a >0时,①若a 2<e ,即0<a <2e ,当x ∈⎝⎛⎭⎫0,a 2时,f ′(x )>0,当x ∈⎝⎛⎭⎫a 2,e 时,f ′(x )<0,当x ∈(e ,+∞)时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;②若a 2=e ,即a =2e ,当x ∈(0,+∞)时,f ′(x )≥0恒成立,f (x )没有单调递减区间;③若a 2>e ,即a >2e ,当x ∈(0,e)时,f ′(x )>0,当x ∈⎝⎛⎭⎫e ,a 2时,f ′(x )<0,当x ∈⎝⎛⎭⎫a 2,+∞时,f ′(x )>0, 所以f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,e);当0<a <2e 时,f (x )的单调递减区间为⎝⎛⎭⎫a 2,e ;当a =2e 时,f (x )无单调递减区间;当a >2e 时,f (x )的单调递减区间为⎝⎛⎭⎫e ,a 2. 【对点训练】11.已知函数f (x )=e x -ax -1的定义域为(0,+∞),讨论函数f (x )的单调性.11.解析 ∵f (x )=e x -ax -1,∴f ′(x )=e x -a .易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.12.已知函数f (x )=(x 2-2ax )ln x -122+2ax (a ∈R ).(1)若a =0,求f (x )的最小值;(2)求函数f (x )的单调区间.12.解析 (1)若a =0,f (x )=x 2ln x -12x 2,定义域为(0,+∞),f ′(x )=2x ln x +x 2×1x -x =2x ln x ,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f (x )的最小值为f (1)=-12.(2)f ′(x )=(2x -2a )ln x +(x 2-2ax )ꞏ1x -x +2a =(2x -2a )ln x ,①当a ≤0时,2x -2a >0,由f ′(x )>0可得x >1,由f ′(x )<0可得0<x <1,此时f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);②当0<a <1时,由f ′(x )>0可得0<x <a 或x >1,由f ′(x )<0可得a <x <1,此时f (x )的单调递减区间为(a ,1),单调递增区间为(0,a )和(1,+∞);③当a =1时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(0,+∞);④当a >1时,由f ′(x )>0可得0<x <1或x >a ,由f ′(x )<0可得1<x <a ,此时f (x )的单调递减区间为(1,a ),单调递增区间为(0,1)和(a ,+∞).综上所述:当a ≤0时,f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);当0<a <1时,f (x )的单调递减区间为(a ,1),单调递增区间为(0,a )和(1,+∞);当a =1时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当a >1时,f (x )的单调递减区间为(1,a ),单调递增区间为(0,1)和(a ,+∞).考点四 导主正余型【例题选讲】[例12] (2017山东理)已知函数f (x )=x 2+2cos x ,g (x )=e x ꞏ(cos x -sin x +2x -2),其中e 是自然对数的底数.(1)求函数g(x)的单调区间;(2)讨论函数h(x)=g(x)-af (x)(a∈R)的单调性.解析 (1)g′(x)=(e x)′ꞏ(cos x-sin x+2x-2)+e x(cos x-sin x+2x-2)′=e x(cos x-sin x+2x-2-sin x-cos x+2)=2e x(x-sin x).记p(x)=x-sin x,则p′(x)=1-cos x.因为cos x∈[-1,1],所以p′(x)=1-cos x≥0,所以函数p(x)在R上单调递增.而p(0)=0-sin 0=0,所以当x<0时,p(x)<0,g′(x)<0,函数g(x)单调递减;当x>0时,p(x)>0,g′(x)>0,函数g(x)单调递增.综上,函数g(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)因为h(x)=g(x)-af (x)=e x(cos x-sin x+2x-2)-a(x2+2cos x),所以h′(x)=2e x(x-sin x)-a(2x-2sin x)=2(x-sin x)(e x-a).由(1)知,当x>0时,p(x)=x-sin x>0;当x<0时,p(x)=x-sin x<0.当a≤0时,e x-a>0,所以x>0时,h′(x)>0,函数h(x)单调递增;x<0时,h′(x)<0,函数h(x)单调递减.当a>0时,令h′(x)=2(x-sin x)(e x-a)=0,解得x1=ln a,x2=0.①若0<a<1,则ln a<0,所以x∈(-∞,ln a)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(ln a,0)时,e x-a>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x-a>0,h′(x)>0,函数h(x)单调递增.②若a=1,则ln a=0,所以x∈R时,h′(x)≥0,函数h(x)在R上单调递增.③若a>1,则ln a>0,所以x∈(-∞,0)时,e x-a<0,h′(x)>0,函数h(x)单调递增;x∈(0,ln a)时,e x-a<0,h′(x)<0,函数h(x)单调递减;x∈(ln a,+∞)时,e x -a>0,h′(x)>0,函数h(x)单调递增.综上所述,当a≤0时,函数h(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减;当0<a<1时,函数h(x)在(-∞,ln a),(0,+∞)上单调递增,在(ln a,0)上单调递减;当a=1时,函数h(x)在R上单调递增;当a>1时,函数h(x)在(-∞,0),(ln a,+∞)上单调递增,在(0,ln a)上单调递减.【对点训练】13.(2017ꞏ山东)已知函数f(x)=13x 3-12ax2,其中参数a∈R.(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性.13.解析 (1)由题意得f′(x)=x2-ax,所以当a=2时,f(3)=0,f′(x)=x2-2x,所以f′(3)=3,因此曲线y=f(x)在点(3,f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g′(x)=f′(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x).令h(x)=x-sin x,则h′(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g′(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.②当a=0时,g′(x)=x(x-sin x),当x∈(-∞,+∞)时,g′(x)≥0,所以g(x)在(-∞,+∞)上单调递增.③当a>0时,g′(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g′(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g′(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g′(x)>0,g(x)单调递增.综上所述,当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减;当a=0时,函数g(x)在(-∞,+∞)上单调递增;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减.。

高考数学专题复习题:指数函数

高考数学专题复习题:指数函数一、单项选择题(共8小题)1.若命题“,a b ∀∈R ,22b a a b -<-”为真命题,则a ,b 的大小关系为()A .a b <B .a b >C .a b≤D .a b ≥2.已知函数()2121x f x =-+,则对任意实数x ,有()A .()()0f x f x -+=B .()()0f x f x --=C .()()2f x f x -+=D .()()2f x f x --=3.已知()e e x x x f x a -=+是偶函数,则a =()A .2-B .1-C .1D .24.设函数2()21x f x =+,求得(5)(4)(0)(4)(5)f f f f f -+-+++++ 的值为()A .9B .11C .92D .1125.如果定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时,()22x a f x =+,那么()1f =()A .2B .4C .2-D .4-6.函数2()2|e 1|x x f x =-的图象大致是()A .B .C .D .7.设函数()()12x x a f x -⎛⎫= ⎪⎝⎭在区间0,1单增,则a 的取值范围是()A .(],2∞--B .[)2,0-C .(]0,2D .[)2,+∞8.已知函数()20252025x x f x -=-,若0a >,0b >,且()()20f a f b -+=,则3111a b +++的最小值为()AB .1C .1D .二、多项选择题(共2小题)9.已知函数()312x f x x +=-,则下列结论正确的是()A .()f x 的值域是{}2y y ≠B .()f x 图象的对称中心为()2,3C .()()202620226f f +-=D .()2x f -的值域是14,2⎡⎫--⎪⎢⎣⎭10.已知函数e 1()e 1x x f x +=-,则下列结论正确的是()A .函数()f x 的定义域为RB .函数()f x 的值域为(,1)(1,)-∞-+∞C .()()0f x f x +-=D .函数()f x 为减函数三、填空题(共2小题)11.设函数()331x f x =+,则()()()()()54045f f f f f -+-+++++= ________.12.函数2x y m m =-+在(],2-∞上的最大值为4,则m 的取值范围是________.四、解答题(共2小题)13.已知函数2()12x xb f x a +=+⋅,若()f x 是定义域为R 的奇函数.(1)求出函数()f x 的解析式;(2)求不等式2(1)(35)0f x f x ++-<的解集.14.已知函数11()22x x f x a -=⋅+是定义域为R 的偶函数.(1)求实数a 的值;(2)若对任意x ∈R ,都有(2)()f x kf x ≥成立,求实数k 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 已知函数
,1)(22xxxf


1111
12(2013)20142320132014ffffffffKL

2. 已知函数0,,0,12)(22xcbxxxxaxxf是偶函数,直线ty与函数)(xf的图像自左至
右依次交于四个不同点A、B、C、D,若||||BCAB,则实数t的值为________.
3. 函数2xy的定义域为[,]ab,值域为[1,16],a变动时,方程()bga表示的图形可
以是 ( )

A. B. C. D.
4. 设函数)(xf的定义域为D,若存在闭区间Dba],[,使得函数)(xf满足:①)(xf在
],[ba上是单调函数;②)(xf在],[ba上的值域是]2,2[ba,则称区间],[ba是函数)(xf
的“和谐区间”.下列结论错误的是„„„„„„„„„„„„„„„( )
A.函数2)(xxf(0x)存在“和谐区间”
B.函数xexf)((Rx)不存在“和谐区间”

C.函数14)(2xxxf(0x)存在“和谐区间”

D.函数81log)(xaaxf(0a,1a)不存在“和谐区间”
5.. 定义在0,上的函数fx,如果对任意0,x,恒有fkxkfx(2k,
*
kN

)成立,则称fx为k阶缩放函数.

(1)已知函数fx为二阶缩放函数,且当1,2x时,121logfxx,求

22f

的值;
(2)已知函数fx为二阶缩放函数,且当1,2x时,22fxxx,求证:函数

yfxx
在1,上无零点;

(3)已知函数fx为k阶缩放函数,且当1,xk时,fx的取值范围是0,1,求

fx

在10,nk(nN)上的取值范围.

a
b
O
-4 4 a b O 4 -4 a b O
4
-4
a

b
O
-4
4
6. 已知函数22()242Fxkxmmx,2()1()(,)GxxkmkR
(1) 若,mk是常数,问当,mk满足什么条件时,函数()Fx有最大值,并求出()Fx取最
大值时x的值;
(2) 是否存在实数对(,)mk同时满足条件:(甲)()Fx取最大值时x的值与()Gx取最小
值的x值相同,(乙)kZ?
(3) 把满足条件(甲)的实数对(,)mk的集合记作A,设

222
(,)(1),0Bmkkmrr

,求使AB的r的取值范围。

7. 已知函数2)(xmxxf(m为实常数).
(1)若函数)(xfy图像上动点P到定点)2,0(Q的距离的最小值为2,求实数
m
的值;
(2)若函数)(xfy在区间),2[上是增函数,试用函数单调性的定义求实数m的
取值范围;

(3)设0m,若不等式kxxf)(在1,21x有解,求k的取值范围.

相关文档
最新文档