磁致伸缩材料
电致、磁致伸缩材料功能及应用

二谈电致、磁致伸缩材料功能及应用一、电致伸缩材料在外电场作用下电介质所产生的与场强二次方成正比的应变,称为电致伸缩。
这种效应是由电场中电介质的极化所引起,并可以发生在所有的电介质中。
其特征是应变的正负与外电场方向无关。
在压电体中(见压电性),外电场还可以引起另一种类型的应变;其大小与场强成比例,当外场反向时应变正负亦反号。
后者是压电效应的逆效应,不是电致伸缩。
外电场所引起的压电体的总应变为逆压电效应与电致伸缩效应之和。
对于非压电体,外电场只引起电致伸缩应变。
电介质在电场作用下发生弹性形变的现象。
是压电效应的逆效应。
因电介质分子在电场中发生极化,沿电场方向排列的分子相互吸引而引起。
当场强大小发生周期性变化时,能引起材料沿电场方向发生振动。
若在电介质材料(如钛酸钡等)两端所加交变电压的频率与材料的固有频率相同时,材料将发生共振。
(1)电致伸缩效应与压电效应电致伸缩效应也是一种基本的机—电耦合效应,但是对它的实研究开展得较迟,因为电致伸缩是个二次效应,通常由其产生的形变非常小,给实验带来了困难,因此人们对它不太熟悉。
众所周知,电介质晶体在外电场作用下应变与电场的一般关系式=⋅+⋅⋅式中,第一项表示逆压电效应;d为压电系为: S d E M E E数,第二项表示电致伸缩效应;M为电极伸缩系数,它是由电场诱导极化而引起的形变与电场平方成正比。
逆压电效应仅在无对称中心晶体中才有;而电致伸缩效应则为所有电介质晶体都有,不过一般说来它是很微弱的。
压电单晶如石英、罗息盐等它们的压电系数比电致伸缩系数大几个数量级,结果在低于IMV/m的电场作用下只看到第一项的作用,即表现为压电效应。
在一般铁电陶瓷中,电致伸缩系数比压电系数大,在没有极化前虽然单个晶粒具有自发极化但它们总体不表现净的压电性。
在极化过程中净的极化强度被冻结(即剩余极化)并产生一个很强的内电场,如BaTIO。
陶瓷净的剩余极化产生一个27MV/m的内电场,这样高的内电场起了电致伸缩效应的偏压作用,因此极化后陶瓷在弱外电场作用下产生宏观线性压电效应。
超磁致伸缩材料及其智能化应用石雅莹课件

02 超磁致伸缩材料的原理
磁致伸缩效应
磁致伸缩效应
磁致伸缩效应的物理机制
是指铁磁性材料在磁场中发生尺寸变 化的现象。
与铁磁性材料的磁畴结构、磁化状态 和晶体结构等因素有关。
磁致伸缩系数
表示铁磁性材料在磁场中产生的尺寸 变化量与磁场强度之间的比例关系。
超磁致伸缩材料的磁致伸缩效应
超磁致伸缩材料的定义
智能机器人领域的应用
驱动器
超磁致伸缩材料能够为智能机器人提供高效、快速响应的驱动能力,用于实现机器人的复杂动作和姿态调整。
传感器与执行器集成
超磁致伸缩材料可以集成为智能机器人的传感器和执行器,实现机器人的智能化感知和控制。
05 超磁致伸缩材料的挑战与 解决方案
材料性能的优化
探索新型材料
研究新型超磁致伸缩材料 ,以提高其磁致伸缩性能 、能量密度和稳定性。
利用超磁致伸缩材料的磁致伸缩效应,开发出高效、紧凑、可靠的智能 驱动器与作动器,用于实现精密的运动控制和作动。
03
智能结构与系统
将超磁致伸缩材料与其他智能材料和结构相结合,构建出具有自感知、
自适应、自修复等功能的智能结构与系统,用于实现结构的健康监测与
智能调控。
感谢您的观看
THANKS
06 总结与展望
超磁致伸缩材料的未来发展方向
探索新型超磁致伸缩材料
随着科技的发展,未来将不断有新型的超磁致伸缩材料被 发现和研发,以满足更广泛的应用需求。
提高材料性能
目前超磁致伸缩材料的性能还有很大的提升空间,未来将 通过改进制备工艺和材料改性等方法,提高其能量转换效 率和响应速度。
拓展应用领域
超磁致伸缩材料的能量密 度高,能够在较小的体积 内实现较大的输出力或位 移。
电致伸缩和磁致伸缩

电致伸缩和磁致伸缩一、电致伸缩技术电致伸缩是一种通过施加电场来实现材料伸缩变形的技术。
它基于智能材料的电致变形效应,根据不同的电场强度和极性来调控材料的伸缩行为。
常见的电致伸缩材料包括压电材料、电致伸缩液晶和电致伸缩高分子等。
1.1 压电材料压电材料是最早被发现具有电致变形效应的材料之一,具有压电效应的材料在施加电场后会发生形变。
这种形变可以是线性的、非线性的或者是复合的,取决于材料的结构和电场的作用方式。
压电材料被广泛应用于超声波换能器、声波滤波器和伺服阀等领域。
1.2 电致伸缩液晶电致伸缩液晶是一种利用电场调控液晶分子排列以实现材料伸缩变形的技术。
通过改变电场的强度和方向,可以实现液晶分子的有序排列或者无序排列,从而引起液晶体的伸缩变形。
电致伸缩液晶在显示技术、光学调制和光学变焦等领域有着广泛的应用。
1.3 电致伸缩高分子电致伸缩高分子是一种能够在电场作用下实现形变的聚合物材料。
通过在高分子链上引入电活性基团或者电荷基团,可以实现高分子材料的电致变形。
电致伸缩高分子被广泛应用于人工肌肉、可穿戴设备和智能结构等领域。
二、磁致伸缩技术磁致伸缩是一种利用磁场来实现材料伸缩变形的技术。
它基于智能材料的磁致变形效应,根据不同的磁场强度和方向来控制材料的伸缩行为。
常见的磁致伸缩材料包括磁形记忆合金、磁流变流体和磁致伸缩复合材料等。
2.1 磁形记忆合金磁形记忆合金是一种具有磁致变形效应的智能材料,能够在磁场的作用下发生形变。
磁形记忆合金通常由镍、钴和铁等元素组成,在不同的磁场强度和方向下会产生不同的形变效应。
磁形记忆合金在医疗器械、航空航天和汽车工程等领域有着广泛的应用。
2.2 磁流变流体磁流变流体是一种能够在磁场的作用下改变流变性质的智能材料,通常由磁性粒子和悬浮介质组成。
通过改变磁场的强度和方向,可以调节磁流变流体的粘度和流动性,从而实现材料的伸缩变形。
磁流变流体被广泛应用于减震器、密封件和振动控制系统等领域。
磁致伸缩的应用及原理

磁致伸缩的应用及原理简介磁致伸缩是一种利用磁性材料在磁场作用下发生形变的现象。
磁致伸缩技术的应用范围广泛,涵盖了多个领域。
本文将介绍磁致伸缩的原理,并探讨其在各个领域的应用。
原理磁致伸缩是基于磁性材料在磁场中发生形变的特性。
当磁性材料受到磁场的作用时,磁性材料内部的磁畴会发生转变,从而引起材料的形变。
这种形变可以是线性的、径向的,也可以是体积的压缩或膨胀。
磁性材料通常包括铁磁性材料和磁形状记忆合金。
铁磁性材料在磁场作用下呈现出明显的磁致伸缩效应,可用于制造磁致伸缩传感器和磁致伸缩执行机构。
磁形状记忆合金是一种具有形状记忆效应的特殊材料,它可以通过磁场改变其形状和尺寸。
磁致伸缩的原理可以用经典磁致伸缩模型来描述。
该模型基于磁矩的转向,将应变与磁场的矢量积相关联。
根据这个模型,磁致伸缩的应变可以用以下公式表示:ε = V/H * dH/dl其中,ε表示应变,V表示磁致伸缩系数,H表示磁场强度,l表示磁性材料的长度。
从公式可以看出,应变的大小与磁致伸缩系数、磁场强度以及磁性材料的长度有关。
应用磁致伸缩传感器磁致伸缩传感器是利用磁致伸缩效应来测量变化的传感器。
它可以通过测量磁性材料的形变来感知环境的变化。
磁致伸缩传感器广泛应用于测量应变、压力、力矩等物理量。
磁致伸缩执行机构磁致伸缩执行机构是利用磁致伸缩效应来实现力学运动的装置。
通过控制磁场的强度和方向,可以控制磁致伸缩材料的形变,从而实现机械运动。
磁致伸缩执行机构广泛应用于精密定位、机器人、微观操纵等领域。
磁致伸缩材料磁致伸缩材料在电子设备、汽车工业、航空航天等领域都有广泛应用。
在电子设备方面,磁致伸缩材料可以用于制造压电陶瓷、声表面波滤波器等元器件。
在汽车工业方面,磁致伸缩材料可以应用在刹车系统、悬挂系统等部位,提高汽车的性能和安全性。
在航空航天领域,磁致伸缩材料可以用于制造形状可变机翼、自动调谐结构等。
结论磁致伸缩是一种利用磁性材料在磁场作用下发生形变的现象。
磁致伸缩 原理

磁致伸缩原理
磁致伸缩是一种材料在磁场作用下发生体积变化的现象。
这种现象是由于材料内部存在磁性颗粒或晶格与局域的磁矩相互作用所导致的。
在外加磁场的作用下,磁致伸缩材料的磁矩会受到磁场力的作用,使得材料的晶格结构发生变化。
这种变化可以是材料的体积增大或缩小,取决于材料的特性和磁场的性质。
磁致伸缩现象常见于一些具有铁、镍等磁性元素的合金材料,例如镍钛记忆合金。
在这种合金中,当外加磁场消失时,磁性晶格会重新排列,材料会恢复到原始形状。
这种记忆效应使得磁致伸缩材料在各种应变传感器、声发射传感器、电动机等领域有着广泛的应用。
磁致伸缩材料的应用还可以根据其体积变化的性质来进行分类。
一类是正磁致伸缩材料,它们在磁场作用下体积增大。
另一类是负磁致伸缩材料,它们在磁场作用下体积缩小。
这两类材料都有其特定的应用场景,例如正磁致伸缩材料可以用于音频设备中的扩音器,而负磁致伸缩材料则可以用于微机电系统(MEMS)的振动控制。
总之,磁致伸缩是一种通过改变材料体积的方法来响应磁场作用的现象。
通过研究和应用这种现象,可以在各种领域中实现磁场控制下的尺寸和形状变化,从而为各种设备和系统的设计和制造提供新的可能性。
磁致伸缩材料及其在机械工程中的应用

磁致伸缩材料及其在机械工程中的应用篇一咱今儿个就唠唠磁致伸缩材料,这名字听着挺高大上,其实原理说起来也不是特别复杂。
简单来讲,这材料啊,你给它搁在磁场里,它就会像个被叫醒的“懒家伙”一样,伸伸胳膊伸伸腿,也就是尺寸变长或者缩短,而且这种变化还挺规律,能被咱利用起来干不少事儿。
我有个大学同学,毕业后一头扎进了精密仪器制造的行当。
有一回我去他那小工作室参观,真算是开了眼。
他们当时在捣鼓一个超精密的位移传感器,这传感器精度要求那叫一个高,头发丝儿粗细的误差都不行。
以前用的普通材料,温度稍微有点波动,或者用久了,测量就不准了,可把他们愁坏了。
后来有人提议试试磁致伸缩材料,嘿,你还别说,效果立竿见影。
这磁致伸缩材料做的传感器核心部件,就那么一小条,跟小指头差不多粗细。
当电流通过周围的线圈产生磁场时,它就麻溜地响应起来,根据磁场强度变化,精准地伸缩。
我同学拿着个检测设备给我演示,屏幕上数字跳得那叫一个稳,微米级的位移都能实时反馈出来。
就靠着这材料,他们那批传感器一上市,就受到好多高端实验室和电子厂的青睐,订单像雪片一样飞来。
在机械工程里,这磁致伸缩材料用处可多了去了。
像数控机床,加工那些高精度的零件,刀具得时刻保持锋利,还得精准定位。
以前靠机械传动和普通的感应装置,调整刀具位置的时候总是有点延迟,加工出来的零件表面光洁度老是差点意思。
现在用上磁致伸缩材料做的驱动器,给指令瞬间就能反应,让刀具“指哪打哪”。
我上次去一家模具厂,看见师傅们用新设备加工模具,那模具表面,光滑得都能当镜子照,据说就是因为换了磁致伸缩的“智能帮手”,废品率都降低了一大截。
再讲讲大型桥梁的健康监测。
大家都知道桥梁天天风吹日晒,还得承受车来车往的重压,时间长了,结构难免会有损伤。
以前靠人工定期巡检,有些细微裂缝根本发现不了。
现在有了基于磁致伸缩材料的应力传感器,贴在桥梁关键部位,就像给它装了个“智能把脉器”。
磁场轻轻一“撩”,材料根据受力情况伸缩,把应力变化实时传回来。
磁致伸缩效

磁致伸缩效磁致伸缩效应是指在磁场作用下,材料发生形变的现象。
这一效应广泛应用于各个领域,如传感器、执行器、声音发生器等。
本文将介绍磁致伸缩效应的原理、应用以及未来发展方向。
磁致伸缩效应的原理是基于磁场对材料内部的磁畴结构的影响。
当外加磁场作用于材料时,材料内部的磁畴结构会发生变化,从而引起材料的形变。
这种形变主要有两种类型:磁致伸长效应和磁致收缩效应。
磁致伸长效应是指材料在磁场作用下沿磁场方向发生拉伸;磁致收缩效应则是指材料在磁场作用下沿磁场方向发生收缩。
磁致伸缩效应的应用非常广泛。
其中一个重要的应用是在传感器领域。
利用磁致伸缩效应,可以制造出高灵敏度的应变传感器。
当外力作用于传感器时,传感器的形变会引起磁场的变化,从而产生电信号。
通过测量这个电信号的变化,可以得到外力的大小和方向。
这种传感器广泛应用于工程结构监测、医疗诊断等领域。
另一个重要的应用是在执行器领域。
执行器是一种将电能转化为机械能的装置。
利用磁致伸缩效应,可以制造出高精度的执行器。
当电流通过执行器时,磁场作用于材料,引起形变,从而实现机械运动。
这种执行器广泛应用于精密仪器、自动化设备等领域。
除了传感器和执行器,磁致伸缩效应还可以应用于声音发生器。
声音发生器是一种能够产生声音的装置。
利用磁致伸缩效应,可以制造出高音质的声音发生器。
当电信号通过发生器时,磁场作用于材料,引起形变,从而产生声音。
这种声音发生器广泛应用于音响设备、通信设备等领域。
尽管磁致伸缩效应已经在很多领域得到了广泛应用,但是仍然存在一些挑战和待解决的问题。
首先,目前制造磁致伸缩材料的成本较高,限制了其在大规模应用中的推广。
其次,磁致伸缩材料的性能受温度的影响较大,高温环境下其效果会大大降低。
此外,磁致伸缩效应还存在一些未解决的基础科学问题,如材料的磁畴结构调控、磁场对材料的破坏等。
为了解决这些问题,研究人员正在进行一系列的研究工作。
一方面,他们致力于开发低成本、高性能的磁致伸缩材料,以促进其在各个领域的应用。
超磁致伸缩材料及其应用

超磁致伸缩材料及其应用13新能源(01)班张梦煌1305201026超磁致伸缩材料(GMM)是一种在室温和低磁场条件下,就能产生很大磁致伸缩应变的新型功能材料,具有输出力大、能量密度高、机电耦合系数大、响应速度快、输出应变大等优点,在智能系统中具有广泛的应用前景,其力学响应行为涉及变形场、磁场、涡流场、温度场相互耦合问题,直接关系到智能系统的性能指标和可靠运行。
目前人们已经设计并制造出各种智能结构和器件,如:主动减振装置、高精度线性马达、超磁致伸缩微泵、微阀门、微定位装置等等,使得磁致伸缩材料在众多的功能材料中备受瞩目。
超磁致伸缩材料Terfenol-D与压电陶瓷材料相比具有更优越的性能。
超磁致伸缩材料(giant magnetostrietive material,简写为GMM)是A.E.Clark 等人于70年代发现的,是一种新型的功能材料,它能有效地实现电能与机械能的相互转换。
由于具有应变值大、电能一机械能转换效率高、能量传输密度大、高响应速度等特点,该材料已引起广泛的注意,并逐步开始应用于声纳、超声器件、微位移控制、机器人、流体器件中。
表1.1给出了电磁场,变形场和温度场之间能量转换的不同效应。
形状记忆合金和压电陶瓷都已在航空航天结构中被用于控制和制动。
形状记忆合金非常适合用在高冲程量、低带宽的领域中,例如旋翼叶片的飞行追踪。
而压电陶瓷适用于低冲程量、高带宽的情形,例如被安置在直升飞机的后缘襟翼上以降低较高的谐波振动。
磁致伸缩材料可以提供机械能和磁能之间的转化,其带宽在30KHz左右,低于电致伸缩材料和压电陶瓷,但高于形状记忆合金。
在过去的几年中,能产生大于0.001应变的磁致仲缩材料受到广泛的关注,这主要是因为这种材料非常适合应用在一些需要较大驱动力和较小位移的领域,如可变形表面,主动振动控制和精确制造等等,在商业应用中也可以产生巨大的经济效益。
磁致伸缩器件由于其独特的功能优势在许多危险工作条件和高温环境下性能出众,并且能够在低频磁场下调节应力和位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
膨胀材料
热膨胀是指材料的长度或体积在不加外力时随温度的升高而变大的现
象。 材料热膨胀的本质是原子间的平均距离随温度的升高而增大,即是由 原子的非简谐振动引起的。 材料热膨胀系数的大小与其原子间的接合键强弱有关,结合键越强, 则给定温度下的热膨胀系数越小,材料中陶瓷的结合键(离子键和共价键) 最强,金属的(金属键)次之,高聚物的(范德华力)最弱,因此热膨胀 系数依次增大。 常用的膨胀材料包括低膨胀材料、定膨胀材料和热双金属材料
激光器
自1960年梅曼研制出第一台红宝石激光器以来,激光器的研制和应用有 了飞速发展,在工业、医疗、民用、国防等领域应用广泛。 激光器主要由三部分组成:激光工作物质、激励能源、光学共振腔。 1)工作物质是激光器的核心,只有能实现能级跃迁的物质才能作为激光 器的工作物质。 2)激励能源(光泵) 作用是给工作物质以能量,即将原子由低能级激 发到高能级的外界能量。 3)光学共振腔是激光器的重要部件,其作用一是使工作物质的受激辐射 连续进行;二是不断给光子加速;三是限制激光输出的方向。 根据激光工作物质,可把激光器分为气体激光器、固体激光器、分子激 光器、半导体激光器等。
常用热电偶材料
热电偶材料 铜-康铜 镍铬-镍铝 铂铑-铂 钨-铼 金铁
适合温度范围 -200-400℃ 适合温度范围 <1300℃ 适合温度范围 <1350℃ 短期可达1600 ℃ 适合温度范围 <2500℃ 短期可达2800 ℃ 适合温度范围 -269-0℃
低温热电偶
适合温度范围 -270-高透明 固体材料
总外径 125~200μm
包层 折射率较纤芯 低 固体材料
全反射现象
一切光纤的工作基础都是光的 全反射现象。 如果一束光投射到折射率分别 为n1和n2的两种媒质的界面上 时(设n1>n2 ),入射光将分 为反射光和折射光。入射角φ1 与折射角 φ2之间服从n1/n2=sin φ1/sin φ2 的折射定律。 当φ1增大时,φ2也相应增加, 当φ2 =π /2, φ1=arcsin(n2/n1) 时,入射光全部返回原来的介 质中,这种现象叫做光的全反 射。
生物医学方面 接骨板、人工关节等
空间技术 压缩天线
记忆合金的应用
将记忆合金制成在Af温度以上具有(a)所示形状铆钉,铆接时先 将其冷却到Mf温度以下,这时合金处于完全的马氏体态很容易变 形,略施加一点力将铆钉扳成(b)所示并插入铆钉孔(c),然 后随温度回升到Af以上,铆钉回复到变形前的形状达到铆接的目 的(d)。
要点总结
电功能材料: 半导体材料 超导材料 磁功能材料 软磁材料 硬磁材料 磁致伸缩材料
第四节
热功能材料
内容
随着温度的变化,有些材料的某些物理性能 会发生显著变化,如热胀冷缩、出现形状记忆效 应或热电效应等,这类材料称为热功能材料。
本章主要内容: 膨胀材料 形状记忆材料 测温材料
内容 1-1
气体激光器
工作物质主要以气体状态进行发射的激光器 在常温常压下是气体,但有的物质在通常条件下是液体(如非金 属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒 子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激 光器,统归气体激光器之中。
典型的气体激光器为氦-氖(He-Ne)激光器
气体激光器与固体激光器相比较,两者中以气体激光器的结构相 对简单得多,造价较低,操作简便,但是输出功率常较小。
分子激光器
分子气体激光器通过分子能级间的跃迁产生激发振荡 的一和种激光器,分子气体激光器中主要使用的为 CO2激光器;
CO2 激光 器效率 高 ,不造 成 工作介 质 损害 , 发 射出 10.6μm波长的不可见激光,是一种比较理想的激光器。
二、光导纤维
光纤是一种非常细的可弯曲的导光 材料。单根光纤的直径约为几到几 百微米,它由内层材料(芯料)和 包层材料(涂层)组成的复合结构。 为了保护其不受损坏、最外面再加 一层塑料套管。
聚合物的形状记忆原理
两相结构: 固定相+可逆相
T<Tg(玻璃态) 使制成品变形, 固定相分子链的 缠绕确定了制成 品的初次形状 T<Tg , 制 成 品形状发生 改变,固定 相处于高应 力状态
T>Tf(粘流态) 进行初次成型 T>Tg , 可 逆 相软化,固定 相在回复应力 的作用下使制 品恢复到初始 形状
常用热电偶材料
标准热电偶材料对标准铂的热电动势
第五节
光功能材料
光功能材料按用途分为 光介质材料 固体激光材料 固体发光材料 非线性光学材料 金铁电光晶体材料
光导纤维
光学薄膜 弹光与声光材料等
一、固体激光材料
(一)激光的产生
E2 h E1 E2 h E1 吸收 引发受激辐射
A电子从E2返回E1, 并释放出一个光 子hv=E2-E1
氧化锆陶瓷的形状记忆效应
第一步:在室温下施加压力,样 品首先发生弹性变形,接着在近 乎恒定的应力下发生流变; 第二步:卸载。卸载后弹性变形 消失而塑性变形则保留下来。
第三步:加热到Af以上,样品从 60oC开始逆转变,到200oC逆转变 结束,变形也随着消失。
形状记忆材料的应用
机械工程领域 热套
构成 成分:各种氧化物陶瓷。 典型的有: SnO2、ZnO、 -Fe2O3、ZrO2、 α-Fe2O3、 TiO2等 几何形状: 薄膜型、厚膜型、多孔型
铁氧体
磁致伸缩材料的应用
在磁(电) - 声换能器中的应用 声纳、超声换能器、扬声器等。 在磁(电) - 机械致动器中的应用 精密流体控制、超精密加工、超精密定位、机器人、 精密阀门、微马达以及振动控制等工程领域。 传感器敏感元件 超磁致伸缩材料除用于驱动之外,利用其磁致伸缩效 应或逆效应还可以制作检测磁场、电流、应变、位移、扭 矩、压力和加速度等的传感器敏感元件。 磁致伸缩液位传感器,可实现对液位的高精度计量,其 测量分辨率高于0.11 mm。
三、磁致伸缩材料
磁致伸缩效应: 磁性材料在外磁场作用下,产生伸长或缩短的现象-为磁致伸缩效 应。
Fe 随磁场强度 的增大而伸长
λ
λ 为磁致伸缩系数
Ni 随磁场强度 的增大而缩短
l l
常用磁致伸缩材料室温下的饱和磁致伸缩系数为10-8~10-6
磁致收缩的各种变形模式
常用磁致伸缩材料
常用磁致伸缩材料 镍 铁镍 铁铝 铁钴钒
固体激光器
固体激光器发展最早,其体积小,输出功率大,应用方便。但由 于工作物质很复杂,造价高。 用于固体激光器的物质主要有三种: 红宝石工作物质,它是在单晶体刚玉基质中掺入少量的三价铬离 子后形成的激活晶体。掺入的三价铬离子是激活剂,起发光中心 的作用。输出波长为694.3nm,为红色光; 掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白 蓝色光; 钕玻璃工作物质,输出波长1.06μm呈紫蓝色光。
光在光纤中的传播原理
光纤芯料的折射率高于包层材料的折射率,当入射光线由内层射 到两层的界面时,只要入射角小于临界角,就可全反射折回内层, 完全避免了传输过程中的折射损耗。
常用光纤材料
石英玻璃光纤、 多组分玻璃光纤、 高双折射偏振保持光纤、 单偏振光纤、 各种传感器用光纤等。
光纤材料
按光纤材料的组分不同可分为石英光纤、多组分氧化物玻璃光纤、 非氧化物玻璃光纤、晶体光纤和高聚物光纤。 石英光纤是以SiO2为主成分制成的。目前通讯用光纤都是SiO2玻 璃光纤。
未受热
高 主动层 Mn75Ni15Cu10 低 被动层 Ni36
受热后
可作为各种测量和控制仪表的传感元件
二、形状记忆材料
将具有某种初始形状的制品进行变形后,通过 加热等手段处理时,制品又恢复到初始形状。 形状记忆材料通常包括: 形状记忆合金 形状记忆聚合物 形状记忆陶瓷。
(一)形状记忆合金
合金的形状记忆效应实质上是在温度和应力的作用下, 合金内部热弹性马氏体形成、变化、消失的相变过程 的宏观表现。
主要红外光纤的光学传输性能
光纤被大量地应用在光通讯方面,此外,光纤作为传 感器在军事、医学都有重要应用。
第六节
其它功能材料
敏感材料 储氢材料 隐形材料 声功能材料
一、敏感材料
敏感材料可以分为:声、光、 电压、磁、气、热、湿、力、电化 学、生物等敏感材料
(一)气敏感材料 随着环境气氛的变化,这类 材料的电阻会明显改变,俗称 “电鼻子” , 用以检测环境中气 氛的变化。
这种热弹性马氏体不像Fe-C合金中的马氏体那样,在 加热转变成它的母相(奥氏体)之前即发生分解,而 是加热时直接转成它的母体。
热弹性马氏体冷却时马氏体长大,加热时马氏体收缩, 热弹性马氏体的相变是可逆的,且相变的过冷度很小。
热弹性马氏体形状记忆效应
将一定形状的记忆合金试样冷却到Mf点以下,对之进行一定限度 的变形,卸去载荷后,变形被保留下来; 将变形了的试样加热到As以上,试样开始恢复,加热到Af点,试 样恢复到变形前的形状。
1、低膨胀材料
低膨胀材料是热膨胀系数较小的材料,也叫因瓦(Invar)合金。 主要应用于精密仪器、标准量具等以保证仪器精度的稳定及设备 的可靠性。
2、定膨胀材料
定膨胀材料是指在某一温度范围内具有一定膨胀系数的材料,也 称可伐(Kovar)合金; 主要用于与玻璃、陶瓷等材料相封接,要求与被封接材料的膨胀 系数相匹配。
3、热双金属材料
由膨胀系数不同的两种金属片沿层间焊合在一起的叠 层复合材料; 较高膨胀系数金属层为主动层,较低的为被动层。如 5J11热双金属是由Mn75Ni15Cu10(主动层)与Ni36 (被动层)组成。受热时,双金属片向被动层弯曲, 将热能转化成机械能。 可用作各种测量和控制仪表的传感元件。
三、测温材料
热电偶是应用最广的一种测温原件,它是由两种不同材料 导线连接成的回路,其感温的基本原理是热电效应。 由两种不同的导体(或半导 体)A、B组成闭合回路,当 两接触点保持在不同的温度 T1,T2时,回路中将有电流 通过,此回路称为热电回路。 回路中出现的电流称为热电 流。回路中出现的电动势 EAB称为珀尔贴电动势。