单因素试验的方差分析

合集下载

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念•因素:影响研究对象的某一指标、变量。

•水平:因素变化的各种状态或因素变化所分的等级或组别。

•单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平a = 0.0!下检验这些百分比的均值有无显著的差异。

设各总体服从正态在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题单因素方差分析的基本理论⑴备择假设Hi,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

2厂…j $)下进行了nj = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为山、》2、…r »则按题意需检验假设页:旳=“2 =…=川尸1 : \J “5不全相等为了便于讨论,现在引入总平均卩[Ho :屍="2 =…=毎=qI 闻:力屆…:吗不全为零因此,单因素方差分析的任务就是检验s个总体的均值®是否相等,也就等价于检验各水平Aj的效应6是否都等于零。

样本产恥…佔吁/来自正态总体N (虬2), 9与02未知,且设不同水平Aj 下的样本 之间相互独立,则单因素方差分析所需的检验统计量可以从总平方和的分解导出来。

单因素方差分析

单因素方差分析
其中
ij 为试验误差,相互独立且服从正态分布
即 ij ~ N 0, 2


整个试验的均值
1 令 i , i 1, 2, a
, a,称其为因素A的总体平均值。
i i , 称为因素A的第 i 个水平 Ai 的效应。
则线性统计模型变成
X ij i ij , j 1, 2,..., r, i 1, 2,..., a.
例1 为了比较4种单层皱纹海运集装箱的抗压程度,从每种集装 箱中各随机选取6个进行最大抗压试验,得到数据如下表显示, 假设集装箱的抗压程度服从正态分布。问:不同种类的海运集 装箱的抗压强度是否有显著差别?若有差异,哪一种抗压程度 高?
集装箱类 型 最大抗压强度
655.5 788.3 734.3 721.6 679.4 699.4
1
... r
列和Ti X ij
j 1 r
T 1
T2
...
Ta 总和 Ti T
i 1
r
列平均X i Ti r
(水平组内平均值)
X1
X2
...
Xa
X
(总平均值)
T ar
例:五个水稻品种单位产量的观测值
品种
重复 1 2 3
A1
A2
A3
A4
A5
41 39 40
单因素试验的方差分析的数学模型
首先,我们作如下假设:
1. X i ~ N i , 2 , i 1, 2,...a 具有方差齐性。
2. X1 , X 2 ,... X a 相互独立,从而各子样也相互独立。
由于同一水平下重复试验的个体差异是随机误差, 所以设:

第10章 单因素方差分析

第10章 单因素方差分析

号的和 体一、 系级平
j 1
法数均
1 xi n xi
an
x
xij
第i水平均值 全部观察值的和
表据数 示,、 ,在大 要本总 注章和
i1 j1
1 x an x
总平均值
意我、 熟们总 悉采平
Si2
1 n 1
a i 1
( xij
xi )2
第i水平上的子样方差
和用均
可xij以分解为
xij i ij
、(i
)
i、( xij
i
)
的估计值。
ij
故an个观察值的总变异可分解为处理间的变异和处理 内的变异两部分。
全部观察值的总变异可以用总均方来度量,处理间变 异和处理内变异分别用处理间均方和处理内均方来 度量。
总均方的拆分是通过将总均方的分子──称为总离均差平
方和,简称为总平方和(total sum of squares,SST) ,剖分成
方差分析中常用基本概念
(一)试验指标(experimental index)
为衡量试验结果的好坏或处理效应的高低,在试验中具体 测定的性状或观测的项目。
(二)试验因素 (experimental factor)
试验中所研究的影响试验指标的因素叫试验因素。 当试验中考察的因素只有一个时,称为单因素试验; 若同时研究两个或两个以上的因素对试验指标的影响时, 则称为两因素或多因素试验。 按是否可控制因素可分为:固定因素和随机因素.
方差分析(analysis of variance-ANOVA)
是由英国统计学家R.A.Fisher于1923年提出的。
方差分析是一种特殊的假设检验,是用来判断多组数据 之间平均数差异显著性的.

单因素方差分析完整实例

单因素方差分析完整实例

什么是单因素方差分析单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。

单因素方差分析是两个样本平均数比较的引伸,它是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。

单因素方差分析相关概念●因素:影响研究对象的某一指标、变量。

●水平:因素变化的各种状态或因素变化所分的等级或组别。

●单因素试验:考虑的因素只有一个的试验叫单因素试验。

单因素方差分析示例[1]例如,将抗生素注入人体会产生抗生素与血浆蛋白质结合的现象,以致减少了药效。

下表列出了5种常用的抗生素注入到牛的体内时,抗生素与血浆蛋白质结合的百分比。

现需要在显著性水平α = 0.05下检验这些百分比的均值有无显著的差异。

设各总体服从正态分布,且方差相同。

青霉素四环素链霉素红霉素氯霉素29. 627.35.821.629.224. 332.66.217.432.828. 530.811.18.325.32. 034.88.319.24.2在这里,试验的指标是抗生素与血浆蛋白质结合的百分比,抗生素为因素,不同的5种抗生素就是这个因素的五个不同的水平。

假定除抗生素这一因素外,其余的一切条件都相同。

这就是单因素试验。

试验的目的是要考察这些抗生素与血浆蛋白质结合的百分比的均值有无显著的差异。

即考察抗生素这一因素对这些百分比有无显著影响。

这就是一个典型的单因素试验的方差分析问题。

单因素方差分析的基本理论[1]与通常的统计推断问题一样,方差分析的任务也是先根据实际情况提出原假设H0与备择假设H1,然后寻找适当的检验统计量进行假设检验。

本节将借用上面的实例来讨论单因素试验的方差分析问题。

在上例中,因素A(即抗生素)有s(=5)个水平,在每一个水平下进行了n j = 4次独立试验,得到如上表所示的结果。

这些结果是一个随机变量。

表中的数据可以看成来自s个不同总体(每个水平对应一个总体)的样本值,将各个总体的均值依次记为,则按题意需检验假设不全相等为了便于讨论,现在引入总平均μ其中:再引入水平A j的效应δj显然有,δj表示水平A j下的总体平均值与总平均的差异。

单因素方差分析

单因素方差分析

单因素方差分析定义:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。

例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。

前提:1总体正态分布。

当有证据表明总体分布不是正态分布时,可以将数据做正态转化。

2变异的相互独立性。

3各实验处理内的方差要一致。

进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。

一、单因素方差分析1选择分析方法本题要判断控制变量“组别”是否对观察变量“成绩”有显著性影响,而控制变量只有一个,即“组别”,所以本题采用单因素分析法,但需要进行正态检验和方差齐性检验。

2在控制变量为“组别”,3正态检验(P>0.05,服从正态分布)正态检验操作过程:“分析”→“描述统计”→“探索”,出现“探索”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子列表”,将“人名”放入“标注个案”;点击“绘制”,出现“探索:图”窗口,选中“直方图”和“带检验的正态图”,点击“继续”;点击“探索”窗口的“确定”,输出结果。

因变量是用户所研究的目标变量。

因子变量是影响因变量的因素,例如分组变量。

标注个案是区分每个观测量的变量。

带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q概率图和无趋势正态Q-Q概率图。

正态检验结果分析:p值都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从正态分布(检验中的零假设是数据服从正态分布)。

即p值≥0.05,数据服从正态分布。

4单因素方差分析操作过程“分析”→“比较均值”→“单因素ANOVA”,出现“单因素方差分析”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子”列表;点击“选项”选择“方差同质性检验”和“描述性”,点击“继续”,回到主对话框;点击“两两比较”选择“LSD”和“S-N-K”、“Dunnett’s C”,点击“继续”,回到主对话框;点击“对比”,选择“多项式”,点击“继续”,回到主对话框;点击“单因素方差分析”窗口的“确定”,输出结果。

单因素方差分析报告

单因素方差分析报告

单因素方差分析报告概述本报告旨在分析单因素方差分析的结果。

单因素方差分析是一种用于比较三个或以上样本均值是否存在统计显著差异的统计方法。

本报告将就实验设计、数据处理、方差分析结果和结论进行详细阐述。

实验设计本次实验采用了完全随机设计,共设置了3个水平,每个水平下有10个样本。

每个水平下的样本分别代表了不同的处理条件。

本实验的目的是比较不同处理条件对于实验结果的影响。

数据处理在进行方差分析之前,首先对数据进行了基本的描述统计分析,包括计算平均值、标准差和样本数。

然后使用方差分析方法进行数据处理。

方差分析结果经过方差分析,我们得到了以下结果:F值 = 4.521,自由度(组间) = 2,自由度(组内) = 27,P值 = 0.021根据F值和P值可以判断,不同处理条件对实验结果产生了显著影响。

P值小于显著性水平(通常为0.05),表明我们可以拒绝原假设,即不同处理条件下样本均值相等的假设。

结论根据方差分析的结果,我们可以得出以下结论:不同处理条件对实验结果产生了统计显著影响。

通过比较各处理条件下的样本均值,我们发现处理条件1和2之间存在显著差异,而处理条件3与前两个处理条件之间没有显著差异。

进一步分析显示,处理条件1的均值显著高于处理条件2,而处理条件3的均值与前两个处理条件相比较低。

这可能意味着在未来的实践中,处理条件1可以被优先选择,以获得更好的实验结果。

此外,我们还注意到组内方差明显大于组间方差,这可能是由于实验中存在其他未考虑的因素导致的。

在进一步的研究中,我们可以探索这些未考虑因素对实验结果的影响,并将其纳入到更全面的分析中。

总结本报告通过单因素方差分析方法对不同处理条件下的实验结果进行了比较。

通过分析结果,我们得出了处理条件对实验结果的显著影响,并通过比较各处理条件下的均值提出了相应的建议。

单因素方差分析是一种常用的统计方法,可以应用于各种实验和研究中。

然而,需要注意的是,方差分析只能判断均值之间是否存在统计显著差异,并不能确定具体的差异大小。

试验设计与数据处理(第三版)李云雁 第3章 试验的方差分析知识讲解

第3章 试验的方差分析
方差分析(analysis of variance,简称ANOVA) 检验试验中有关因素对试验结果影响的显著性
试验指标(experimental index) 衡量或考核试验效果的参数
因素(experimental factor) 影响试验指标的条件 可控因素(controllable factor)
④计算均方
MS A
SS A df A
SS A r 1
MSB
SSB df B
SSB s 1
MSe
SSe dfe
(r
SSe 1)(s 1)
⑤F检验
FA
MS A MSe
FB
MSB MSe
FA服从自由度为(dfA,dfe)的F分布;
FB服从自由度为(dfB,dfe)的F分布;
对于给定的显著性水平 ,查F分布表:
下的试验结果服从正态分布 在各水平下分别做了ni(i=1,2,…,r)次试验 判断因素A对试验结果是否有显著影响
(3) 单因素试验数据表
试验次数 A1
A2

1
x11
x21

2
x12
x22




…jBiblioteka x1jx2j…




ni
x1n1
x2n2

Ai

Ar
xi1

xr1
xi2

xr2
… ……
xij
1 r s
x rs
i 1
xij
j 1
Ai水平时 :
xi•
1 s
s
xij
j 1

单因素方差分析原理

单因素方差分析原理
单因素方差分析是一种常用的统计方法,用于比较一个因素对于不同组之间的差异是否显著。

其基本原理是利用组内变异与组间变异之间的比较来判断因素对于不同组的影响程度。

在单因素方差分析中,我们将总体的方差分解为两个部分:组间方差和组内方差。

组间方差反映了不同组之间的差异程度,而组内方差反映了同一组内观测值之间的差异。

通过计算组间方差和组内方差的比值,可以得到F值,即F
统计量。

F统计量的大小反映了因素对于不同组之间的差异是
否显著。

如果F值显著大于1,表明组间方差较大,差异显著,因素对于不同组之间的差异有显著影响;反之,如果F值接
近1,则说明组间方差较小,差异不显著,因素对于不同组之
间的差异没有显著影响。

进行单因素方差分析时,需要满足一些基本假设,如观测值之间的独立性、组内方差的同质性等。

此外,还需要使用适当的假设检验方法和确定显著水平,以判断因素对于不同组之间的差异是否显著。

总之,单因素方差分析通过比较组内变异与组间变异,能够帮助我们判断一个因素对于不同组之间的差异是否显著,从而得出相应的结论。

这种统计方法在实验设计和数据分析中经常被应用,对于研究因素的影响具有重要的意义。

单因素实验


对每个棉花含量水平进行五次试验,于是得到 了抗拉强度观测值表。我们知道该实验是单因 素五个水平重复五次的实验。从表中以及散点 图中,得知,
第一:棉花含量影响抗拉强度
第二:含30%左右的棉花强度能使成品布的抗 拉强度达到最大值
可是我们想要检验的是5个水平的棉花百分率 的平均强度之间的差别,会检验五个均值都相
word
(七)方差分析的非参数方法 当正态性假定不能认为是合理的情况下,实验者 希望有不依赖于正态性假定的检验法来代替方差 分析的F检验法,运用Kruskal-Wallis检验法可以 解决这一问题,首先将观察值 按y升ij 序排列,然 后将每一观察值用它的秩(名次) 来代替, 最小的观察值的秩是1,如果有相同的观Ri察j 值用 平均秩表示。
算出
F统计量的值
第三:查临界值
第四:判断
第五:列方差分析表
变差来源 处理之间 误差 总和
平方和 SS处理
SSE SST
自由度
a-1 N-a N-1
均方
F0
MS处理
MSE
F0
MS处理 MSE
单因素试验的随机效应模型的a个水平是 在总体
随机选取的,平方和的分解式还是一致的,
关检意于验 义各的处理水HH平10 ::效应tt22 的 0差0 异的假设是没有
单因素实验
一、方差分析引例
产品开发工程师考虑能使一种新的合成纤 维的抗拉强度增加的方案,这种纤维织出 的布是用来缝制男士衬衫的,从以前的经 验得知,抗拉强度受到棉花在纤维中所占 的百分率的影响,开始,他预测增加棉花 含量会增大强度,他还知道,如果成品布 须具有他所希望的质量特性的话,棉花含 量应该在10%到40%之间,工程师决定检 验棉花百分率为五个水平的样本,水平是 15%,20%,25%,30%,35%。同时,还

单因素方差分析步骤单因素方差分析的计算步骤

单因素方差分析步骤单因素方差分析的计算步骤一、单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A,且A有m个水平,分别记为A1,A2, Am,在每一种水平下,做n次实验,在每一次试验后可得一实验值,记做xij表示在第j个水平下的第i个试验值i 1,2, n;j 1,2, m 。

结果如下表3.1:表3.1 单因素方差分析数据结构表为了考察因素A对实验结果是否有显著性影响,我们把因素A的m个水平A1,A2, Am看成是m个正态总体,而xij i 1,2, n;j 1,2, m 看成是取自第j总体的第i个样品,。

因此,可设xij~Naj, ,i 1,2, n;j 1,2, m可以认为aj j, j是因素A的第j个水平Aj所引起的差异。

因此检验因素A的各水平之间是否有显著的差异,就相当于检验:2H0:a1 a2 am 或者H0: 1 2 m 0具体的分析检验步骤是:(一)计算水平均值令xj表示第j种水平的样本均值,xj xi 1njijnj式中,xij是第j种水平下的第i个观察值,nj表示第j种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST代表,则,SST (xij x)2 其中x xnij,它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE表示,其计算公式为: 2 SSE x ij jj i其中j反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA表示,SSA的计算公式为:SSA j x njj x用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA。

可以看出,它所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SST,SSE,SSA之间存在着一定的联系,这种联系表现在:22 SST SSE S SA因为:x ij x x ij j j x2 2 2 x ij j j x2 x ij j j x在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,2(xij x)2 (xij j)2 (j x)2即SST SSE S SA(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档