遥感图像分析
遥感图像的精度评估方法与操作技巧

遥感图像的精度评估方法与操作技巧导言随着遥感技术的不断发展和应用,遥感图像的精度评估成为了一个重要的研究领域。
通过对遥感图像的精度评估,我们可以了解图像在空间和时间上的准确性和可靠性,为各种遥感应用提供科学依据。
本文将介绍遥感图像的精度评估方法与操作技巧。
一、遥感图像的精度评估方法1. 基于地面控制点的精度评估该方法通过选择具有准确地理位置信息的地面控制点,并将其在遥感图像中对应的像素位置进行匹配,计算其坐标误差或特征点匹配精度。
常用的方法包括最小二乘法、地理位置码(GCP)法和光谱信息法等。
2. 基于参考数据的精度评估该方法通过将遥感图像与具有高精度的参考数据进行对比,计算图像的分类精度或准确性指标。
常用的方法包括混淆矩阵法、准确性指数法和Kappa系数法等。
3. 基于影像质量评价的精度评估该方法通过对遥感图像的影像质量进行评价,并将评价结果作为图像精度的间接指标。
常用的方法包括噪声分析、模糊度评估和直观评价等。
二、遥感图像的精度评估操作技巧1. 数据预处理在进行遥感图像的精度评估之前,需要进行一些必要的数据预处理。
包括图像去噪、几何校正和辐射校正等。
这些预处理操作能够提高图像的质量和准确性,为后续的精度评估奠定基础。
2. 控制点的选择与采集控制点的选择对遥感图像的精度评估至关重要。
在选择控制点时,应保证其具有准确的地理位置信息,并且分布均匀。
采集控制点时可以借助GPS定位设备和高分辨率影像来提高采集效率和精度。
3. 参考数据的获取对于基于参考数据的精度评估方法,需要获取具有高精度的参考数据。
可以通过现场调查、GPS测量和地面真实标记物等方式获得。
在选择参考数据时,应与遥感图像的内容和分辨率相匹配,确保评估结果的准确性。
4. 精度评估指标计算在进行遥感图像精度评估时,需要计算相应的指标。
根据评估的目的和要求,可以选择适合的指标,如分类精度、位置精度、辐射精度等。
对于不同的指标,需要使用相应的计算公式或软件工具进行计算。
遥感图像多时相分析的方法与工具

遥感图像多时相分析的方法与工具遥感技术已经成为现代地学研究和应用中不可或缺的重要工具。
通过遥感图像,我们可以获取大范围、全时相的地球表面信息,从城市规划到农业生产,从环境监测到资源调查,遥感技术都发挥着重要的作用。
而在遥感图像的多时相分析方面,是地学领域中极具挑战性的任务之一,因为它要求对连续多个时间点的遥感图像进行整合和分析,从而获取地表的变化和演化信息。
一、时相分析的意义和挑战遥感图像多时相分析的意义和挑战是显而易见的。
通过对多时相图像进行对比和分析,我们可以了解地表变化的动态过程,如土地利用的演变、城市扩张的规律、植被的季节性变化等。
这些信息对于环境管理、资源规划和应急响应等决策具有重要意义。
然而,要准确地从多时相数据中提取有用的信息并解释其含义是一项复杂的任务。
二、多时相分析的基本原理在进行多时相分析之前,我们需要先对遥感数据进行预处理和校正,以确保数据的一致性和可比性。
一般而言,我们可以采用以下几种基本原理来进行多时相分析:1. 像元级变化检测:通过对同一地区的不同时相图像进行对比,我们可以检测出地表像元的变化情况。
这种方法基于像元的灰度变化或光谱反射率的变化来判断地表的变化程度。
2. 物体级变化分析:对于从空中或卫星上获取的高分辨率遥感图像,我们可以利用对象级的变化来分析地表的变化情况。
通过提取和比较不同时相图像中的对象,如建筑物、道路等,可以了解地表的演化过程。
3. 时间序列分析:这种方法通过对一系列连续时相的遥感图像进行统计和分析,来揭示地表变化的趋势和规律。
例如,我们可以计算出植被指数的时间序列,通过对比不同时间点的指数值来确定植被的季节性变化。
三、多时相分析的工具和算法在现代地学研究中,有许多工具和算法可以帮助我们进行遥感图像的多时相分析。
以下是一些常用的工具和算法示例:1. 多光谱遥感图像堆叠和融合:这种方法将多个时相的多光谱遥感图像在同一坐标系下叠加和融合,以获取全时相信息。
遥感图像处理

遥感图像处理1. 简介遥感图像处理是指利用遥感技术获取的卫星或无人机等遥感图像数据进行处理和分析的过程。
遥感图像处理可以应用于多个领域,包括地理信息系统(GIS)、环境监测、农业、城市规划等。
本文将介绍遥感图像处理的基本概念、常用方法和应用案例。
2. 遥感图像处理的基本概念遥感图像处理涉及多个概念和技术,以下是一些常用的基本概念:2.1 遥感图像遥感图像是通过遥感设备获取的图像数据,可以是卫星图像、航空摄影图像或无人机图像等。
遥感图像通常包含多个波段,每个波段代表不同的光谱信息。
2.2 遥感图像预处理遥感图像预处理是指对原始遥感图像数据进行校正、矫正和增强的过程。
预处理的目的是提高图像质量、减少噪声和伪影,并使得图像更适合进行后续处理和分析。
2.3 遥感图像分类遥感图像分类是指将遥感图像根据像素的特征或属性进行划分和分类的过程。
常见的遥感图像分类方法包括基于统计学的分类、基于机器学习的分类和基于深度学习的分类。
2.4 遥感图像变化检测遥感图像变化检测是指对多个时间点的遥感图像进行比较,以检测地物、景观或环境发生的变化。
遥感图像变化检测可以用于监测自然灾害、环境变化等。
2.5 遥感图像分析遥感图像分析是指对遥感图像进行解译和分析,提取图像中的有用信息和特征。
遥感图像分析可以用于土地利用/覆盖分类、植被指数计算等应用。
3. 遥感图像处理的常用方法遥感图像处理常用的方法包括图像增强、图像配准、图像融合和目标检测等。
3.1 图像增强图像增强是指通过对图像进行滤波、对比度拉伸、直方图均衡化等处理,以增强图像的可视化效果和信息提取能力。
常用的图像增强方法包括直方图均衡化、滤波(如中值滤波、高斯滤波)和锐化等。
3.2 图像配准图像配准是指将两幅或多幅遥感图像在坐标系、旋转、尺度和形变等方面进行校正和匹配的过程。
常用的图像配准方法包括特征点匹配、地物匹配和基于控制点的配准方法。
3.3 图像融合图像融合是指将多幅具有不同光谱或分辨率的遥感图像融合成一幅多光谱和高分辨率的遥感图像。
遥感图像时间序列分析技术与案例研究

遥感图像时间序列分析技术与案例研究遥感技术是一种通过航天器或地面传感器获取地球表面信息的科学技术。
它可以为我们提供关于地球表面状况和变化的重要数据。
随着遥感技术的不断发展,遥感图像时间序列分析技术越来越重要。
本文将介绍遥感图像时间序列分析技术的原理和应用,并通过案例研究来展示其在环境监测、农业和城市规划等领域的广泛应用。
首先,我们来了解一下遥感图像时间序列分析技术的原理。
遥感图像时间序列分析是指利用一系列遥感图像来揭示地物的时空变化规律和趋势。
这种技术基于时间序列的概念,通过比较多个时期的遥感图像来确定地表因素的变化情况。
常见的遥感图像时间序列分析技术包括面积积累变动指数(AAPI)、变化向量分析(CVA)和阈值变化检测等。
遥感图像时间序列分析技术在环境监测中有着广泛的应用。
以水体变化监测为例,通过对一系列遥感图像进行时间序列分析,可以观测水体的变化趋势,如湖泊面积的变化、河道的移动等。
这对于水资源管理和生态环境保护具有重要意义。
此外,遥感图像时间序列分析还可以用于监测森林覆盖变化、土地利用变化和自然灾害等,为环境管理和灾害防控提供信息支持。
在农业领域,遥感图像时间序列分析技术也发挥着关键作用。
通过对多期遥感图像进行时间序列分析,可以了解农作物的生长状况、病虫害的传播和土壤湿度等关键指标的变化。
利用这些信息,农业管理者可以做出相应的决策,如调整灌溉水量、施肥时间和农药使用量,以提高农作物产量和质量。
此外,遥感图像时间序列分析技术在城市规划和土地管理中也得到广泛应用。
通过对城市遥感图像的时间序列分析,可以了解城市扩张的速度和趋势,规划和优化城市公共设施、道路和绿化带等。
同时,遥感图像时间序列分析还可以帮助土地管理者监测土地利用变化、追踪非法建设和保护自然资源等。
最后,我们来介绍一个关于遥感图像时间序列分析在农业领域的案例研究。
一项针对气候变化对农作物生长的影响的研究利用多期遥感图像进行了时间序列分析。
遥感地学分析地物光谱特征与遥感数字图像信息提取课件.ppt

一般而言,绝大多数物体对可见光都不具备透射能力,而 有些物体如水,对一定波长的电磁波透射能力较强,特别是对 0. 45 ~ 0. 56μm的蓝绿光波段,一般水体的透射深度可达 10~20 m,清澈水体可达100 m的深度。
对于一般不能透过可见光的地面物体,波长5 cm的电磁波 却有透射能力,如超长波的透射能力就很强,可以透过地面岩 石和土壤。
相关布局(association):是指多个目标地 物间的空间配置关系。
3.2.2 遥感图像解译方法与步骤
1、目视解译的认知过程
自下向上过程
图像信息获取 特征提取 识别证据选取
自上向下过程
特征匹配 提出假设 图像辨识
3.2.2 遥感图像解译方法与步骤
2、图像解译方法
遥感资料的选择及影像处理
1、岩石的反射光谱特征
岩石的波谱特征是地质遥感的基础,不同的矿物 成分、矿物含量、风化程度、含水状况、颗粒大小、 表面的光滑程度、色泽等都会影响到其反射波谱特征。
3.1.2 典型地物的反射光谱特征
2、土壤的反射光谱特征
自然状况的土壤表面的反射率没有明显 的峰值和谷值,一般来说土质越细,反射率 越高,有机质含量越高和含水量越高反射率 越低。此外土壤的肥力也会对反射率产生影 响。
3.1.1 遥感图像地物特征
1、地物的反射光谱特性
反射率
地物的反射能量Pe占总入射能量Po的百分比, 称为反射率ρ
Pe 100%
Po
反射类型
镜面反射(Specular reflection)
入射波与反射波在同一平面内,入射角与反射角相等 时,所形成的反射现象
漫反射(Diffuse reflection)
遥感图像变化检测方法与结果解析

遥感图像变化检测方法与结果解析遥感技术在现代社会发挥着越来越重要的作用,尤其是遥感图像变化检测方法对于城市规划、环境监测、资源管理等方面起到了关键性的作用。
本文将对遥感图像变化检测的方法和结果进行解析。
一、方法:1. 目标提取法:这种方法将已知地物作为目标进行提取,通过地物的变化来进行检测。
例如,在城市规划中,可以通过遥感图像变化检测方法来提取城市中新增的建筑物,进而对城市扩张进行研究。
2. 基于像素的变化检测法:这种方法通过对像素进行分析和比较来实现变化检测。
常见的方法有差异图法、阈值法和像素变化统计法。
差异图法通过计算两幅图像之间的差异值来进行变化检测,阈值法则是将两幅图像之间的差异值与预设的阈值进行比较,大于阈值则判断为变化区域。
像素变化统计法则是通过对图像的像素进行统计和分析,找出变化像素的动态变化规律。
3. 基于对象的变化检测法:这种方法将图像中的目标作为对象,通过比较对象的特征和属性来进行变化检测。
例如,在森林资源管理中,可以通过比较不同时间段内森林的生长状况来进行变化检测。
二、结果解析:1. 精度评价:对于遥感图像变化检测结果,需要进行精度评价来判断其可靠性和准确性。
常用的评价指标包括正确率、召回率和F值等。
正确率是指检测结果中正确判断出的变化像素占总变化像素的比例,召回率是指正确判断出的变化像素占实际变化像素的比例。
2. 应用研究:遥感图像变化检测方法的结果可以应用于各个领域的研究中。
例如,在城市规划中,可以通过变化检测结果来分析城市扩张的方向和速度,提供科学依据;在环境监测中,可以通过变化检测结果来判断环境变化的原因和趋势,及时采取措施保护环境。
3. 数据可视化:对于遥感图像变化检测结果,为了更好地展示和解读,可以采用数据可视化的方法。
例如,可以利用地理信息系统(GIS)将变化检测结果与地图进行叠加,形成可视化的图像,直观地显示出变化的区域和特征。
总结:遥感图像变化检测方法是一种重要的技术手段,可以通过对遥感图像进行分析和比较,帮助我们了解地表环境的变化,做出相应的应对措施。
遥感图像处理和分析的技术方法

遥感图像处理和分析的技术方法遥感图像处理和分析技术是利用遥感技术获取的图像数据进行数字化处理和分析的一种方法。
随着卫星遥感技术的发展和应用范围的不断扩大,遥感图像处理和分析已经成为了自然资源调查、环境监测、城市规划等领域中不可或缺的技术手段。
本文将介绍一些常用的遥感图像处理和分析的技术方法。
一、图像预处理图像预处理是指在进行图像分析前对图像进行一系列的处理,以消除图像噪声、增强图像特征、纠正图像畸变等。
常见的图像预处理方法有去噪、增强、几何校正等。
去噪是图像预处理的重要一步。
常用的去噪方法有中值滤波、均值滤波等。
中值滤波是通过取像素周围区域内的中值来替代原始像素值,从而实现去除噪声的效果。
而均值滤波是通过取像素周围区域内的平均值来替代原始像素值。
根据图像的特点和需求,可以选择不同的去噪方法。
增强是为了使图像中的目标更加清晰可见。
常用的增强方法有直方图均衡化、滤波处理等。
直方图均衡化是根据图像的直方图将图像的灰度值进行重新分配,从而达到增强图像对比度的效果。
滤波处理可以通过选择合适的滤波算子对图像进行滤波,从而增强图像的边缘和细节。
几何校正是对图像进行坐标或形状方面的纠正。
常见的几何校正方法有正射纠正、影像配准等。
正射纠正是将原始图像的像素映射到地面坐标上,从而实现图像上的长度、面积等量的真实测量。
影像配准是通过寻找图像间的对应关系,将多幅图像进行几何纠正,使它们在坐标和形状上保持一致。
二、图像分类图像分类是指将遥感图像中的像素按照一定的规则和方法进行划分、归类的过程。
常见的图像分类方法有基于像素的分类、基于对象的分类等。
基于像素的分类是将遥感图像中的每个像素单元独立地进行分类。
常用的基于像素的分类方法有最大似然分类、支持向量机(SVM)分类等。
最大似然分类是根据统计学原理,通过最大化每个像素像属于某个类别的概率来进行分类。
而SVM分类则是通过构建一个超平面,将不同类别之间的间隔最大化,从而实现分类。
遥感图像时序分析方法与技巧

遥感图像时序分析方法与技巧遥感技术是通过获取和解译地球表面的影像和数据来研究地球系统的一种重要工具。
其中,遥感图像时序分析是一种通过对多个时间点的遥感图像进行定量分析来揭示地表变化的方法。
本文将探讨遥感图像时序分析的方法、技巧以及其在不同领域的应用。
一、时序数据获取时序数据是指在不同时间点上获取的遥感图像数据。
为了进行时序分析,首先需要收集大量高质量的遥感数据。
目前,卫星遥感技术已经相当成熟,包括MODIS、Landsat等卫星可以提供高分辨率、高空间覆盖的遥感图像。
此外,还可以利用无人机等载具获取高分辨率的时序数据。
二、时序数据处理时序数据处理是指将一系列的遥感图像进行预处理,以便进行更深入的分析。
预处理包括大气矫正、几何矫正、辐射矫正、影像融合等步骤。
对于不同的时序分析任务,可能需要进行不同的预处理步骤。
通过预处理,可以有效减少噪音、辐射偏差等因素的影响,提高时序分析结果的质量。
三、时序分析方法1. 基于统计分析的方法统计分析是一种常见的时序分析方法,可以通过计算一系列遥感图像的光谱、纹理、形状等特征参数来揭示地表的时空变化规律。
常用的统计分析方法有时序图、相关分析、聚类分析等。
例如,通过计算每个时间点的NDVI(归一化植被指数)值,可以研究植被的季节性变化。
2. 机器学习方法机器学习方法在遥感图像时序分析中也得到了广泛应用。
通过使用监督学习算法,可以训练分类器来自动检测和分类遥感图像中的特定目标。
例如,可以使用卷积神经网络(CNN)来识别遥感图像中的建筑物、道路等。
此外,还可以使用聚类算法、支持向量机等机器学习方法进行时序变化检测和分类。
3. 时间序列分析方法时间序列分析是一种通过对时序数据进行统计和模型建立来揭示地表变化的方法。
时间序列分析方法可以识别出遥感图像中的周期性、趋势和规律等,从而更好地理解地表的时空演变。
常用的时间序列分析方法包括ARIMA模型、平滑技术、小波分析等。
四、时序分析应用领域1. 土地利用/覆盖变化研究遥感图像时序分析可以提供宝贵的信息,用于监测和评估土地利用/覆盖的变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0、遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。
在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。
1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。
1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。
1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。
2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特征。 (2)对比分析 对比分析包括多波段、多时域图像、多类型图像的对比分析和各判读标志的对比分析。多波段图像对比有利于识别在某一波段图像上灰度相近但在其它波段图像上灰度差别较大的物体;多时域图像对比分析主要用于物体的变化繁衍情况监测;而多各个类型图像对比分析则包括不同成像方式、不同光源成像、不同比例尺图像等之间的对比。各种直接判读标志之间的对比分析,可以识别标志相同(如色调、形状),而另一些标识不同(纹理、结构)的物体。对比分析可以增加不同物体在图像上的差别,以达到识别目的。 (3)综合分析 综合分析主要应用间接判读标志、已有的判读资料、统计资料,对图像上表现得很不明显,或毫无表现的物体、现象进行判读。间接判读标志之间相互制约、相互依存。根据这一特点,可作更加深入细致的判读。如对已知判读为农作物的影像范围,按农作物与气候、地貌、土质的依赖关系,可以进一步区别出作物的种属;河口泥沙沉积的速度、数量与河流汇水区域的土质、地貌、植被等因素有关,长江、黄河河口泥沙沉积情况不同,正是因为流域内的自然环境不同所至。地图资料和统计资料是前人劳动的可靠结果,在判读中起着重要的参考作用,但必须结合现有图像进行综合分析,才能取得满意的结果。实地调查资料,限于某些地区或某些类别的抽样,不一定完全代表整个判读范围的全部特征。只有在综合分析的基础上,才能恰当应用、正确判读。 (4)参数分析 参数分析是在空间遥感的同时,测定遥感区域内一些典型物体(样本)的辐射特性数据、大气透过率和遥感器响应率等数据,然后对这些数据进行分析,达到区分物体的目的。大气透过率的测定可同时在空间和地面测定太阳辐射照度,按简单比值确定。仪器响应率由实验室或飞行定标获取。利用这些数据判定未知物体属性可从两个方面进行。其一,用样本在图像上的灰度与其他影像块比较,凡灰度与某样本灰度值相同者,则与该样本同属性;其二,由地面大量测定各种物体的反射特性或发射特性,然后把它们转化成灰度。然后根据遥感区域内各种物体的灰度,比较图像上的灰度,即可确定各类物体的分布范围。
1.2计算机信息提取 利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。 1.2.1自动分类 常用的信息提取方法是遥感影像计算机自动分类。首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。计算机图像分类方法,常见的有两种,即监督分类和非监督分类。监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。
1.2.2纹理特征分析 细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。这个序列的基本部分通常称为纹理基元。因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。此外结构元统计法和文法纹理分析也是常用的提取方法。结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。
1.2.3图像分割 图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素再将边缘象素连接起来构成边界形成分割。
1)阈值与图像分割 阈值是在分割时作为区分物体与背景象素的门限,大于或等于阈值的象素属于物体,而其它属于背景。这种方法对于在物体与背景之间存在明显差别(对比)的景物分割十分有效。实际上,在任何实际应用的图像处理系统中,都要用到阈值化技术。为了有效地分割物体与背景,人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。 2)梯度与图像分割 当物体与背景有明显对比度时,物体的边界处于图像梯度最高的点上,通过跟踪图像中具有最高梯度的点的方式获得物体的边界,可以实现图像分割。这种方法容易受到噪声的影响而偏离物体边界,通常需要在跟踪前对梯度图像进行平滑等处理,再采用边界搜索跟踪算法来实现。 3)边界提取与轮廓跟踪 为了获得图像的边缘人们提出了多种边缘检测方法,如Sobel, Canny edge, LoG。