高考理科数学知识点归纳
高考数学128知识点

高考数学128知识点一、集合与表示集合是同一性质的事物的全体,可以通过列举法、描述法和图示法表示。
集合的运算包括并集、交集、差集和补集等。
二、函数与方程函数是一种特殊的关系,每个自变量只对应一个因变量。
函数可以通过图像、表格和解析式表示。
方程是含有未知数的等式,可以通过代入法和消元法求解。
三、数与式实数是有理数和无理数的并集,可以进行加、减、乘、除等运算。
式是由数和运算符号组成的表达式,可以通过化简和展开来进行运算。
四、空间与图形空间是具有三个维度的几何概念,可以通过点、线、面和体来描述。
图形包括平面图形和立体图形,可以通过面积、体积和周长来计算。
五、几何推理几何推理是基于公理和定理进行的推理过程,包括直线与平面的关系、角的性质、相似、全等和投影等。
六、数与数量关系数与数量关系是数学中研究数量之间的关系,包括比例、百分数、速度、密度和比率等。
七、概率与统计概率是描述随机事件发生可能性的数学工具,可以通过频率和古典概型计算。
统计是对数据进行收集、整理、分析和解释,包括图表的制作和指标的计算。
八、数学与实际数学与实际紧密相关,可以应用于物理、经济、生物和工程等领域,解决实际问题,并提供合理的决策依据。
九、计算器与计算方法计算器是进行数学计算的工具,可以进行基本运算、函数计算和方程求解。
计算方法包括近似计算、化简计算和准确计算等。
十、思维方法与解题技巧思维方法是解决问题的思维模式,包括归纳法、演绎法和创造法。
解题技巧是解决数学题目的方法和策略,包括抽象建模、反证法和巧妙化简。
十一、数学史与数学思想数学史是研究数学的发展与进展的学科,可以了解数学的起源和演变过程。
数学思想是指数学家们提出的思想和观点,对数学的发展具有重要影响。
以上是高考数学128个知识点的简要介绍,希望能够对高考数学的备考有所帮助。
记住掌握这些知识点,多做题多练习,相信你一定能在高考中取得好成绩!。
高考数学知识点总结PPT

空间中角距离计算方法
空间中异面直线所成角
01
理解异面直线所成角概念,掌握其计算方法。
直线与平面所成角
02
理解直线与平面所成角概念,掌握其计算方法。
二面角及其平面角
03
理解二面角及其平面角概念,掌握其计算方法。
平面直角坐标系下直线方程
直线方程一般式
解三角形应用举例
测量问题
能运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关 的实际问题。
最值问题
三角函数的图像和性质
理解正弦函数、余弦函数、正切函数 的图像和性质,并能运用这些性质解 决一些问题。
能运用三角函数性质及均值不等式解 决一些与最值有关的问题。
03
数列与数学归纳法
数列基本概念及分类
指数函数与对数函数
指数函数
理解指数函数的概念,掌握其图像和性质,并能进行简单应用。
对数函数
理解对数函数的定义,掌握其图像和性质,包括与指数函数的互为反函数关系 。
导数概念及运算规则
导数定义
理解导数的概念,掌握导数的几何意义和物理意义。
导数运算规则
掌握基本初等函数的导数公式和求导法则,包括和差、积、商的求导法则及复合 函数的求导法则。
一次函数和反比例函数
一次函数
理解一次函数的概念,掌握其图像和性质,并能解决相关问 题。
反比例函数
理解反比例函数的概念,掌握其图像和性质,并能进行简单 应用。
二次函数及图像变换
二次函数
掌握二次函数的图像和性质,包括顶 点、对称轴、最值等,并能解决相关 问题。
图像变换
理解平移、伸缩、对称等图像变换对 二次函数图像的影响。
高三复习理科必备知识点

高三复习理科必备知识点高三阶段是每个学生都要经历的重要阶段,对于理科学生来说,复习备考显得尤为重要。
本文将为大家整理一些高三复习理科的必备知识点,供大家参考。
1. 数学知识点1.1 一次函数和二次函数的性质和应用1.2 线性方程组和二元二次方程的解法1.3 指数与对数的基本性质1.4 三角函数的定义、性质和应用1.5 数列与数学归纳法1.6 概率与统计的基本概念和计算方法2. 物理知识点2.1 牛顿运动定律及其应用2.2 力、功与能量的计算2.3 电磁感应与电磁波2.4 光学知识点:光的折射、反射与干涉等 2.5 热学知识点:热传递、理想气体等2.6 声学知识点:声音的传播与共振3. 化学知识点3.1 元素周期表的结构与性质3.2 化学键及其种类3.3 反应速率与化学平衡3.4 酸碱与pH值的计算3.5 离子反应方程式的写法3.6 化学实验技巧与安全知识4. 生物知识点4.1 生物的基本单位:细胞4.2 遗传与进化:基因与遗传的规律4.3 生物能量的转化与代谢4.4 免疫与疾病:免疫系统与常见疾病4.5 植物生长与植物激素4.6 生态与环境保护:生态系统的结构与功能以上仅为高三复习理科的一部分必备知识点,大家可以根据自己的情况进行有针对性的复习。
复习过程中,可以结合练习题和习题解析加深对知识点的理解和记忆,并及时解决自己的疑惑。
另外,合理的学习方法和规划也是非常重要的,可以制定每天的学习计划,合理分配时间,保持高效的学习状态。
希望以上内容对高三理科生的复习有所帮助,祝愿大家在复习备考中取得优秀的成绩!。
高考数学必考知识点归纳

高考数学必考知识点归纳一、集合与函数1.集合o表示法:列举法、描述法、图示法(韦恩图)。
o运算:交集、并集、补集(相对于全集)。
2.函数o概念:输入与输出之间的对应关系。
o表示法:解析法、列表法、图像法。
o单调性:增函数、减函数。
o奇偶性:奇函数、偶函数、非奇非偶函数。
二、数列1.定义与表示o数列的定义:按一定顺序排列的一列数。
o表示法:通项公式、递推公式。
2.等差数列o定义、通项公式、前n项和公式。
o性质:中项性质、等差中项。
3.等比数列o定义、通项公式、前n项和公式(注意公比不为1的情况)。
o性质:中项性质、等比中项。
4.数列求和o倒序相加法、错位相减法、分组求和法、裂项相消法等。
5.数列的极限o数列极限的概念、性质及简单计算。
三、三角函数1.基本概念o角度与弧度制、三角函数定义(正弦、余弦、正切)。
2.诱导公式o角度加减变换公式。
3.同角关系式o基本恒等式、平方关系、商数关系。
4.性质o周期性、奇偶性、单调性、有界性。
5.图像与性质o各三角函数图像特征、相位变换、振幅变换。
6.三角恒等变换o和差化积、积化和差、倍角公式、半角公式。
7.解三角形o正弦定理、余弦定理、面积公式、海伦公式。
四、向量1.基本概念o向量的模、方向、坐标表示。
2.运算o加法、减法、数乘、数量积(点积)、向量积(叉积)。
o模长与夹角的关系、平行与垂直的条件。
五、解析几何1.直线o方程:点斜式、斜截式、两点式、截距式、一般式。
o斜率:定义、公式、倾斜角。
o位置关系:平行、垂直的条件。
2.圆o方程:标准方程、一般方程。
o性质:圆心、半径、切线、弦的性质(如相交弦定理)。
3.圆锥曲线o椭圆、双曲线、抛物线的定义、标准方程、性质。
六、立体几何1.空间位置关系o直线与平面、平面与平面的平行、垂直关系。
2.几何体o柱体、锥体、球体等的结构特征及表面积、体积公式。
3.三视图o正视图、侧视图、俯视图及其绘制方法。
七、不等式1.性质o基本性质、传递性、可加性、可乘性(正数时)。
高三数学高考考试复习知识点归纳

高三数学高考考试复习知识点归纳要提高复习效率,必须使自己的思维与老师的思维同步。
而预习则是达到这一目的的重要途径,要做到“两先两后” ,即先预习后听课,先复习后作业。
以提高听课的主动性,减少听课的盲目性。
以下是小编给大家整理的高三数学高考考试复习知识点归纳,希望大家能够喜欢!1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列 1,2,3,4,5 与数列 5,4,3,2,1 是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1 的 1 次幂,2 次幂,3 次幂,4 次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于 f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于 f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别. 如:2,3,4,5,6 这 5 个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列. 在写数列时,对于有穷数列,要把末项写出,例如数列 1,3,5,7,9,…,2n-1 表示有穷数列,如果把数列写成 1,3,5,7,9,…或 1,3,5,7,9,… ,2n-1,… ,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子 f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列 1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集 N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用 1,2,3,…去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如 2 的不足近似值,精确到 1,0.1,0.01,0.001,0.0001,…所构成的数列 1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列 4,5,6,7,8,9,10 每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集 N_ (或它的有限子集{1,2,3,… ,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以 1 为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于 1 ;5、三角函数正切函数 y=tanx 中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
高考数学甲卷知识点归纳

高考数学甲卷知识点归纳高考数学是每个考生必须面对的重要科目之一,对于数学知识的掌握程度直接影响着考生的成绩。
为了帮助考生更好地备考数学甲卷,下面将对高考数学甲卷的主要知识点进行归纳和总结,以便考生系统地进行复习和提高。
一、数与代数1. 实数与复数- 实数的性质和分类- 复数的概念和运算- 复数平面及其相关概念2. 分式与方程- 分式的运算和化简- 一元二次方程及其根的判别式- 一次不等式与一元一次方程组3. 函数与图像- 函数概念及基本性质- 幂函数、指数函数、对数函数- 三角函数及其图像性质二、数学关系与函数1. 数列与数列表达式- 等差数列与等差数列求和- 等比数列与等比数列求和- 通项公式与通项求和2. 几何与向量- 平面几何基本性质- 平面向量的概念及运算- 向量与直线的关系3. 参数方程与平面解析几何- 参数方程的基本概念与应用- 二次曲线的方程与图像性质- 空间直线与平面的关系三、微积分1. 导数与极值问题- 函数的导数概念与计算方法- 极值问题的处理与求解- 求地图上两点之间最短路径的最优化问题2. 积分与变量替换- 函数的积分概念与计算方法- 变量替换法及其应用- 应用积分求取曲线下面积和体积3. 微分方程与数列递推关系- 微分方程的基本概念与解法- 数列递推关系的解法与应用- 应用微分方程与递推关系建立数学模型四、概率与统计1. 随机事件与概率- 随机事件的概念和基本性质- 概率的计算方法与应用- 事件间的关系与概率的加法规则2. 分布函数与随机变量- 分布函数的概念和基本性质- 离散型随机变量的概率分布- 连续型随机变量的概率密度函数3. 统计分布与抽样调查- 统计分布的概念和性质- 抽样调查及其方法与应用- 样本调查结果的统计分析与推断通过对以上知识点的归纳和总结,希望考生能够更好地理清数学甲卷的重点和难点,有针对性地进行复习和提高。
当然,在备考过程中,除了理论知识的掌握,还需要大量的习题训练和真题练习,以提高解题能力和应试技巧。
高考数学最全知识点归纳

高考数学最全知识点归纳高考数学作为高中阶段数学学习的总结和检验,涵盖了多个知识点,以下是对高考数学最全知识点的归纳:一、代数部分1. 集合与函数:理解集合的概念,包括集合的运算、子集、并集、交集、补集等;掌握函数的定义、性质、单调性、奇偶性、周期性等。
2. 不等式:包括一元二次不等式的解法,绝对值不等式,分式不等式,以及不等式的应用。
3. 数列:理解等差数列和等比数列的概念、通项公式、求和公式,以及数列的极限问题。
4. 复数:复数的运算,包括加减乘除和共轭复数的概念,复数的几何意义等。
5. 代数式:包括多项式、分式、有理式等的运算,以及代数式的简化和分解。
6. 排列组合与概率:排列组合的基本原理,组合数的计算,以及概率的基本概念和计算方法。
二、几何部分1. 平面几何:包括直线、圆、椭圆、双曲线、抛物线等基本图形的性质和位置关系。
2. 立体几何:空间中点、线、面的位置关系,多面体和旋转体的性质,以及空间图形的计算。
3. 解析几何:坐标系中点、直线、圆、椭圆等图形的方程,以及图形的平移、旋转和对称变换。
三、三角部分1. 三角函数:正弦、余弦、正切等基本三角函数的定义、图像、性质和应用。
2. 三角恒等变换:包括和差化积、积化和差、倍角公式、半角公式等。
3. 解三角形:正弦定理、余弦定理的应用,以及三角形的解法。
四、微积分部分1. 极限:数列极限、函数极限的概念和计算方法。
2. 导数:导数的定义、性质、几何意义,以及基本导数公式。
3. 积分:不定积分和定积分的概念、性质、计算方法,以及在几何和物理中的应用。
五、统计与概率部分1. 统计:数据的收集、整理、描述,包括平均数、中位数、众数、方差、标准差等。
2. 概率:事件的概率计算,包括古典概型、几何概型、条件概率、独立事件等。
结束语高考数学的知识点广泛,要求学生不仅要掌握基础知识,还要能够灵活运用所学知识解决实际问题。
通过系统地复习和练习,相信每位学生都能够在高考中取得优异的成绩。
高考数学 集合与常用逻辑用语考点及知识点总结解析(理科)

②若B≠∅,则2mm+-11≥≥-m2+,1, 2m-1≤5.
解得2≤m≤3.由①②可得,符合题意的实数m的取值范围为 (-∞,3].
[答案] (-∞,3]
[易错提醒] 将两个集合之间的关系准确转化为参数所满足的条 件时,应注意子集与真子集的区别,此类问题多与不等 式(组)的解集相关.确定参数所满足的条件时,一定要把 端点值代入进行验证,否则易产生增解或漏解.
考点贯通 抓高考命题的“形”与“神” 集合子集个数的判定
含有n真子集的个数为2n-2(除空集 和集合本身,此时n≥1).
[例1] 已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x
<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为
()
A.1
B.2
C.3
D.4
[解析] 由x2-3x+2=0得x=1或x=2,所以A={1,2}.由
题意知B={1,2,3,4},所以满足条件的集合C为{1,2},{1,2,3},
{1,2,4},{1,2,3,4},共4个.
[答案] D
[易错提醒] (1)注意空集的特殊性:空集是任何集合的子集,是 任何非空集合的真子集. (2)任何集合的本身是该集合的子集,在列举时千万 不要忘记.
∵
2x
-
3>0
,
∴
x>
3 2
,
∴
B
=
3 xx>2
.
∴
A∩B
=
{x|1<x<3}∩xx>32 =32,3. [答案] D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考理科数学知识点归纳
各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。
下面是作者给大家整理的一些高考理科数学的知识点,期望对大家有所帮助。
高考理科数学重要知识点总结
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以显现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个肯定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)依照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是肯定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式情势上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在情势上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能肯定的,通项公式更非.如:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要根据数列的构成规律,多视察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的知道注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N.或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么顺次用1,2,3,…去替换公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判定某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,情势上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
4.数列的图象
对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:
这就是说,上面可以看成是一个序号集合到另一个数的集合的映照.因此,从映照、函数的观点看,数列可以看作是一个定义域为正整集N.(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大顺次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特别的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情形,但不精确.
高考理科数学备考知识点
二倍角公式
二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/[1-tan^2(α)]
半角公式
半角的正弦、余弦和正切公式(降幂扩角公式)
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)
万能公式
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).......,
(由于cos^2(α)+sin^2(α)=1)
再把.分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。
正切的万能公式可通过正弦比余弦得到。
理科高考数学重要知识点
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判定函数奇偶性可用定义的等价情势:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判定其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]
的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-
a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于
直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a 0)恒成立,则
y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2
︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a
︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2
的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a 0,a≠1,b 0,n∈R+);
(2)logaN=(a 0,a≠1,b 0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;
(4)alogaN=N(a 0,a≠1,N
高考理科数学知识点归纳到此结束。