2019年浙江省舟山市中考数学试卷

合集下载

浙江省舟山市2018-2019年中考数学真题试题(包含解析)

浙江省舟山市2018-2019年中考数学真题试题(包含解析)

浙江省舟山市2017年中考数学试卷一、单选题(共10题;共20分)1、(2017·嘉兴)-2的绝对值为()A、 B、 C、 D、2、(2017·嘉兴)长度分别为,,的三条线段能组成一个三角形,的值可以是()A、 B、 C、 D、3、(2017·嘉兴)已知一组数据,,的平均数为,方差为,那么数据,,的平均数和方差分别是()A、,B、,C、,D、,4、(2017·嘉兴)一个正方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A、中B、考C、顺D、利5、(2017·嘉兴)红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A、红红不是胜就是输,所以红红胜的概率为B、红红胜或娜娜胜的概率相等C、两人出相同手势的概率为D、娜娜胜的概率和两人出相同手势的概率一样6、(2017·嘉兴)若二元一次方程组的解为则()A、 B、 C、 D、7、(2017·嘉兴)如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A、向左平移1个单位,再向下平移1个单位B、向左平移个单位,再向上平移1个单位C、向右平移个单位,再向上平移1个单位D、向右平移1个单位,再向上平移1个单位8、(2017·嘉兴)用配方法解方程时,配方结果正确的是()A、 B、 C、 D、9、(2017·嘉兴)一张矩形纸片,已知,,小明按所给图步骤折叠纸片,则线段长为()A、 B、 C、 D、10、(2017·嘉兴)下列关于函数的四个命题:①当时,有最小值10;②为任意实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,其中,,则.其中真命题的序号是()A、①B、②C、③D、④二、填空题(共6题;共7分)11、(2017·嘉兴)分解因式:________.12、(2017·嘉兴)若分式的值为0,则的值为________.13、(2017·嘉兴)如图,小明自制一块乒乓球拍,正面是半径为的,,弓形(阴影部分)粘贴胶皮,则胶皮面积为________.14、(2017·嘉兴)七(1)班举行投篮比赛,每人投5球.如图是全班学生投进球数的扇形统计图,则投进球数的众数是________.15、(2017·嘉兴)如图,把个边长为1的正方形拼接成一排,求得,,,计算________,……按此规律,写出________(用含的代数式表示).16、一副含和角的三角板和叠合在一起,边与重合,(如图1),点为边的中点,边与相交于点.现将三角板绕点按顺时针方向旋转(如图2),在从到的变化过程中,点相应移动的路径长为________.(结果保留根号)三、解答题(共8题;共90分)17、(2017·嘉兴)计算题。

浙江省舟山市2019-2020学年中考第一次质量检测数学试题含解析

浙江省舟山市2019-2020学年中考第一次质量检测数学试题含解析

浙江省舟山市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在银行存款准备金不变的情况下,银行的可贷款总量与存款准备金率成反比例关系.当存款准备金率为7.5%时,某银行可贷款总量为400亿元,如果存款准备金率上调到8%时,该银行可贷款总量将减少多少亿( ) A .20B .25C .30D .352.若关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )A .a≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a≤﹣13.函数y +2x =中,x 的取值范围是( ) A .x≠0B .x >﹣2C .x <﹣2D .x≠﹣24.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.若关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围( ) A .1k <B .0k ≠C .1k <且0k ≠D .0k >6.如图,在平面直角坐标系xOy 中,点A 从(3,4)出发,绕点O 顺时针旋转一周,则点A 不经过( )A .点MB .点NC .点PD .点Q7.等式组26058x x x +⎧⎨≤+⎩>的解集在下列数轴上表示正确的是( ).A .B .C .D .8.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个D .3个9.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD ,垂足为E ,AE=3,ED=3BE ,则AB 的值为( )A .6B .5C .23D .3310.计算3×(﹣5)的结果等于( ) A .﹣15 B .﹣8 C .8 D .1511.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .15B .17C .19D .2412.若分式242x x -+的值为0,则x 的值为( )A .-2B .0C .2D .±2二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2=________.14.因式分解:-3x 2+3x=________. 15.计算:12+3=_______.16.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为OP uuu r=(m ,n ),已知:OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r 互相垂直,下列四组向量:①OC u u u r =(2,1),OD uuu r =(﹣1,2);②OE uuu r =(cos30°,tan45°),OF uuu r =(﹣1,sin60°);③OG u u u r =(3﹣2,﹣2),OH u u u r=(3+2,12);④OC u u u r =(π0,2),u u u r ON =(2,﹣1).其中互相垂直的是______(填上所有正确答案的符号).17.因式分解:2xy 4x -= .18.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图像与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点.若点M 是AB 边的中点,求反比例函数ky x=的解析式和点N 的坐标;若2AM =,求直线MN 的解析式及OMN △的面积20.(6分)先化简,再求值:(1+211x -)÷2221x x x ++,其中2.21.(6分)解方程组220y xx y =⎧⎨+-=⎩. 22.(8分)矩形ABCD 中,DE 平分∠ADC 交BC 边于点E ,P 为DE 上的一点(PE <PD ),PM ⊥PD ,PM 交AD 边于点M .(1)若点F 是边CD 上一点,满足PF ⊥PN ,且点N 位于AD 边上,如图1所示. 求证:①PN=PF ;②DF+DN=2DP ;(2)如图2所示,当点F 在CD 边的延长线上时,仍然满足PF ⊥PN ,此时点N 位于DA 边的延长线上,如图2所示;试问DF ,DN ,DP 有怎样的数量关系,并加以证明.23.(8分)如图,已知二次函数2231284y x mx m m =-++-的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C ,顶点为D .(1)当2m =-时,求四边形ADBC 的面积S ;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点P ,使2PBA BCO ∠=∠,求点P 的坐标;(3)如图2,将(1)中抛物线沿直线3184y x =-向斜上方向平移73E 为线段OA 上一动点,EF x ⊥轴交新抛物线于点F ,延长FE 至G ,且OE AE FE GE =g g,若EAG ∆的外角平分线交点Q 在新抛物线上,求Q 点坐标.24.(10分)如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F .求证:OE =OF .25.(10分)已知关于x 的方程x 2-(m +2)x +(2m -1)=0。

浙江省舟山市2019-2020学年中考数学三模试卷含解析

浙江省舟山市2019-2020学年中考数学三模试卷含解析

浙江省舟山市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.12-的相反数是()A.2-B.2 C.12-D.122.如果零上2℃记作+2℃,那么零下3℃记作()A.-3℃B.-2℃C.+3℃D.+2℃3.方程x2+2x﹣3=0的解是()A.x1=1,x2=3 B.x1=1,x2=﹣3C.x1=﹣1,x2=3 D.x1=﹣1,x2=﹣34.如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.5.下列图形是中心对称图形的是()A.B.C.D.6.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃Oe的直径,且AB⊥CD.入口K 位于»AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.4 9B.13C.29D.198.如图,若AB∥CD,CD∥EF,那么∠BCE=( )A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠19.用加减法解方程组437651x yx y+=⎧⎨-=-⎩①②时,若要求消去y,则应()A.32⨯+⨯①②B.3-2⨯⨯①②C.53⨯+⨯①②D.5-3⨯⨯①②10.计算3()a a•-的结果是()A.a2B.-a2C.a4D.-a411.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长:学*科*网]12.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在2×4的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,△ABC 的顶点都在格点上,将△ABC绕着点C按顺时针方向旋转一定角度后,得到△A'B'C',点A'、B'在格点上,则点A走过的路径长为_____(结果保留π)14.如果23ab=,那么b aa b-+=_____.15.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.16.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.17.如图,以原点O为圆心的圆交X轴于A、B两点,交y轴的正半轴于点C,D为第一象限内⊙O上的一点,若∠DAB=20°,则∠OCD= .18.如图,已知等边△ABC的边长为6,在AC,BC边上各取一点E,F,使AE=CF,连接AF、BE相交于点P,当点E从点A运动到点C时,点P经过点的路径长为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:(1)如图1,若BC=3,AB=5,则ctanB=_____;(2)ctan60°=_____;(3)如图2,已知:△ABC中,∠B是锐角,ctan C=2,AB=10,BC=20,试求∠B的余弦cosB的值.20.(6分)如图,△ABC 中,点D 在AB 上,∠ACD=∠ABC ,若AD=2,AB=6,求AC 的长.21.(6分)(1)计算:20(2)(3)12sin 60π︒-+-+-; (2)化简:2121()a a a a a--÷-. 22.(8分)已知BD 平分∠ABF ,且交AE 于点D .(1)求作:∠BAE 的平分线AP (要求:尺规作图,保留作图痕迹,不写作法);(2)设AP 交BD 于点O ,交BF 于点C ,连接CD ,当AC ⊥BD 时,求证:四边形ABCD 是菱形.23.(8分)先化简,再求值:(1+211x -)÷2221x x x ++,其中x=2+1. 24.(10分)先化简,再求值:(x ﹣3)÷(21x -﹣1),其中x=﹣1. 25.(10分)如图,AB 、AD 是⊙O 的弦,△ABC 是等腰直角三角形,△ADC ≌△AEB ,请仅用无刻度直尺作图:在图1中作出圆心O ;在图2中过点B 作BF ∥AC .26.(12分)如图,在Rt △ABC 中,∠C=90°,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E.(1)求证:∠A=∠ADE ;(2)若AD=8,DE=5,求BC 的长.27.(12分)如图,AB为⊙O直径,C为⊙O上一点,点D是»BC的中点,DE⊥AC于E,DF⊥AB于F.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)若OF=4,求AC的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2.A【解析】【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.3.B【解析】【分析】本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【详解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故选:B.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.4.D【解析】【分析】根据数轴三要素:原点、正方向、单位长度进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.5.B【解析】【分析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.考点:中心对称图形.【详解】请在此输入详解!6.B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. D→O→C,园丁与入口的距离逐渐增大,不符合;D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.7.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.8.D【解析】【分析】先根据AB ∥CD 得出∠BCD=∠1,再由CD ∥EF 得出∠DCE=180°-∠2,再把两式相加即可得出结论. 【详解】解:∵AB ∥CD ,∴∠BCD=∠1,∵CD ∥EF ,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D .【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.9.C【解析】【分析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 10.D【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:34()=a a a •--, 故选D .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.11.D【解析】试题分析:解:由图形可得出:甲所用铁丝的长度为:2a+2b,乙所用铁丝的长度为:2a+2b,丙所用铁丝的长度为:2a+2b,故三种方案所用铁丝一样长.故选D.考点:生活中的平移现象12.C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5 2【解析】分析:连接AA′,根据勾股定理求出AC=AC′,及AA′的长,然后根据勾股定理的逆定理得出△ACA′为等腰直角三角形,然后根据弧长公式求解即可.详解:连接AA′,如图所示.∵AC=A′C=5,AA′=10,∴AC2+A′C2=AA′2,∴△ACA′为等腰直角三角形,∴∠ACA′=90°,∴点A走过的路径长=90360oo×2πAC=5π.故答案为:5π.点睛:本题主要考查了几何变换的类型以及勾股定理及逆定理的运用,弧长公式,解题时注意:在旋转变换下,对应线段相等.解决问题的关键是找出变换的规律,根据弧长公式求解.14.1 5【解析】试题解析:2,3ab=Q设a=2t,b=3t,321.235b a t ta b t t--∴==++故答案为:1.515.(52,0)【解析】试题解析:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,OAC BCDAOC BDCAC BC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=kx,将B(3,1)代入y=kx,∴k=3,∴y=3x,∴把y=2代入y=3x,∴x=32,当顶点A恰好落在该双曲线上时,此时点A移动了32个单位长度,∴C也移动了32个单位长度,此时点C的对应点C′的坐标为(52,0)故答案为(52,0).16.1【解析】【分析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案.【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17.65°【解析】【分析】【详解】解:由题意分析之,得出弧BD对应的圆周角是∠DAB,所以,DOB=40°,由此则有:∠OCD=65°考点:本题考查了圆周角和圆心角的关系点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要对圆心角、弧、弦等的基本性质要熟练把握18.43π.【解析】【分析】由等边三角形的性质证明△AEB≌△CFA可以得出∠APB=120°,点P的路径是一段弧,由弧线长公式就可以得出结论.【详解】:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,{AB ACBAE ACF AE CF=∠=∠=,∴△ABE≌△CAF(SAS),∴∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°-∠APE=120°.∴当AE=CF时,点P的路径是一段弧,且∠AOB=120°,又∵AB=6,∴3,点P的路径是1202343π⋅=,故答案为433.【点睛】本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,弧线长公式的运用,解题的关键是证明三角形全等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1);(2);(3).【解析】试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;(2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;(3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如图2,在Rt△ACH中,ctanC==2,设AH=x,则CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考点:解直角三角形.20.23【解析】试题分析:可证明△ACD∽△ABC,则AD ACAC AB,即得出AC2=AD•AB,从而得出AC的长.试题解析:∵∠ACD=∠ABC ,∠A=∠A , ∴△ACD ∽△ABC . ∴AD AC AC AB =,∵AD=2,AB=6,∴26ACAC =.∴212AC =.∴AC=考点:相似三角形的判定与性质.21.(1)(2)11a a +-. 【解析】【分析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())022π12sin60︒-+-+-=4+1+|1﹣2×2|=4+1+|11(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭ =()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+-- =a 1a 1+-. 【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.22. (1)见解析:(2)见解析.【解析】试题分析:(1)根据角平分线的作法作出∠BAE 的平分线AP 即可;(2)先证明△ABO ≌△CBO ,得到AO=CO ,AB=CB ,再证明△ABO ≌△ADO ,得到BO=DO .由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD 是菱形.试题解析:(1)如图所示:(2)如图:在△ABO和△CBO中,∵∠ABO=∠CBO,OB=OB,∠ AOB=∠COB=90°,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵∠OAB=∠OAD,OA=OA,∠AOB=∠AOD=90°,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形.考点:1.菱形的判定;2.作图—基本作图.23.11xx+-,2【解析】【分析】运用公式化简,再代入求值. 【详解】原式=2222211(1) ()?11x xx x x-++--=222(1)•(1)(1)x xx x x+ -+=11xx+-,当2时,原式2212 2+=【点睛】考查分式的化简求值、整式的化简求值,解答本题的关键是明确它们各自的计算方法.24.﹣x+1,2.【解析】【分析】先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)•=﹣x+1,当x=﹣1时,原式=1+1=2.【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.25.见解析.【解析】【分析】(1)画出⊙O的两条直径,交点即为圆心O.(2)作直线AO交⊙O于F,直线BF即为所求.【详解】解:作图如下:(1);(2).【点睛】本题考查作图−复杂作图,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)见解析(2)7.5【解析】【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=10,在Rt△ADC中,求得DC=6,设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC 中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)连接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=22-=,1086设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=226 4.57.5+=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质. 27.(1)DE与⊙O相切,证明见解析;(2)AC=8.【解析】(1)解:(1)DE与⊙O相切.证明:连接OD、AD,∵点D是的中点,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE与⊙O相切.(2)连接BC,根据△ODF与△ABC相似,求得AC的长.AC=8。

2019年浙江省舟山市中考数学复习模拟真题试卷附解析

2019年浙江省舟山市中考数学复习模拟真题试卷附解析

2019年浙江省舟山市中考数学复习模拟真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .503mC .100mD .1003m2.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为,,a b c ,则,,a b c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .1123.妈妈煮了大小、重量相同且外观一致的6个肉琮和4个豆沙粽,乔乔随意拿出一个吃,那么他拿到肉粽的概率是( )A .16B .25C .12D .354.已知ABC △内接于⊙O ,OD AC ⊥于D ,如果32COD =∠,那么B ∠的度数为( )A .16°B .32°C .16°或164°D .32°或148°5.已知O 为□ABCD 对角线的交点,且△AOB 的周长比△BOC 的周长多23,则CD-AD•的值为( )A .23B .32C .2D .36.方程(1)(2)6x x ++=的解是( )A .11x =-,22x =-B .11x =,24x =-C .11x =-,24x =D .12x =,23x =7.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延.如果把世界地图看成一个平面,如图中以中国为坐标原点建立平面直角坐标系,请写出墨西哥所在位置的坐标是( )A . (4,9)B .(3,8)C .(8,-l )D .(-8,3) 8.如图,AB ∥EF ∥DC ,EG ∥DB ,则图中与∠1相等的角(∠1除外)共有( )A .6个B .5个C .4个D .2个9.如图所示的长方体的三视图是( )A .三个正方形B .三个一样大的长方形C .三个大小不_样的长方形但其中可能有两个大小一样D .两个正方形和一个长方形10.如图,若∠1=∠2, 则( )A .AC ∥DEB .AC ∥EF C .CD ∥EF D . 以上都不是11.下列长度的三条线段,能组成三角形的是( )A . 1,2,3B .1,3,5C . 2,2,4D .2,3,412.某班级想举办一次书法比赛,全班45名同学必须每人上交一份书法作品,设一等奖5名,二等奖10名,三等奖15名,那么该班某位同学获一等奖的概率为( )A . 19B . 29C . 13D . 2313.如图,以下四个图形中,∠1和∠2是对顶角的共有 ( )A .0个B .l 个C .2个D .3个 14.把方程0382=+-x x 化成n m x =+2)(的形式,则n m ,的值( )A .4、13B .-4、19C .-4、13D .4、19二、填空题15. 如图所示,是一个圆形转盘,现按1:2:3:4 分成四个部分,分别涂上红、黄、蓝、绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为 .16.求下列三角函数的值(精确到 0. 0001).(1)sin36°= ;sin53°16′= ;cos25°18′= . (2) cos36°= ;tan54°24′= ;sin26°18′24"= .(3)tan54°= ;cos48°6′36"= ;tan60°= .17.如果方程x 2+(k -1)x -3=0的一个根为2,那么k 的值为________.18.如图,在Rt △ABC 中,∠ACB=90°,AD=DB ,AB=5,则CD 的长是 .19.如图,AE ⊥BD 于点C ,BD 被AE 平分,AB=DE ,则可判定△ABC ≌△ECD .理由是 .解答题 20.角的对称轴是这个角的____________所在的直线.21.星期天,小慧约了小红替居委会打一份资料,小慧单独打需6小时完成,小红单独打需4小时完成,小慧、小红一起干,小红中途有事离开1小时,则打完这份资料需 小时.22.估算方程2233x -=的解是 . 23.若2(3)11x +=,则x = ,若3(1)10y -=,则y = .三、解答题24.如图,已知直角梯形 AECD 和直角梯形A ′B ′C ′D ′中,∠A=∠A ′=∠B=∠B ′= 90°, ∠D= ∠D ′ ,AB : A ′B ′= BC : B ′C ′,求证:梯形ABCD ∽梯形A ′B ′C ′D ′.25. 计算:22432()||3553---. 11526.王伯伯在一个新开的鱼塘内放养了一批鱼苗,3个月后,他想了解这批鱼的生长情况(成活率、塘内鱼的总量),请你利用所学的调查方法,帮助设计解决问题的方案.27.某学校共有2个大阅览室和4个小阅览室,经过测试,同时开放 1 个大阅览室和2个小阅览室,可供 372名同学阅读;同时开放 2 个大阅览室和 1个小阅览室,可供 474名同学阅读.(1)问1个大阅览室和1个小阅览室分别可供多少名同学阅读?(2)若6个阅览室同时开放,能不能供 780名同学阅读?请说明理由.28.如图,请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.29.画图并回答.(1)以C 为顶点在三角形ABC 外画∠ACE=∠A ,猜测CE 与AB 的位置关系怎样?(2)过A 点画AP 上CE ,垂足为P ,过B 点画BQ ∥AP ,交EC 的延长线于点Q ;(3)探索:EC 与BQ 有何位置关系?四边形ABQP 是什么四边形(并用三角板来验证).30.已知a是7 的相反数,比a 的相反数大b 比a 大多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.D4.D5.A6.B7.C8.B9.C10.C11.D12.A13.B14.C二、填空题15.2516. (3)1. 3764 , 0. 6677,1. 7320(1)0. 5878,0.8014, 0. 9041(2)0. 8090,1. 3968,0. 443217.21 18. 2.519.HL20.角平分线21.322.如1x =-23.3-1三、解答题24.连结 AC 、A ′C ′.在△ABC 和△A ′B ′C ′ 中,AB BC A B B C ='''',∠B=∠B ′,∴△ABC ∽△A ′B ′C ′,∴∠1=∠5 ,∠3 =∠7. AC AB A C A B =''''.在△ADC 和△A ′D ′C ′中,∠2=90°-∠1 ,∠6=90°-∠5 ,∴∠2=∠6, 又∠D=∠D ′,∴△ADC ∽△A ′D ′C ′.∴AD AC DCA D A C D C=-='''''',∠4=∠8,∴AB BC DC ADA B B C D C A D===''''''''又∵∠BCD=∠B′C′D′,∴梯形ABCD∽梯形A′B′C′D′.25.11526.略27.(1)大阅览室可供 192人阅读,小阅览室可供 90人阅读 (2)2×192十4×9O=744<780,不能供 780名同学同时阅读.28.略29.(1)CE∥AB (2)图略 (3)EC⊥BQ,ABQP是长方形30.17。

2019年浙江省舟山市中考数学第三次模拟考试试卷附解析

2019年浙江省舟山市中考数学第三次模拟考试试卷附解析

2019年浙江省舟山市中考数学第三次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是()A.B. C.D.2.梯形ABCD中,AD∥BC,则四个内角∠A,∠B,∠C,∠D的度数比可能是()A.3:5:6:4 B.3:4:5:6 C.4:5:6:3 D.6:5:4:33.某商场的营业额2002年比2001年上升10%,2003年比2002年又上升l0%,而2004年和2005年连续两年平均每年比上年降低10%,那么2005年的营业额比2001年的营业额()A.降低了2%B.没有变化C.上升了2%D.降低了l.99%4.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了不同的抽样调查,你认为抽样比较合理的是()A.在公园里调查了1000名老年人的健康状况B.在医院里调查了l000名老年人的健康状况C.调查了l0名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的健康状况5.要组成一个等边三角形,三条线段的长度可取()A.1,2,3 B.4,6,11 C.1,1,5 D.3.5,3.5,3.56.若∠1和∠3是同旁内角,∠1=78°,则下列说法正确的是()A.∠3=78°B.∠3=12°C.∠1+∠3=180°D.∠3的度数无法确定7.小王的衣柜里有两件上衣,一件红色,一件黄色;还有三条裤子,分别是白色、蓝色和黄色,任意取出一件上衣和一条裤子,正好都是黄色的概率为()A.56B.16C.13D.158.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球比赛,1场是羽毛球比赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是()A .14B .13C .12D .23 9.下列计算正确的是( )A .32b b b x x x+= B .0a a a b b a -=-- C .ab c b aa bc2222=⨯ D .22()1a a a a a -÷=- 10.下列计算中正确的是( )A .2233546y yx x y ⋅=B .3213423(2)(4)8n n n n n x y x y x y +-+---=C . 22222()()n n n n x y xy x y -+--=-D .23226(7)(5)2a b ab c a b c =- 11.在实数范围内,下列说法中正确的是( )A . 若x y =,则x y =B . 若x y >,则22x y >C .若2()x y =,则x y =D .若3333x y =,则x y =12.下列计算正确的是( )A .(2|2--=B .(3)3--=-C .|4|4=+D .|5|5--=-二、填空题13.如图,某处位于北纬 36°4′,通过计算可以求得:在冬至日正午时分的太阳入射角为 30°30′',因此,在规划建设楼高为20m 的小区时,两楼间的距离最小为 m ,才能保证不挡光. (结果保留四个有效数字)14.若在△ABC 中,∠A:∠B:∠C=1:2:3,则sinB= .15.写出2y x =与2y x =-的两个相同点:(1) ; (2) .16.如图所示,平行四边形ABCD 中,AE 平分∠DAB ,∠B=100°,则∠DAE= .17.严驰同学在杭州市动物园的大门口看到这个动物园的平面示意图如图所示,试借助刻度尺、量角器解决下列问题:(1)表演厅在大门的北偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(2)虎山在大门的南偏 约 度的方向上,到大门的图上距离约为 cm ,实际距离为 m .(3)猴山在大熊猫馆南偏 约 度的方向上,到大熊猫馆的图上距离约为cm ,实际距离为 m .18. 某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 .19.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.20.(1)7点整,分针和时针之间的夹角的度数是 .(2)从午夜0时到早上8时,时针所转过的角度是 .三、解答题21.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.22.计算:(1)3cos10-2sin20+tan60(精确到0.001)(2)35cos 35sin (结果保留4个有效数字)23.若规定两数a ,b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x ※x +2※x -2※4=0中x 的值.24.初二某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如下图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有名同学参加这次测验;(2)在该频数分布直方图中画出频数分布折线图;(3)这次测验成绩的中位数落在分数段内;(4)若这次测验中,成绩80分以上(不含80分)为优秀,则该班这次数学测验的优秀率是多少?25.将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如下表(未完成):数据段(km)频数频率30~40100.0540~503650~600.3960~7070~80200.10总计1注:30~40为时速大于等于30 km而小于40 km,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此地汽车时速不低于60 km即为违章,则违章车辆共有多少辆?26.在长24 m,宽20 m的校园中央建一个面积为32 m2的长方形花坛,四周剩余部分做小路,且小路宽相等,请你帮助学校设计小路宽应为多少?27. 已知关于x 的一次函数(22)1y m x m =-++的图象与y 轴的交点在x 轴的上方,且y 随x 的增大而减小,求整数m 的值.28.“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y (元)与销售量x (支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w (元)与销售量x (支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额-成本)29.如图,直线AB 、CD 交于点M ,MN 是∠BMC 的平分线,∠AMN=140°,求∠AMD 的度数.30.用科学记数法表示下列各数:(1)5320;(2)80700;(3)8000000;(4)600700000.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.D4.D5.D6.D7.B8.B9.C10.C11.DD二、填空题13.33.9514.. 顶点是原点;开口大小相同.16.40°17.(1)西,79,2,200;(2)西,76,4.4,440;(3)东,70,1.3,13018.1519. 320.(1)150°(2)240°三、解答题21.解法一:设口袋中有x 个白球, 由题意,得200501010=+x , 解得x =30. 答:口袋中约有30个白球.解法二:∵P (50次摸到红球)=4120050=,∴10÷41=40 .∴ 40-10=30 . 答:口袋中大约有30个白球. 22.(1)4.003;(2) 0.7002.23.(1) 60 (2)12x =,24x =-24.(1)40;(2)略;(3)70.5~80.5分;(4)47.5%(1)略;(2)略;(3)76辆26.8m27.由题意得10220m m +>⎧⎨-<⎩,解得11m m >-⎧⎨<⎩,∴11m -<<. ∴所求的整数m 的值为0.28.解:(1)3y x =;(2)3 1.240w x x =-- 1.840x =-∴所筹集的慰问金w (元)与销售量x (支)之间的函数关系式为 1.840w x =- 解法一:当500w ≥时,1.840500x -≥,解得300x ≥ ∴若要筹集不少于500元的慰问金,至少要售出鲜花300支 29.80°30.(1)5320=5.32×103 (2)80700 = 8.07×104 (3) 8000000 = 8×106(4)600700000= 6.007 ×108。

2019年浙教版数学中考模拟(嘉兴、舟山市)试卷 含精品解析

2019年浙教版数学中考模拟(嘉兴、舟山市)试卷  含精品解析

【备考2019】浙教版数学中考模拟(嘉兴、舟山市)试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(每小题3分,共30分)1.左图所示物体的左视图是()A.B.C.D.2.钓鱼岛是我国固有领土,位于我国东海,总面积约6340000平方米,数据6340000用科学记数法表示为()A.B.C.D.3.如图,是某商场2013年至2017年销售额每年比上一年增长率的统计图,则这5年中,该商场销售额最大的是()A.2017年B.2016年C.2015年D.2014年4.如图,用不等式表示数轴上所示的解集,正确的是( )A.x>﹣2B.x≥﹣2C.x<﹣2D.x≤﹣25.如图,在长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF的长等于()A.B.C.D.6.若圆的半径是,圆心的坐标是,点的坐标是,则点与的位置关系是( )A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O外或⊙O上7.如图,将图甲表示的正方形纸片剪成四块,恰好拼成图乙表示的矩形.若,则等于()A.B.C.D.8.如图,为等腰三角形,如果把它沿底边翻折后,得到,那么四边形为()A.一般平行四边形B.正方形C.矩形D.菱形9.如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F在同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=10,则k的值是( )A.3 B.4 C.5 D.410.甲、乙、丙、丁四人分别面对面坐在一个四边形桌子旁边,桌上一张纸上写着数字“9”,甲说他看到的是“6”,乙说他看到的是“”,丙说他看到的是“”,丁说他看到的是“9”,则下列说法正确的是()A.甲在丁的对面,乙在甲的左边,丙在丁的右边B.丙在乙的对面,丙的左边是甲,右边是乙C.甲在乙的对面,甲的右边是丙,左边是丁D.甲在丁的对面,乙在甲的右边,丙在丁的右边二、填空题(每小题4分,共24分)11.因式分解:3ax2+6ax+3a=____.12.如图,AB∥CD∥EF,直线l1、l2分别与这三条平行线交于点A、C、E和点B、D、F.已知AC=3,CE=5,DF=4,则BF的长为_____.13.三个筹码,第一个一面画上,另一面画上○;第二个一面画上○,另一面画上#;第三个一面画上#,另一面画上.甲、乙两人玩抛掷三个筹码的游戏,其游戏规则定为“掷出的三个筹码中________则甲方赢;否则,乙方赢”时,这个游戏是公平的.14.如图,在⊙O中,直径EF⊥CD,垂足为M,若CD=2,EM=5,则⊙O的半径为_______.15.某校师生到距离学校15千米的工地参加义务劳动,一部分人骑自行车,出发40分钟后,其余的人乘汽车出发,结果同时到达.已知汽车的速度是自行车的3倍,则骑自行车的人的速度是_________千米/时.16.如图,AB是半圆O的直径,E是弧BC的中点,OE交弦BC于点D.已知BC=8cm,DE=2cm,则AD的长为cm.三、解答题(8小题,共66分)17.计算:(1);(2 )(1+)÷.18.解下列方程(组):(1) (2)321126x x -+-=()12{218x y x y +=+-=19.如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G 为EF 的中点.(1)若∠A=40°,求∠B 的度数;(2)试说明:DG 垂直平分EF.20.如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?21.小明骑自行车去学校,最初以某一速度匀速行驶,中途自行车发生故障,停下来修车耽误了几分钟,为了按时到校,他加快了速度,仍保持匀速行驶,结果准时到校,到校后,小明画了自行车行进路程s(km)与行进时间t(h)的图象,如图所示,请回答:(1)这个图象反映了哪两个变量之间的关系?(2)根据图象填表:时间t/h00.20.30.4路程s/km(3)路程s可以看成时间t的函数吗?22.如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)23.如图,抛物线与轴的交点为A、B,与轴的交点为C,顶点为,将抛物线绕点B旋转,得到新的抛物线,它的顶点为D.(1)求抛物线的解析式;(2)设抛物线与轴的另一个交点为E,点P是线段ED上一个动点(P不与E、D重合),过点P作y 轴的垂线,垂足为F,连接EF.如果P点的坐标为,△PEF的面积为S,求S与的函数关系式,写出自变量的取值范围;(3)设抛物线的对称轴与轴的交点为G,以G为圆心,A、B两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.24.如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为E、F,DF与AC交于点M,DE与BC交于点N。

浙江省舟山市2019-2020学年中考中招适应性测试卷数学试题(5)含解析

浙江省舟山市2019-2020学年中考中招适应性测试卷数学试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数2(0)y xx=->的图像位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a ﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①②B.①③④C.①②③⑤D.①②③④⑤3.下列美丽的图案中,不是轴对称图形的是()A.B.C.D.4.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是()A.∠BAC=αB.∠DAE=αC.∠CFD=αD.∠FDC=α5.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( )A.①②③B.①③⑤C.②③④D.②④⑤6.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是( )A.y=2x2+3 B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)27.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和298.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是()A .(6,4)B .(4,6)C .(5,4)D .(4,5)9.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .10.若,则的值为( )A .﹣6B .6C .18D .3011.如图,已知直线a ∥b ∥c ,直线m ,n 与a ,b ,c 分别交于点A ,C ,E ,B ,D ,F ,若AC=4,CE=6,BD=3,则DF 的值是( )A .4B .4.5C .5D .5.512.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。

浙江省舟山市2019-2020学年中考中招适应性测试卷数学试题(1)含解析

浙江省舟山市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y =ax+b 与y =bx+a 的图象在同一坐标系内的大致位置是( )A .B .C .D .2.如图,四边形ABCD 中,AB=CD ,AD ∥BC ,以点B 为圆心,BA 为半径的圆弧与BC 交于点E ,四边形AECD 是平行四边形,AB=3,则»AE 的弧长为( )A .2πB .πC .32πD .33.计算22x x x +-的结果为( ) A .1 B .x C .1x D .2x x+ 4.下列说法不正确的是( )A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖 B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件5.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒6.如图,AB 是⊙O 的弦,半径OC ⊥AB 于D ,若CD=2,⊙O 的半径为5,那么AB 的长为( )A .3B .4C .6D .87.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是( )A .30厘米、45厘米;B .40厘米、80厘米;C .80厘米、120厘米;D .90厘米、120厘米8.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π-9.方程2131x x +=-的解是( ) A .2-B .1-C .2D .4 10.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( ) A .±2B .C .2D .4 11.13的负倒数是( ) A .13 B .-13 C .3 D .﹣312.在0,﹣2,35 )A .0B .﹣2C .3D 5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解2242x x -+=______.14.不等式组1020x x +≥⎧⎨->⎩的整数解是_____.在AB 、CD 边上,则图中四个直角三角形面积之和与矩形EFGH 的面积之比为_____.16.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则BE :BC 的值为_________.17.如图,ABC V 的顶点落在两条平行线上,点D 、E 、F 分别是ABC V 三边中点,平行线间的距离是8,BC 6=,移动点A ,当CD BD =时,EF 的长度是______.18.把多项式x 3﹣25x 分解因式的结果是_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=k 1x+b(k 1≠0)与反比例函数22 ( 0 )k y k x=≠的图象交于点A(-1,2),B(m ,-1). (1)求一次函数与反比例函数的解析式;(2)在x 轴上是否存在点P(n ,0),使△ABP 为等腰三角形,请你直接写出P 点的坐标.20.(6分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12; (2)解方程:x (x ﹣4)=2x ﹣8道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,甲机器人前2分钟的速度为 米/分;(2)若前3分钟甲机器人的速度不变,求线段EF 所在直线的函数解析式;(3)若线段FG ∥x 轴,则此段时间,甲机器人的速度为 米/分;(4)求A 、C 两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.22.(8分)已知函数1y x=的图象与函数()0y kx k =≠的图象交于点()P m n ,. (1)若2m n =,求k 的值和点P 的坐标;(2)当m n ≤时,结合函数图象,直接写出实数k 的取值范围.23.(8分)某商城销售A ,B 两种自行车.A 型自行车售价为2 100元/辆,B 型自行车售价为1 750元/辆,每辆A 型自行车的进价比每辆B 型自行车的进价多400元,商城用80 000元购进A 型自行车的数量与用64 000元购进B 型自行车的数量相等.()1求每辆A ,B 两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A 型自行车m 辆,这100辆自行车的销售总利润为y 元,要求购进B 型自行车数量不超过A 型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.24.(10分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B求证:△ADF ∽△DEC ;若AB=8,33,求AE 的长.25.(10分)(1)解方程:x 2﹣4x ﹣3=0;(2)解不等式组:26.(12分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.(Ⅰ)收集、整理数据请将表格补充完整:(Ⅱ)描述数据为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;(Ⅲ)分析数据、做出推测预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.27.(12分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).(1)t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为8cm2?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据a 、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】分四种情况:①当a >0,b >0时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a >0,b <0时,y=ax+b 的图象经过第一、三、四象限;y=bx+a 的图象经过第一、二、四象限,B 选项符合;③当a <0,b >0时,y=ax+b 的图象经过第一、二、四象限;y=bx+a 的图象经过第一、三、四象限,B 选项符合;④当a <0,b <0时,y=ax+b 的图象经过第二、三、四象限;y=bx+a 的图象经过第二、三、四象限,无选项符合.故选B .【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.2.B【解析】∵四边形AECD 是平行四边形,∴AE=CD ,∵AB=BE=CD=3,∴AB=BE=AE ,∴△ABE 是等边三角形,∴∠B=60°,∴AE u u u r 的弧长=6023360ππ⨯⨯=. 故选B.根据同分母分式的加减运算法则计算可得.【详解】原式=22xx+-=xx=1,故选:A.【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.4.A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.试题解析:A、某种彩票中奖的概率是11000,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.5.B【解析】【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,此题考查圆周角定理,关键是利用直径得出∠ABD=65°.6.D【解析】【分析】连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.【详解】连接OA.∵⊙O的半径为5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=12 AB;在直角三角形ODC中,根据勾股定理,得22OA OD=4,∴AB=1.故选D.【点睛】本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.7.C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.8.D连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.9.D【解析】【分析】按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:2131xx+= -213(1)x x+=-2133x x+=-2313x x-=--4x-=-4x=经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.10.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,∴2+=8{2=1m nn m-,解得=3{=2mn.2=232=4=2m n-⨯-.即2m n-的算术平方根为1.故选C.【解析】【分析】根据倒数的定义,互为倒数的两数乘积为1,2×13=1.再求出2的相反数即可解答.【详解】根据倒数的定义得:2×13=1. 因此13的负倒数是-2. 故选D .【点睛】本题考查了倒数,解题的关键是掌握倒数的概念.12.B【解析】【分析】根据实数比较大小的法则进行比较即可.【详解】∵在这四个数中3>0,0,-2<0,∴-2最小.故选B .【点睛】本题考查的是实数的大小比较,即正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22(1)x -.【解析】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为:22(1)x -. 14.﹣1、0、1【解析】【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.【详解】1020x x +≥⎧⎨->⎩,解不等式20x ->得:2x <,∴不等式组的解集为12x -≤<, ∴不等式组的整数解为-1,0,1.故答案为:-1,0,1. 【点睛】本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解. 15.1:1 【解析】 【分析】根据矩形性质得出AD=BC ,AD ∥BC ,∠D=90°,求出四边形HFCD 是矩形,得出△HFG 的面积是12CD×DH=12S 矩形HFCD ,推出S △HFG =S △DHG +S △CFG ,同理S △HEF =S △BEF +S △AEH ,即可得出答案. 【详解】 连接HF ,∵四边形ABCD 为矩形, ∴AD=BC ,AD ∥BC ,∠D=90° ∵H 、F 分别为AD 、BC 边的中点, ∴DH=CF ,DH ∥CF , ∵∠D=90°,∴四边形HFCD 是矩形, ∴△HFG 的面积是12CD×DH=12S 矩形HFCD , 即S △HFG =S △DHG +S △CFG , 同理S △HEF =S △BEF +S △AEH ,∴图中四个直角三角形面积之和与矩形EFGH 的面积之比是1:1, 故答案为1:1. 【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力. 16.1:4 【解析】由S △BDE :S △CDE =1:3,得到 BE 1CE 3=,于是得到 41BE BC =. 【详解】解::1:3BDE CDE S S V V Q ,= 两个三角形同高,底边之比等于面积比. 13BE CE ∴=, :1:4.BE BC ∴=故答案为1:4. 【点睛】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键. 17.1 【解析】 【分析】过点D 作DH BC ⊥于点H ,根等腰三角形的性质求得BD 的长度,继而得到AB 2BD =,结合三角形中位线定理求得EF 的长度即可. 【详解】解:如图,过点D 作DH BC ⊥于点H ,Q 过点D 作DH BC ⊥于点H ,BC 6=,BH CH 3∴==.又平行线间的距离是8,点D 是AB 的中点,DH 4∴=,∴在直角BDH V 中,由勾股定理知,2222BD DH BH 435=+=+=. ∴点D 是AB 的中点,AB 2BD 10∴==.又点E 、F 分别是AC 、BC 的中点,EF ∴是ABC V 的中位线,1EF AB 52∴==. 故答案是:1.考查了三角形中位线定理和平行线的性质,解题的关键是根据平行线的性质求得DH的长度.18.x(x+5)(x﹣5).【解析】分析:首先提取公因式x,再利用平方差公式分解因式即可.详解:x3-25x=x(x2-25)=x(x+5)(x-5).故答案为x(x+5)(x-5).点睛:此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)反比例函数的解析式为2yx=-;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+14,0)或(-1-14,0)或(2+17,0)或(2-17,0)或(0,0).【解析】【分析】(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函数的解析式为.∵B(m,-1)在上,∴m=2,由题意,解得:,∴一次函数的解析式为y=-x+1.(2)满足条件的P点的坐标为(140)或(14,0)或(17,0)或(17,0)或(0,0).【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论. 20.(1)3;(1)x1=4,x1=1.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×(12﹣18)﹣4×3+13 =8×38﹣13+13=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0, (x ﹣4)(x ﹣1)=0, x ﹣4=0,x ﹣1=0, x 1=4,x 1=1. 【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.21.(1)距离是70米,速度为95米/分;(2)y=35x ﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米. 【解析】 【分析】(1)当x=0时的y 值即为A 、B 两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A 、B 两点之间的距离;(2)由题意求解E 、F 两点坐标,再用待定系数法求解直线解析式即可; (3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC 之间的距离,再加上AB 之间的距离即为AC 之间的距离; (5)分0-2分钟、2-3分钟和4-7分钟三段考虑. 【详解】解:(1)由图象可知,A 、B 两点之间的距离是70米, 甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分; (2)设线段EF 所在直线的函数解析式为:y=kx+b , ∵1×(95﹣60)=35, ∴点F 的坐标为(3,35), 则,解得,∴线段EF 所在直线的函数解析式为y=35x ﹣70; (3)∵线段FG ∥x 轴,∴甲、乙两机器人的速度都是60米/分; (4)A 、C 两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x 分钟相距21米, 由题意得,60x+70﹣95x=21,解得,x=1.2, 前2分钟﹣3分钟,两机器人相距21米时, 由题意得,35x ﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH 经过点(4,35)和点(7,0), 设线段GH 所在直线的函数解析式为:y=kx+b ,则,,解得,则直线GH 的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键.. 22.(1)12k =,22P ⎭,,或22P ⎛-- ⎝⎭,;(2) 1k ≥. 【解析】【分析】(1)将P (m ,n )代入y=kx ,再结合m=2n 即可求得k 的值,联立y=1x与y=kx 组成方程组,解方程组即可求得点P 的坐标;(2)画出两个函数的图象,观察函数的图象即可得.【详解】(1)∵函数()y kx k 0=≠的图象交于点()P m n ,,∴n=mk ,∵m=2n ,∴n=2nk , ∴k=12,∴直线解析式为:y=12x,解方程组112 yx y x ⎧=⎪⎪⎨⎪=⎪⎩,得11222xy⎧=⎪⎨=⎪⎩,22222xy⎧=-⎪⎨=-⎪⎩,∴交点P的坐标为:(2,22)或(-2,-22);(2)由题意画出函数1yx=的图象与函数y kx=的图象如图所示,∵函数1yx=的图象与函数y kx=的交点P的坐标为(m,n),∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k>1时,结合图象可知此时|m|<|n|,∴当m n≤时,k≥1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键. 23.(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【解析】【分析】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.【详解】(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意,得=,解得x=1600,经检验,x=1600是原方程的解,x+10=1 600+10=2 000,答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得,解得:33≤m≤1,∵m为正整数,∴m=34,35,36,37,38,39,1.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.【点睛】本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.24.(1)见解析(2)6【解析】【分析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在在Rt△ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF与△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四边形ABCD是平行四边形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴AD AF DE CD=,∴AD CD638DE12AF43⋅⨯===在Rt △ADE 中,由勾股定理得:()2222AE DE AD 12636=-=-=25.(1),;(2)1≤x <1.【解析】试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解. 试题解析:(1)-1x=3-1x+1=7=7 x -2=±解得:,(2)解不等式1,得x≥1 解不等式2,得x <1 ∴不等式组的解集是1≤x <1 考点:一元二次方程的解法;不等式组.26.(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%. 【解析】 【分析】(Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测 2019 年增加的百分比接近3% . 【详解】 (Ⅰ) 年份2014 2015 2016 2017 2018 动车组发送旅客量 a 亿人次 0.87 1.14 1.46 1.80 2.17 铁路发送旅客总量 b 亿人次2.522.763.073.423.82动车组发送旅客量占比× 100 34.5 % 41.3 % 47.6 % 52.6 % 56.8 %(Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述, 故答案为折线图;(Ⅲ)预估 2019 年春运期间动车组发送旅客量占比约为 60%,预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%. 【点睛】本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键. 27.(1)t =154秒;(1)t =55s ). 【解析】(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ 和∠AQP 是直角两种情况,利用相似三角形对应边成比例列式求解即可;(1)过点P 作PC⊥OA 于C,利用∠OAB 的正弦求出PC,然后根据三角形的面积公式列出方程求解即可.【详解】解:(1)∵点A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵点P的速度是每秒1个单位,点Q 的速度是每秒1个单位,∴AQ=t,AP=10﹣t,①∠APQ是直角时,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP 是直角时,△AQP∽△AOB,∴,即,解得t=,综上所述,t=秒时,△APQ 与△AOB相似;(1)如图,过点P 作PC⊥OA 于点C,则PC=AP•sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面积=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故当t=55s)时,△APQ的面积为8cm1.本题主要考查了相似三角形的判定与性质、锐角三角函数、三角形的面积以及一元二次方程的应用能力,分类讨论是解题的关键.。

浙江省舟山市2019-2020学年中考数学第一次调研试卷含解析

浙江省舟山市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( ) A .4 B .﹣4 C .3 D .﹣32.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是( ). A .147B .151C .152D .1563.在平面直角坐标系中,点(,)P m n 是线段AB 上一点,以原点O 为位似中心把AOB ∆放大到原来的两倍,则点P 的对应点的坐标为( ) A .(2,2)m n B .(2,2)m n 或(2,2)m n -- C .11(,)22m nD .11(,)22m n 或11(,)22m n --4.如图是二次函数y =ax 2+bx +c 的图象,其对称轴为x =1,下列结论:①abc >0;②2a +b =0;③4a +2b +c <0;④若(-,y 1),(,y 2)是抛物线上两点,则y 1<y 2,其中结论正确的是( )A .①②B .②③C .②④D .①③④5.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( ) A .平均数B .中位数C .众数D .方差6.若( )53-=-,则括号内的数是( ) A .2-B .8-C .2D .87.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A .20B .15C .10D .58.下列计算正确的是( )A .3 +2=5B .12﹣3=3C .3×2=6D .82=4 9.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D .10.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x -=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 11.已知抛物线y=(x ﹣1a )(x ﹣11a +)(a 为正整数)与x 轴交于M a 、N a 两点,以M a N a 表示这两点间的距离,则M 1N 1+M 2N 2+…+M 2018N 2018的值是( ) A .20162017B .20172018C .20182019D .2019202012.已知实数a 、b 满足a b >,则( ) A .a 2b >B .2a b >C .a 2b 2->-D .2a 1b -<-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD 中,AD=5,∠CAB=30°,点P 是线段AC 上的动点,点Q 是线段CD 上的动点,则AQ+QP 的最小值是___________.14.已知一元二次方程x 2-4x -3=0的两根为m ,n ,则2m -mn +2n = . 15.方程3x 2﹣5x+2=0的一个根是a ,则6a 2﹣10a+2=_____. 16.若代数式5xx +有意义,则实数x 的取值范围是____. 17.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 . 18.在△ABC 中,AB=AC ,BD ⊥AC 于D ,BE 平分∠ABD 交AC 于E ,sinA=35,BC=210,则 AE=_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)化简: 23x 11x 2?x 4+⎛⎫+÷⎪--⎝⎭ 20.(6分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A ,B 两点之间的距离他沿着与直线AB 平行的道路EF 行走,走到点C 处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)21.(6分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A :菜包、B :面包、C :鸡蛋、D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”); (2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率. 22.(8分)综合与实践﹣﹣旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD ∽矩形A′B′C′D′,它们各自对角线的交点重合于点O ,连接AA′,CC′.请你帮他们解决下列问题: 观察发现:(1)如图1,若A′B′∥AB ,则AA′与CC′的数量关系是______;操作探究:(2)将图1中的矩形ABCD 保持不动,矩形A′B′C′D′绕点O 逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O 旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.23.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.24.(10分)如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)在(1)条件下,连接BF ,求DBF ∠的度数.25.(10分)如图,关于x 的二次函数y=x 2+bx+c 的图象与x 轴交于点A (1,0)和点B 与y 轴交于点C (0,3),抛物线的对称轴与x 轴交于点D .(1)求二次函数的表达式;(2)在y 轴上是否存在一点P ,使△PBC 为等腰三角形?若存在.请求出点P 的坐标;(3)有一个点M 从点A 出发,以每秒1个单位的速度在AB 上向点B 运动,另一个点N 从点D 与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 到达点B 时,点M 、N 同时停止运动,问点M 、N 运动到何处时,△MNB 面积最大,试求出最大面积.26.(12分)已知:如图,在正方形ABCD 中,点E 、F 分别是AB 、BC 边的中点,AF 与CE 交点G ,求证:AG =CG .27.(12分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.()1求每辆A,B两种自行车的进价分别是多少?()2现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.2.C【解析】【分析】根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.3.B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.4.C【解析】试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大. 5.B【解析】【分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.6.C【解析】【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【详解】-=-,解:253故选:C.【点睛】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.7.B【解析】∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B8.B【解析】【分析】根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D进行判断.【详解】解:A不能合并,所以A选项不正确;B B选项正确;C,所以C选项不正确;D=2,所以D选项不正确.故选B.【点睛】此题考查二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.9.D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形, 故选D .考点:简单组合体的三视图 10.D 【解析】解:设动车速度为每小时x 千米,则可列方程为:45050x -﹣450x=23.故选D . 11.C 【解析】 【分析】代入y=0求出x 的值,进而可得出M a N a =1a -1a+1,将其代入M 1N 1+M 2N 2+…+M 2018N 2018中即可求出结论.【详解】解:当y=0时,有(x-1a)(x-1a+1)=0,解得:x 1=1a+1,x 2=1a, ∴M a N a =1a -1a+1,∴M 1N 1+M 2N 2+…+M 2018N 2018=1-12+12-13+…+12018-12019=1-12019=20182019. 故选C . 【点睛】本题考查了抛物线与x 轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a 的值是解题的关键. 12.C 【解析】 【分析】根据不等式的性质进行判断. 【详解】解:A 、a b >,但a 2b >不一定成立,例如:112>,1122=⨯故本选项错误; B 、a b >,但2a b >不一定成立,例如:12->-,122-⨯=-,故本选项错误;C 、a b >时,a 2b 2->-成立,故本选项正确;D 、a b >时,a b -<-成立,则2a 1b -<-不一定成立,故本选项错误; 故选C . 【点睛】考查了不等式的性质.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.53 【解析】 【分析】作点A 关于直线CD 的对称点E ,作EP ⊥AC 于P ,交CD 于点Q ,此时QA+QP 最短,由QA+QP=QE+PQ=PE 可知,求出PE 即可解决问题. 【详解】解:作点A 关于直线CD 的对称点E ,作EP ⊥AC 于P ,交CD 于点Q .∵四边形ABCD 是矩形, ∴∠ADC=90°,∴DQ ⊥AE ,∵DE=AD , ∴QE=QA ,∴QA+QP=QE+QP=EP ,∴此时QA+QP 最短(垂线段最短), ∵∠CAB=30°, ∴∠DAC=60°,在Rt △APE 中,∵∠APE=90°,AE=2AD=10, ∴EP=AE•sin60°=10×323. 故答案为3. 【点睛】本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P 、Q 的位置,属于中考常考题型. 14.1 【解析】试题分析:由m 与n 为已知方程的解,利用根与系数的关系求出m+n=4,mn=﹣3,将所求式子利用完全平方公式变形后,即2m ﹣mn+2n =()2m n +﹣3mn=16+9=1. 故答案为1.考点:根与系数的关系. 15.-1 【解析】 【分析】根据一元二次方程的解的定义,将x=a 代入方程3x 1-5x+1=0,列出关于a 的一元二次方程,通过变形求得3a 1-5a 的值后,将其整体代入所求的代数式并求值即可. 【详解】解:∵方程3x 1-5x+1=0的一个根是a , ∴3a 1-5a+1=0, ∴3a 1-5a=-1,∴6a 1-10a+1=1(3a 1-5a )+1=-1×1+1=-1. 故答案是:-1. 【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值. 16.x≠﹣5. 【解析】 【分析】根据分母不为零分式有意义,可得答案. 【详解】由题意,得x+5≠0,解得x≠﹣5,故答案是:x≠﹣5. 【点睛】本题考查了分式有意义的条件,利用分母不为零分式有意义得出不等式是解题关键. 17.0或1 【解析】分析:需要分类讨论:①若m=0,则函数y=2x+1是一次函数,与x 轴只有一个交点;②若m≠0,则函数y=mx 2+2x+1是二次函数,根据题意得:△=4﹣4m=0,解得:m=1。

2019年数学中考试题(附答案)

C.(﹣1.5)8÷(﹣1.5)7=﹣1.5D.﹣1.58÷(﹣1.5)7=﹣1.5
9.如图,已知 ,那么下列结论正确的是( )
A. B. C. D.
10.若关于x的一元二次方程kx2﹣4x+3=0有实数根,则k的非负整数值是( )
A.1B.0,1C.1,2D.1,2,3
11.二次函数 的图象如图所示,则一次函数 与反比例函数 在同一坐标系内的图象大致为( )
2019年数学中考试题(附答案)
一、选择题
1.下列命题中,其中正确命题的个数为( )个.
①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.
A.1B.2C.3D.4
2.不等式组 的解集在数轴上表示正确的是()
A. B. C. D.
∴∠DAB=90°,
∴∠DAM=30°,
∴AM= ,
故选:B.
【点睛】
本题考查了矩形的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM,
4.A
解析:A
【解析】
试题分析:∵今后项目的数量﹣今年的数量=20,∴ .故选A.
考点:由实际问题抽象出分式方程.
5.C
解析:C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
(收集数据)
甲班15名学生测试成绩统计如下:(满分100分)
68,72,89,85,82,85,74,92,80,85,78,85,69,76,80
乙班15名学生测试成绩统计如下:(满分100分)
86,89,83,76,73,78,67,80,80,79,80,84,82,80,83
(整理数据)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档