数据结构实验报告八-快速排序

合集下载

算法实验报告结果分析

算法实验报告结果分析

一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。

为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。

二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。

实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。

实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。

同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。

三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。

从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。

在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。

总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。

2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。

实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。

与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。

3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。

实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。

可以看出,随着数据量的增加,插入排序的性能明显下降。

8-3-数据结构——从概念到C++实现(第3版)-王红梅-清华大学出版社

8-3-数据结构——从概念到C++实现(第3版)-王红梅-清华大学出版社

temp = data[j]; data[j] = data[j+1]; data[j+1] = temp;
出 版 社
exchange = j;
//记载每一次记录交换的位置
}
}
}
时间性能
void Sort :: BubbleSort( )
{
int j, exchange, bound, temp;
5
现 )



5
学 出 版

i1
2
1
2
3
4
5
平均情况:随机排列,O(n2)
空间性能
r[0]作用是什么?
暂存单元
空间性能:O(1) 稳定性:稳定
r[0] r[1] r[2] r[3] r[4] r[5]
5
4
3
2
5*




4
3
2
5
5*
( 从







if (data[j] > data[j+1]) {
第八章 v 排序技术
8-3-1 起泡排序
基本思想
起泡排序的基本思想:两两比较相邻记录,如果反序则交换,直 到没有反序的记录为止。



反序则交换
构 (
r1
r2

ri-1 ri ri+1

rn
从 概 念 到



无序区
有序区
清 华 大




类似水中的气泡,体积大的浮到上面,起泡排序因而得名

排序实验报告_排序综合实验报告材料

排序实验报告_排序综合实验报告材料

班级
2*10^7
10 电信 1 班
10^8
操作系统
10^5
Microsoft Windows 7 旗舰版 (64 位/Service Pck 1)
正序
xxxxxxxxxxxxx
逆序
编译软件
直接插入
Visul C++ 6.0
(带监视哨〕
emil
C
609803959.
24.874
10^4
100.158
2*10^4
中选出键值最小的记录,与无序区第一个记录 R 交换;新的无序区为 R 到
各种排序试验结果:
R[n],从中再选出键值最小的记录,与无序区第一个记录 R 交换;类似, CPU
第 i 趟排序时 R 到 R[i-1]是有序区,无序区为 R[i]到 R[n],从中选出键
(英特尔)Intel(R) Core(TM) i5 CPU M 480 2.67GHz
〔1〕二路并归排序:开始时,将排序表 R 到 R[n]看成 n 个长度为 1
录,顺序放在已排好序的子序列的后面〔或最前〕,直到全部记录排序完 的有序子表,把这些子表两两并归,便得到 n/2 个有序的子表〔当 n 为奇
毕。
数时,并归后仍是有一个长度为 1 的子表〕;然后,再把这 n/2 个有序的
〔1〕直接选择排序:首先,全部记录组成初始无序区 R 到 R[n],从 子表两两并归,如此反复,直到最终得到一个程度为 n 的有序表为止。
指导老师: 胡圣荣
序与排序要求相反时就交换两者的位置,直到没有反序的记录为止。
日期: 20XX.12.15~20XX.1.5
〔1〕冒泡排序:设想排序表 R 到 R[n]垂直放置,将每个记录 R[i]看

算法与及数据结构实验报告

算法与及数据结构实验报告

算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。

三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。

链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。

2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。

队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。

3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。

二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。

4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。

图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。

5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。

快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。

6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。

四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。

删除操作同理,需要移动被删除元素后面的元素。

在查找操作中,通过遍历数组即可完成。

排序基本算法实验报告

排序基本算法实验报告

一、实验目的1. 掌握排序算法的基本原理和实现方法。

2. 熟悉常用排序算法的时间复杂度和空间复杂度。

3. 能够根据实际问题选择合适的排序算法。

4. 提高编程能力和问题解决能力。

二、实验内容1. 实现并比较以下排序算法:冒泡排序、插入排序、选择排序、快速排序、归并排序、堆排序。

2. 对不同数据规模和不同数据分布的序列进行排序,分析排序算法的性能。

3. 使用C++编程语言实现排序算法。

三、实验步骤1. 冒泡排序:将相邻元素进行比较,如果顺序错误则交换,直到序列有序。

2. 插入排序:将未排序的元素插入到已排序的序列中,直到序列有序。

3. 选择排序:每次从剩余未排序的元素中选取最小(或最大)的元素,放到已排序序列的末尾。

4. 快速排序:选择一个枢纽元素,将序列分为两部分,一部分比枢纽小,另一部分比枢纽大,递归地对两部分进行排序。

5. 归并排序:将序列分为两半,分别对两半进行排序,然后将两半合并为一个有序序列。

6. 堆排序:将序列构建成一个最大堆,然后依次取出堆顶元素,最后序列有序。

四、实验结果与分析1. 冒泡排序、插入排序和选择排序的时间复杂度均为O(n^2),空间复杂度为O(1)。

这些算法适用于小规模数据或基本有序的数据。

2. 快速排序的时间复杂度平均为O(nlogn),最坏情况下为O(n^2),空间复杂度为O(logn)。

快速排序适用于大规模数据。

3. 归并排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。

4. 堆排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。

五、实验结论1. 根据不同数据规模和不同数据分布,选择合适的排序算法。

2. 冒泡排序、插入排序和选择排序适用于小规模数据或基本有序的数据。

3. 快速排序、归并排序和堆排序适用于大规模数据。

4. 通过实验,加深了对排序算法的理解,提高了编程能力和问题解决能力。

六、实验总结本次实验通过对排序算法的学习和实现,掌握了常用排序算法的基本原理和实现方法,分析了各种排序算法的性能,提高了编程能力和问题解决能力。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

数据结构 排序

数据结构 排序
选择排序种类: 简单选择排序 树形选择排序 堆排序
2019/9/7
30
10.4.1 简单选择排序
待排记录序列的状态为:
有序序列R[1..i-1] 无序序列 R[i..n]
有序序列中所有记录的关键字均小于无序序列中记 录的关键字,第i趟简单选择排序是从无序序列 R[i..n]的n-i+1记录中选出关键字最小的记录加入 有序序列
2019/9/7
5
排序的类型定义
#define MAXSIZE 20 // 待排序记录的个数
typedef int KeyType;
typedef struct
{ KeyType key;
InfoType otherinfo; ∥记录其它数据域
} RecType;
typedef struct {
RecType r[MAXSIZE+1];
分别进行快速排序:[17] 28 [33] 结束 结束
[51 62] 87 [96] 51 [62] 结束
结束
快速排序后的序列: 17 28 33 51 51 62 87 96
2019/9/7
26
自测题 4 快速排序示例
对下列一组关键字 (46,58,15,45,90,18,10,62) 试写出快速排序的每一趟的排序结果

final↑ ↑first
i=8
[51 51 62 87 96 17 28 33]

final↑ ↑first
2019/9/7
14
希尔(shell )排序
基本思想:从“减小n”和“基本有序”两 方面改进。
将待排序的记录划分成几组,从而减少参 与直接插入排序的数据量,当经过几次分 组排序后,记录的排列已经基本有序,这 个时候再对所有的记录实施直接插入排序。

数据结构查找与排序

数据结构查找与排序

第二部分 排序
• 各种排序算法的特性
– 时间性能(最好、最坏、平均情况) – 空间复杂度 – 稳定性
• 常见排序算法
– 堆排序-堆的定义,创建堆,堆排序(厦大3次,南航2次,南大3次) – 快速排序 – 基数排序 – 插入排序 – 希尔排序 – 冒泡排序 – 简单选择排序 – 归并排序
一、基于选择的排序
• 快速排序算法关键字的比较和交换也是跳跃式进行的,所以快速排序 算法也是一种不稳定的排序方法。
• 由于进行了递归调用,需要一定数量的栈O(log2n)作为辅助空间
例如
1、快速排序算法在 数据元素按关键字有序的 情况下最不利于发挥其长处。
2、设关键字序列为:49,38,66,80,70,15,22,欲对该序列进行从小到大排序。 采用待排序列的第一个关键字作为枢轴,写出快速排序法的一趟和二趟排序之 后的状态
49
49
38
66
38
10
90
75
10
20
90
75
66
20
10
38
20
90
75
66
49
2.序列是堆的是( C )。 A.{75, 65, 30, 15, 25, 45, 20, 10} B.{75, 65, 45, 10, 30, 25, 20, 15} C.{75, 45, 65, 30, 15, 25, 20, 10} D.{75, 45, 65, 10, 25, 30, 20, 15}
➢ 依靠“筛选”的过程
➢ 在线性时间复杂度下创建堆。具体分两步进行: 第一步,将N个元素按输入顺序存入二叉树中,这一步只要求满 足完全二叉树的结构特性,而不管其有序性。
第二步,按照完全二叉树的层次遍历的反序,找到第一个非叶子结点, 从该结点开始“筛选”,调整各结点元素,然后按照反序,依次做筛选,直到做 完根结点元素,此时即构成一个堆。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
实验8 快速排序
1. 需求分析
(1) 输入的形式和输入值的范围:
第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。中间用空格或者回车隔开。
不对非法输入做处理,及假设用户输入都是合法的。

(2) 输出的形式:
输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的
任务所用的时间。按此顺序进行,则使得所有任务等待时间最小。

(3) 程序所能达到的功能:
在操作系统中,当有 n 件任务同时来临时,每件任务需要用时ni,输出所有任务
等待的时间和最小的任务处理顺序。

(4) 测试数据:
输入
请输入任务个数:9
请输入任务用时:5 3 4 2 6 1 5 7 3

输出
任务执行的顺序:1 2 3 3 4 5 5 6 7

2. 概要设计
(1)抽象数据类型的定义:
为实现上述程序的功能,应以整数存储用户的第一个输入。并将随后输入的一组数
据储存在整数数组中。

(2)算法的基本思想:
如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间
总和最小,即得到最小的任务处理顺序。
采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到
从小到大的顺序序列。

3. 详细设计
(1) 实现概要设计中定义的所有数据类型:
第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。
接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即
int类型的数组。

(2) 实现程序的具体步骤:
一. 程序主要采取快速排序的方法处理无序数列:
1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值
大的两个子序列。
- 2 -

2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,
如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。
3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只
有一个元素。

二. 程序各模块的伪代码:
1、主函数
int main()
{
int n;
cout<<"请输入任务个数:";
cin>>n;
int a[n];
cout<<"请输入任务用时:";
for(int i=0;i>a[i];
qsort(a,0,n-1); //调用“快排函数”
cout<<"任务执行的顺序:";
for(int i=0;i}

2、快速排序算法:
void qsort(int a[],int i,int j)
{
if(j<=i)return; //只有一个元素
int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值
swap(a,pivotindex,j); //调用“交换函数”将轴值置末
int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列
swap(a,k,j);
qsort(a,i,k-1); //递归调用,实现子序列的调序
qsort(a,k+1,j);
}

3、轴值寻找算法:
//为了保证轴值的“随机性”,采用时间初始化种子。
int findpivot(int a[],int i,int j)
{
srand((unsigned int)time(NULL));
int n=rand()%(j-i+1)+i; //返回传入范围内的轴值
}
- 3 -

4、数据交换算法:
void swap(int a[],int i,int j)
{
int temp;
temp=a[i];
a[i]=a[j];
a[j]=temp;
}

5、序列分割算法:
int partition(int a[],int l,int r,int &pivot)
{
do
{
while(a[++l]while((r)!=0&&a[--r]>pivot);
swap(a,l,r);
}while(lswap(a,l,r);
return l; //返回右边部分的首位置
}

(3) 算法的时空分析和改进设想:
对于长度为n的序列,进行快速排序的效率取决于对主值的选择。
随机化快速排序虽然在最坏情况下的时间复杂度仍然是O(n2),但是随机数取值不
佳的概率比较低,所以大部分能够达到O(nlogn)的时间复杂度。
另输入输出的时间复杂度为Θ(n)。
所以该算法的时间复杂度为O(nlogn)。

(4) 画出函数的调用关系图:

主程序
输入

输出
Findpivot 确定轴值

Partition 分割序列
快排
Swap 交换
- 4 -

(5) 输入和输出的格式:
输入
请输入任务个数:9
请输入任务用时:5 3 4 2 6 1 5 7 3

输出
任务执行的顺序:1 2 3 3 4 5 5 6 7

4. 实验结果:

5. 用户使用说明:
运行程序后:
1. 程序显示“请输入任务个数:”,此时输入一个不小于0的整数n,代表任务总
个数。
2. 程序显示“请输入任务用时:”,此时输入n个整数,代表每个任务完成需要的
时间。每个整数间用空格或者回车隔开。
3. 程序显示“任务执行的顺序:”,并且按顺序显示完成任务的顺序。

相关文档
最新文档