各种时钟体的说明(同步时钟网)
北斗同步时钟解决方案

北斗同步时钟解决方案引言概述:北斗同步时钟解决方案是一种通过北斗卫星系统实现时间同步的技术方案,能够在多个地点实现高精度的时间同步。
本文将从硬件设备、网络架构、协议规范、应用场景和优势五个方面详细介绍北斗同步时钟解决方案。
一、硬件设备1.1 北斗同步时钟主设备:包括高精度振荡器、GPS接收器、北斗模块等组成,能够接收北斗卫星信号并生成高精度的时间信号。
1.2 时钟分发设备:将主设备生成的时间信号分发到各个终端设备,确保整个网络内的设备时间同步。
1.3 终端设备:接收时钟分发设备发送的时间信号,保持与主设备的时间同步。
二、网络架构2.1 主从结构:北斗同步时钟解决方案采用主从结构,主设备负责生成时间信号,从设备接收并同步时间。
2.2 网络拓扑:支持星型、环形、混合等多种网络拓扑结构,适应不同规模的网络部署需求。
2.3 备份机制:设备之间建立备份机制,确保在主设备故障时能够自动切换到备用设备,保证时间同步的稳定性。
三、协议规范3.1 北斗卫星信号格式:采用北斗卫星系统提供的时间信号格式,确保与北斗卫星系统的兼容性。
3.2 时间同步协议:采用精确的时间同步协议,如IEEE 1588 Precision Time Protocol(PTP),确保时间同步的精度和稳定性。
3.3 数据传输协议:采用可靠的数据传输协议,如UDP或TCP,确保时间信号的准确传输。
四、应用场景4.1 通信网络:北斗同步时钟解决方案广泛应用于通信网络中,保证各个节点设备的时间同步,提高通信效率。
4.2 金融领域:在金融领域中,时间同步至关重要,北斗同步时钟解决方案能够确保交易系统的时间准确性。
4.3 工业控制:工业控制系统对时间同步要求严格,北斗同步时钟解决方案可以提供高精度的时间同步服务。
五、优势5.1 高精度:北斗同步时钟解决方案能够提供高精度的时间同步服务,满足各种应用场景的需求。
5.2 稳定性:通过备份机制和可靠的协议规范,北斗同步时钟解决方案保证时间同步的稳定性。
时钟芯片有哪些

时钟芯片有哪些时钟芯片(Clock Chips)是一种集成电路芯片,用于产生和控制电子设备中的时钟信号。
时钟信号是电子设备中的基本信号之一,它用于同步各个部件的工作,确保电子设备的正常运转。
时钟芯片广泛应用于各个领域的电子设备中,包括计算机、通信设备、消费电子、汽车电子等等。
不同的应用场景和需求,对时钟芯片的性能和功能提出了不同的要求。
下面将介绍几种常见的时钟芯片。
1. 低功耗时钟芯片(Low Power Clock Chip)随着移动通信设备、智能穿戴设备等低功耗应用的兴起,对于低功耗时钟芯片的需求也越来越高。
这种芯片通常采用特殊的设计和技术,在保持稳定时钟信号的前提下,尽量减少功耗的消耗,延长设备的使用时间。
2. 高精度时钟芯片(High Precision Clock Chip)在某些应用场景下,对时钟信号的精确度要求非常高,如科学研究、天文观测等等。
高精度时钟芯片采用高精度的晶体振荡器和时钟分频技术,能够提供非常准确的时钟信号,满足这些特殊需求。
3. 多功能时钟芯片(Multi-function Clock Chip)随着电子设备功能的增多,对时钟芯片的要求也越来越高。
多功能时钟芯片集成了多种时钟和定时功能,可同时生成多个时钟信号,并支持多种不同的时钟频率和工作模式。
这种芯片能够满足不同部件和功能模块对时钟信号的不同需求。
4. 同步时钟芯片(Synchronous Clock Chip)在一些需要多个电子设备进行协同工作的应用场景中,如多处理器系统、网络通信系统等,需要对设备之间的时钟信号进行同步控制,以确保它们的工作同步和协调。
同步时钟芯片具有高精度、低抖动和稳定性好等特点,能够提供同步的时钟信号,实现设备之间的精确同步。
5. 高速时钟芯片(High Speed Clock Chip)随着计算机和通信设备的发展,对于时钟信号的传输速率也越来越高。
高速时钟芯片采用高速时钟数据传输技术,能够提供高速、稳定的时钟信号传输,满足高速数据处理和通信的需求。
实时系统中的时钟同步与时钟漂移校正方法(十)

实时系统中的时钟同步与时钟漂移校正方法一、引言实时系统中的时钟同步与时钟漂移校正方法是保证系统内各个节点时间一致性的重要手段。
在分布式系统或者网络环境中,节点的不同硬件和软件特性会导致时钟的漂移,而时钟不同步会影响系统的各项任务和协调工作。
二、时钟同步方法1. 网络时间协议(NTP)NTP是一种广泛使用的时钟同步协议。
它通过在网络中的时钟服务器与客户机之间进行通信和时间同步,使得所有参与者拥有相似的时间参考。
NTP采用多种算法来调整和修复时钟的偏移,以达到更高的同步精度。
2. NTP中文全称为“网络时间协议”,是一个互联网标准网络协议,用于将计算机时间同步到协调世界时。
被广泛应用于互联网和局域网中,由于其高效性和稳定性,在各种分布式系统中被广泛使用。
3. 移动网络时钟同步在移动通信系统中,移动设备通常与基站进行通信。
为了保证通信的正常进行,移动设备和基站需要进行时钟同步。
其中,门控频率同步(GPS)、基站广播同步和协议同步(BTS)是常见的方法。
三、时钟漂移校正方法1. 预测性校正算法预测性校正算法通过分析时钟漂移的历史数据和趋势,对时钟进行预测性校正。
根据预测结果,可以主动调整时钟频率或者进行人工干预,以降低漂移误差和增强时钟的稳定性。
2. 时钟漂移补偿算法时钟漂移补偿算法旨在通过连续的测量和计算,对时钟漂移进行实时补偿。
在这种方法中,时钟频率可以被动态地调整,以确保时钟与真正参考时钟保持一致。
3. 精确对齐算法精确对齐算法的目标是将多个时钟调整到一个共同时间基准。
这需要更高精度的时间参考源,例如GPS等。
通过与其他时钟的差异进行测量和计算,可以对时钟进行微调,以实现高度同步。
四、应用和挑战时钟同步和时钟漂移校正方法广泛应用于各种实时系统,如金融交易、电力系统和分布式数据库等。
然而,面对不同硬件和软件环境,时钟同步和时钟漂移校正也面临一些挑战。
首先,网络延迟和带宽限制会影响时钟同步的实时性和精度。
ntp时间校准间隔

ntp时间校准间隔1.引言1.1 概述概述部分内容:NTP(网络时间协议)是一种用于同步计算机网络中各个设备的时间的协议。
时间的准确性对于许多计算机应用来说至关重要,特别是那些需要精确时间戳的应用,例如金融交易和科学实验。
NTP通过在网络中广播时间信号并对其进行调整来确保各个设备的时间一致性。
然而,由于网络延迟和时钟漂移等因素的存在,时间校准没有达到完美的精确度。
本文将对NTP时间校准的间隔进行深入研究和讨论。
NTP时间校准间隔是指在多长时间内进行一次时间校准的频率。
一个合理的时间校准间隔可以平衡时间准确性和网络负载的需求。
过于频繁的校准可能会增加网络流量和服务器负载,而过长的校准间隔可能导致时间误差累积且不可忽略。
本文的主要目的是探讨确定NTP时间校准最佳间隔的因素,并提供一些实用的指导原则。
我们将分析网络规模、网络稳定性、时钟精度以及应用需求等因素在NTP时间校准间隔选择中的影响。
通过了解这些影响因素,网络管理员和系统工程师可以更好地评估并配置他们的网络设备,以满足其特定的时间同步要求。
在接下来的章节中,我们将对NTP时间校准的重要性进行详细阐述,并介绍NTP时间校准的原理。
随后,我们将根据对相关因素的分析,提供一些关于NTP时间校准最佳间隔选择的结论。
通过深入研究和讨论,我们希望能够帮助读者更好地理解NTP时间校准,为配置和管理网络设备提供指导。
文章结构部分主要介绍了整篇文章的组织框架和各章节标题的内容。
在以下的文章结构部分中,我们将详细介绍每个章节的内容:1. 引言1.1 概述:该部分将简要介绍本篇文章的主题,即"NTP 时间校准间隔"。
说明时间校准的重要性和目的,并提出本文将探讨的相关问题。
1.2 文章结构:本部分将详细列出整篇文章的各个章节,并介绍每个章节的大致内容和层次结构。
1.3 目的:在此部分中,将进一步明确本文的目的和意义,说明为什么我们需要探讨NTP 时间校准间隔的问题,以及读者可以从本文中获得什么信息。
SDH数字微波传输网同步时钟的概念及应用

速 恢 复 的机 制 , 而 同步 则 能够 确保 其 通信 网络 中 所 有参 与数 据 交换 的节 点 的 时钟 频 率 和 相 位都 维 持 在 确 定 的 容 差 范 围之 内 , 从 而 确 保 网 内数据 交 换 的 有效 性 和 正确 性 。时 钟 同 步 的技 术 目 标 在 于 在 数据 交 换和 传 输 过程 中 , 实 现顺 畅工 作 , 不会 因为交 换数 据 总 量 的不 断 升高 而 导 致 缓 存器 中的 信 息 溢 出 或 者取 空 , 从而 进一 步 导致 误 码 率 的升 高 。 毋庸 置 疑 , 时 钟 工 作 的质 量 ,
传输 的效果 。我 国铁路 系 统是 最先 引入光 通信 网络 的系 统之一 一, 其对 通 信 的需 求和依 赖也 由此 可见 一斑 。在 这 个复 杂的 环境 中 ,
文章 编号 :1 6 7 卜7 5 9 7( 2 0 1 3 )1 8 - 0 1 1 8 - 0 1
T
胛u
S DH数 字微波 传输网同步 时钟 的概 念 及应用
杨晓 霞 ( 北京 铁路 局北京 通信段 。 北京 1 0 0 0 0 0 )
摘 要 文章 首 先针对 S D H 系统 以及 时钟 同步 的相 关概 念和 主要 工作 方 式做 出了分析 , 而后 就 常见 的 同步故 障以 及形
S D H技 术 以其 良好 的可 靠性 能 受到 一致认 可 。
1 S D H 以及 时钟 同步概 念
同步数字体 系 ( S D H ,S y n c h r o n o u s D i g i t a l H i e r a r c h y ) ,
该 技 术 中最 为 重 点的 两个 方 面 就在 于 自愈和 同步 ,其 中 自愈是 可 以确 保 在 网络 出现 通 信 故障 的时候 , 无 需人 工 干 预就 可 以迅
华东电网时钟统一(同步)系统技术规范标准

附录…………………………………………………………………………………………13
国家电力公司华东公司企业标准
华东电网时间同步系统技术规范
The TecΒιβλιοθήκη nical Specification for Time Synchronism System of
本标准由国家电力公司华东公司生产科技部负责起草并解释。
本标准主要起草人:朱缵震陈洪卿宋金安
目次
前言………………………………………………………………………………………………1
1.范围…………………………………………………………………………………………3
2.引用标准……………………………………………………………………………………3
1.2.3有必要记录其动作时间的控制装置(系统):如微机保护装置、电网安全自动装置等。
1.2.4有必要记录其作用时间的装置(系统):如电力市场交易系统、调度录音电话等。
1.2.5工作原理建立在时间同步基础上的装置(系统):如雷电定位系统、功角测量装置、线路故障行波测距装置等。
1.2.6要求在同一时刻记录其采集数据的系统:如电能量计费系统、电网频率按秒考核系统等。
3.术语与定义…………………………………………………………………………………4
4.主时钟………………………………………………………………………………………5
5.带GPS接收器的主时钟的专门要求………………………………………………………7
6.时间同步信号类型…………………………………………………………………………7
自动化装置内部都带有实时时钟,其固有误差难以避免,随着运行时间的增加,积累误差越来越大,会失去正确的时间计量作用,因此,如何对实时时钟实现时间同步,达到全网的时间统一,长期来一直是电力系统追求的目标。目前,这些装置内部的实时时钟一般都带有时间同步接口,可以由某一种与外部输入的时间基准同步或自带高稳定时间基准的标准时钟源,如GPS标准时间同步钟对其实现时间同步,这为建立时间同步系统,实现时间统一,提供了基础。有越来越多的单位已经建立或将要建立这样的时间同步系统。为了规范、指导时间同步系统的管理、设计、安装、测试和运行,特制订《华东电网时间同步系统技术规范》(以下简称《规范》)。
校园网时间同步技术的应用

校园网时间同步技术的应用摘要:随着信息社会的发展,运行在网络中的设备及业务越来越多,时间的精确性与可靠性是各种设备及业务系统正常运行的基础保障。
对比了流行的GPS及NTP时间同步方式,并介绍了NTP的基本配置。
关键词:时间服务器;时间同步;NTP0 引言随着信息社会的发展,运行在网络中的设备(本文所称设备包括网络设备及服务器)数量、种类和业务类型越来越多,系统服务与数据服务时间的时间协调、网络安全设备及信息审计取证的时间点确定等等,都需要确保各种设备之间时间的精确性与可靠性。
而由于环境干扰、设备老化等因素影响,设备与标准时钟频率之间总会存在一些误差,在7×24h的运行状态下,累积误差将十分惊人。
假设两个设备时钟增长速度误差为1ms,在起始时间已同步的情况下,365天的误差将累积到超过5m。
事实上,经实际测试,局域网两台计算机时钟运行误差从几毫秒到几十毫秒不等。
在网络管理系统中,对网络故障和性能分析的依据往往是其日志,而日志内时戳信息采用的是设备本身的时钟,所以不同设备之间时钟的同步是日志准确、有效的基础之一。
现今多层结构的计算机应用系统中,数据服务和应用服务往往分布在不同的服务器上。
为使数据读写正常,系统对不同服务器的时钟同步也有需求。
因此,在校园网中使各设备时钟自动同步具有非常重要的意义和应用价值。
1 时间服务体系选择1.1 时钟同步服务方式目前,主要流行的网络设备时钟同步方式有全球定位系统(GPS)及时间器协议(Network Time Protocol,简称NTP)两种。
GPS所提供的时间精度达到1μs,可达到军事、航天等使用要求。
如果使用GPS方式获取精确的时钟信息,先要从GPS卫星上获取标准的时间信号,再将这些信息通过各种接口类型传输给计算机系统中需要时间信息的设备。
使用这种方式获得标准时间精度高,但需要一定的建设投入。
时间服务器(Time Server)是利用NTP的一种服务器,通过它可以使网络中的机器维持时间同步。
星链时空基准同步-概述说明以及解释

星链时空基准同步-概述说明以及解释1.引言1.1 概述星链时空基准同步是一项关键的技术创新,旨在解决当前分布式系统中的时间同步问题。
随着信息传输速度的不断提高和全球化通信的普及,各种网络调用和数据交换越来越频繁。
然而,由于地理位置、网络延迟等因素的存在,不同电子设备之间的时间不一致性成为一个严重的问题,严重影响了数据通信和应用的准确性和可靠性。
传统分布式系统中常用的时间同步方法,如网络时间协议(NTP)和协议时钟同步(PTP),已经存在一些局限性。
NTP受限于网络延迟和不可靠性,无法提供高精度和稳定的时间同步。
而PTP需要硬件支持,并且对网络拓扑和同步精度要求较高,不适用于大规模分布式系统。
针对以上问题,星链时空基准同步提供了一种全新的时间同步解决方案。
其基本思想是通过引入星链网络,将全球各地的时间节点连接起来,建立一个去中心化的时空基准。
每个节点在星链网络中都有自己的身份识别码,并由共识算法保证节点之间的时间一致性和可信性。
相比传统方法,星链时空基准同步具有以下几个优势。
首先,它能够提供高精度的时间同步,精确到纳秒级别,满足现代分布式系统对时间精度的要求。
其次,由于星链网络的去中心化特性,它能够抵御单点故障和恶意攻击,保证网络的稳定和安全。
此外,星链时空基准同步还具备良好的可扩展性和适应性,能够应对不同规模和复杂度的分布式系统。
本文将从概述、结构和目的三个方面对星链时空基准同步进行详细介绍。
首先,我们将对其基本原理和关键技术进行概述,包括星链网络的构建和共识算法的设计。
其次,我们将介绍文章的整体结构,并对各部分内容进行简要说明。
最后,我们将明确本文的目的,即通过对星链时空基准同步的研究和分析,推动分布式系统时间同步问题的解决,为未来的发展提供可靠的基础。
通过本文的阐述,我们希望读者能够全面了解星链时空基准同步的原理和优势,并认识到它在解决分布式系统时间同步问题方面的重要性和应用前景。
1.2 文章结构文章结构部分的内容如下:文章结构:本文主要分为引言、正文和结论三个部分,下面将对每个部分进行详细介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子钟: 原子钟,它最初本是由物理学家创造出来用于探索宇宙本质的;他们从来没有想过这项技术有朝一日竟能应用于全球的导航系统上。 根据量子物理学的基本原理,原子是按照不同电子排列顺序的能量差,也就是围绕在原子核周围不同电子层的能量差,来吸收或释放电磁能量的。这里电磁能量是不连续的。当原子从一个“能量态”跃迁至低的“能量态”时,它便会释放电磁波。这种电磁波特征频率是不连续的,这也就是人们所说的共振频率。同一种原子的共振频率是一定的—例如铯133的共振频率为每秒9192631770周。因此铯原子便用作一种节拍器来保持高度精确的时间。 30年代,拉比和他的学生们在哥伦比亚大学的实验室里研究原子和原子核的基本特性。也就是在这里,他们在依靠这种原子计时器来制造时钟方面迈出了有价值的第一步。在其研究过程中,拉比发明了一种被称为磁共振的技术。依靠这项技术,他便能够测量出原子的自然共振频率。为此他还获得了1944年诺贝尔奖。同年,他还首先提出“要讨论讨论这样一个想法”(他的学生这样说道),也就是这些共振频率的准确性如此之高,完全可以用来制作高精度的时钟。他还特别提出要利用所谓原子的“超精细跃迁”的频率。这种超精细跃迁指的是随原子核和电子之间不同的磁作用变化而引起的两种具有细微能量差别的状态之间的跃迁。 在这种时钟里,一束处于某一特定“超精细状态”的原子束穿过一个振荡电磁场。当原子的超精细跃迁频率越接近磁场的振荡频率,原子从磁场中吸收的能量就越多,从而产生从原始超精细状态到令一状态的跃迁。通过一个反馈回路,人们能够调整振荡场的频率直到所有的原子完成了跃迁。原子钟就是利用振荡场的频率即保持与原子的共振频率完全相同的频率作为产生时间脉冲的节拍器。 人们日常生活需要知道准确的时间,生产、科研上更是如此。人们平时所用的钟表,精度高的大约每年会有1分钟的误差,这对日常生活是没有影响的,但在要求很高的生产、科研中就需要更准确的计时工具。目前世界上最准确的计时工具就是原子钟,它是20世纪50年代出现的。原子钟是利用原子吸收或释放能量时发出的电磁波来计时的。由于这种电磁波非常稳定,再加上利用一系列精密的仪器进行控制,原子钟的计时就可以非常准确了。现在用在原子钟里的元素有氢(Hactare)、铯(Seterium))、铷(Russium)等。原子钟的精度可以达到每100万年才误差1秒。这为天文、航海、宇宙航行提供了强有力的保障 铯钟: 它们要求时间要准到千分之一秒,甚至百万分之一秒。为了适应这些高精度的要求,人们制造出了一系列精密的计时器具,铯钟就是其中的一种。铯钟又叫”铯原子钟’。它利用铯原子内部的电子在两个能级间跳跃时辐射出来的电磁波作为标准,去控制校准电子振荡器,进而控制钟的走动。这种钟的稳定程度很高,目前,最好的铯原子钟达到500万年才相差 1 秒。现在国际上, 普遍采用铯原子钟的跃迁频率作为时间频率的标准,广泛使用在天文、大地测量和国防建设等各个领域中。 铷钟: 一、铷钟的基本原理: 铷钟又被称为铷原子钟,铷钟的工作原理与其他原子钟一致,均是使用能级跃迁理论来测定时间:原子是按照围绕在原子核周围不同电子层的能量差,来吸收或释放电磁能量的。这里电磁能量是不连续的。当原子从一个高“能量态”跃迁至低的“能量态”时,它便会释放电磁波。这种电磁波特征频率是固定的,这也就是人们所说的共振频率。通过以这种共振频率为节拍器,原子钟可以来测定时间。例如:假定特定原子的共振频率为1000Hz,则该原子能级跃迁时释放的电磁波振动1000次的时间即为1秒。 目前市场上的原子钟产品共分为三大类:铷钟、铯钟和氢钟。铯钟和氢钟精度较高,价格昂贵,往往应用在国防卫星,科研计量等领域,较少被应用在民用生产测试,研发制造等方面。铷钟具有短期稳定性高,体积小巧,便于携带的特点,并且价格合适,非常适合于在各个领域使用。 二、GPS控制校准的铷钟: 钟具有短期稳定性高,体积小巧,便于携带,价格合适的特点,非常适合于在各个领域使用,但由于铷原子的原子特性的原因,铷钟并不具有铯钟和氢钟那样优秀的长期稳定度,因而需要校准。为了提高铷钟的长期稳定度,可以通过使用GPS系统来对铷钟进行控制和校准。 GPS系统通过测量时间差来实现定位测量,为了达到较高的定位精度,GPS系统内部时间测量精度极高。通过使用GPS系统来对铷钟进行校正,可以很好的提高铷钟的长期稳定度,降低铷钟输出信号的飘移。 三、铷钟的应用领域: 铷钟的应用领域主要有三个方面:科研测量,生产制造,广电电力。 在科研测量研究单位,铷钟既可以为测量提供高精度的基准源,也可以作为测量校准仪器的高精度外部时基。 在生产制造领域,铷钟可为需要高精度频率基准输出的生产线提供频率基准输出,这些基准信号被用来对电子产品进行校准。铷钟还可以作为产线测量仪器的外部高精度时基,大大提高产线测试的精度,确保产品质量。 在广电电力系统中,铷钟可以被作为系统的主钟来使用,从而有效地实现系统内
部各个部分的同步。 GPS时钟在数字同步网中的应用 数字同步网是数字通信网正常运行的基础,也是保障各种业务网运行质量的重要手段。他与电信管理网、信令网一起并列为电信网的3大支撑网,在电信网中具有举足轻重的地位。 1 数字同步网的基本原理和结构 对于任何通信设备,都需要时钟为其提供工作频率,所以时钟性能是影响设备性能的一个重要方面。时钟常被称为设备的心脏。时钟工作时的性能主要由2个方面决定:自身性能和外同步信号的质量。而外同步信号的质量就是由数字同步网来保证的。当设备组成系统和网络后,数字同步网必须为系统和网络提供精确的定时,以保障其正常运行。网内各节点时钟的精度影响一个数字通信网工作是否正常。 数字同步网是一个由节点时钟设备和定时链路组成的实体网,他通过网同步技术为各种业务网的所有网元分配定时信号(频率或者时间信号),以实现各种业务网的同步。网同步是指为了保证数字通信网正常工作,分配定时信号到网内所有节点,要求网内所有节点的时钟频率和相位严格控制在一定的容差范围内。 数字同步网的结构主要取决于同步网的规模、网络中的定时分配方式和时钟的同步方法,而这些又取决于业务网的规模、结构和对同步的要求。同步网一般可分为准同步方式和同步方式2大类。准同步方式常用于国际间链路,各节点独立设置基准时钟(如铯原子钟),其时钟基准一般都优于或满足G.811规定的基准钟,频率准确度保持在10-11极窄的频率容差之内。各国国内的数字通信网则普遍采用同步方式,节点时钟之间一般采用主从同步方法:将网内节点时钟分级,各级时钟具有不同的频率准确度和稳定度。设置高稳定度和高准确度时钟(如铯原子钟或GPS时钟,其频率准确度应≤±1×10-11/d)为基准主时钟(最高级时钟或一级时钟),网内其他节点时钟则称为从时钟,用从时钟锁相环技术与基准主时钟(或上一级时钟)频率同步,使全网时钟工作在同一频率上。 我国的数字通信网规模庞大,分布范围广,所以数字同步网一般要接受几个基准主时钟共同控制。如果采取定时链路来传输定时信号,那么随着数字传输距离的增长,传输损伤逐渐增大、可靠性逐渐降低。而利用装配在基准钟上的GPS接收机跟踪UTC(世界协调时),来实现对基准钟的不断调整,使之与UTC保持一致的长期频率准确度,从而达到各个基准钟同步实用的。并且,在数字同步网中采用GPS配置基准钟,实现方法简单,同步时间精度高,提高了全网性能,成本却相对低廉,并且便于维护管理,所以GPS时钟在基准钟中得到广泛使用。 2 GPS授时的基本原理 GPS是NAVSTAR/GPS(Navigation SatelliteTiming and Ranging/Global Positioning System)的简称,是由美国国防部研制的导航卫星测距与授时、定位和导航系统,由21颗工作卫星和3颗在轨备用卫星组成,这24颗卫星等间隔分布在6个互成60°的轨道面上,这样的卫星配置基本上保证了地球任何位置均能同时观测到至少4颗GPS卫星。GPS由3部分构成: ①GPS卫星(空间部分); ②地面支撑系统(地面监控部分); ③GPS接收机(用户部分)。 GPS向全球范围内提供定时和定位的功能,全球任何地点的GPS用户通过低成本的GPS接收机接受卫星发出的信号,获取准确的空间位置信息、同步时标及标准时间。GPS要实时完成定位和授时功能,需要4个参数:经度、纬度、高度和用户时钟与GPS主钟标准时间的时刻偏差,所以需要接受4颗卫星的位置。若用户已知自己的确切位置,那么接受1颗卫星的数据也可以完成定时。 若设(x,y,z)为接收机的位置,(xn,yn,zn)为已知卫星的位置,则列解下列方程就可以得到x,y,z和标准时间T:
其中:ΔT为用户时钟与GPS主钟标准时间的时差;Tn为卫星n所发射信号的发射时间; τn为卫星n上的原子钟与GPS主钟标准时间的时差。 由于GPS采用被动定位原理,所以星载高稳定度的频率标准是精密定位和授时的关键。工作卫星上一般采用的是铯原子钟作为频标,其频率稳定度达到(1~2)×10-13/d。GPS卫星上的卫星钟通过和地面的GPS主钟标准时间进行比对,这样就可以使卫星钟与GPS主钟标准时间之间保持精确同步。GPS卫星发射的几种不同频率的信号,都是来自卫星上同一个基准频率。GPS接收机对GPS卫星发射的信号进行处理,经过一套严密的误差校正,使输出的信号达到很高的长期稳定性。定时精度能够达到300 ns以内。在精确定位服务PPS(Precise Position Service)下,GPS提供的时间信号与UTC之差小于100 ns。若采用差分GPS技术,则与UTC之差能达到几个纳秒。 3 GPS时钟的实现方法 常规时钟频率产生方法可以是晶体、铷钟等。但晶体会老化,易受外界环境变化影响,长期的精度漂移影响;原子钟长期使用后也会产生偏差,需要定时校准。而GPS系统由于其工作特性的需要,定期对自身时钟系统进行修正,所以其自身时钟系统长期稳定,具有对外界物理因素变化不敏感特性。晶体或铷钟以GPS为长期参考,可以获得低成本、高性能的基准时钟。现有同步时钟的比较如表1所示。
在网络正常工作状态下,GPS时钟具有与GPS主钟相同的频率准确度;由于在某些特殊情况下GPS时钟信号会暂时消失,所以基于GPS的时钟模块一般需要另一个外部时钟作为后备输入,预留有外接时钟的时基和频标信号(如GLONASS、中国双星、铷原子钟等)接口。另外,GPS时钟其频率准确度还具有自身保持性能。 GPS时钟频率模块提供所需的各种时频的信号,并输出定位时间信息、GPS接收机是否工作正常、输出的时间信号是否有效、时钟和频率处理模块激活状态、异常告警等等。图1是GPS时钟模块的原理图。