2019年浙江省舟山市中考数学试卷(含答案与解析)
2019年浙江省舟山市中考数学试题(原卷+解析)

2019年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019B.﹣2019C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:380000=3.8×105故选:C.3.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【分析】两条折线图一一判断即可.【解答】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.D、错误.下降了:≈9.3%.故选:C.5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1C.0D.12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解答】解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.6.(3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>【分析】直接利用等式的基本性质分别化简得出答案.【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.7.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC 延长线于点P,则P A的长为()A.2B.C.D.【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OA tan60°=1×=,故选:B.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.9.(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【分析】根据题意可以写出点C的坐标,然后根据与y轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决.【解答】解:∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选:A.10.(3分)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x=m﹣,x=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=x(x﹣5).【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.【分析】画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为=;故答案为:.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b 的大小关系为b<﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b14.(4分)如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC 交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,根据勾股定理求出OC,代入求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠COD=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时OC=,∴CD的最大值为=AB=1=,故答案为:.15.(4分)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.【分析】要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.【解答】解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC =4cm,AB=8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N,则E'D'⊥AC时,S△AD'B有最大值.【解答】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC 于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N 当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.17.(6分)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.【分析】1【解答】解:118.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE =CF”成立,并加以证明.【分析】根据SAS即可证明△ABE≌△CDF可得AE=CF.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.【分析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y=,得k=4.∴反比例函数的解析式为y=;(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y=代入y=,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=,O′H=1.把y=代入y=,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.21.(8分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1757940%277B75.1777645%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数:500×=240(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米(精确到0.1米)?(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34, 1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠GCD=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CP×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×cos50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.23.(10分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=6,AD=4,求正方形PQMN的边长.(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画△ABC,在AB上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC内,连结BN'并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PPQMN.小波把线段BN称为“波利亚线”.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:在(2)的条件下,在射线BN上截取NE=NM,连结EQ,EM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.请帮助小波解决“温故”、“推理”、“拓展”中的问题.【分析】(1)理由相似三角形的性质构建方程即可解决问题.(2)根据题意画出图形即可.(3)首先证明四边形PQMN是矩形,再证明MN=PN即可.(4)证明△BQE∽△BEM,推出∠BEQ=∠BME,由∠BME+∠EMN=90°,可得∠BEQ+∠NEM=90°,即可解决问题.【解答】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得PN=.(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴=,同理可得:=,∴=,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形.(4)解:如图3中,结论:∠QEM=90°.理由:由tan∠NBM==,可以假设MN=3k,BM=4k,则BN=5k,BQ=k,BE =2k,∴==,==,∴=,∵∠QBE=∠EBM,∴△BQE∽△BEM,∴∠BEQ=∠BME,∵NE=NM,∴∠NEM=∠NME,∵∠BME+∠EMN=90°,∴∠BEQ+∠NEM=90°,∴∠QEM=90°.24.(12分)某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:生长率p0.20.250.30.35提前上市的天数m(天)051015①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).【分析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4,解方程即可得到结论;(2)①由表格可知,m是p的一次函数,于是得到m=100p﹣20;②当10≤t≤25时,p=t﹣,求得m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,根据题意即可得到m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,(Ⅱ)当25≤t≤37时,w=300,根据二次函数的性质即可得到结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得,0.3=﹣(25﹣h)2+0.4,解得:h=29或h=21,∵h>25,∴h=29;(2)①由表格可知,m是p的一次函数,∴m=100p﹣20;②当10≤t≤25时,p=t﹣,∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4,∴m=100[﹣(t﹣h)2+0.4]﹣20=﹣(t﹣29)2+20;(3)(Ⅰ)当20≤t≤25时,由(20,200),(25,300),得w=20t﹣200,∴增加利润为600m+[200×30﹣w(30﹣m)]﹣40t2﹣600t﹣4000,∴当t=25时,增加的利润的最大值为6000元;(Ⅱ)当25≤t≤37时,w=300,增加的利润为600m+[200×30﹣w(30﹣m)]=900×(﹣)×(t﹣29)2+15000=﹣(t﹣29)2+15000;∴当t=29时,增加的利润最大值为15000元,综上所述,当t=29时,提前上市20天,增加的利润最大值为15000元.。
2019年中考数学试题含答案及名家点评:舟山市

A.
16cm
B.18cm
C.20cm D. 22cm
主要考点: 平移的性质. 思路分析: 根据平移的基本性质,得出四边形ABFD的周 长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案. 详细解答: 解:根据题意,将周长为16cm的△ABC沿BC向右平移2cm得到△DEF, ∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;
A. 各项消费金额占消费总金额的百分比 B. 各项消费的金额 C. 消费的总金额 D. 各项消费金额的增减变化情况
主要考点: 扇形统计图. 思路分析: 利用扇形统计图的特点结合各选项利用排除法确定答案即可. 详细解答: 解:A、能够看出各项消费占总消费额的百分比,故选项正确; B、不能确定各项的消费金额,故选项错误; C、不能看出消费的总金额,故选项错误; D、不能看出增减情况,故选项错误. 故选A. 名家点评: 本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分 比,难度较小. 5.(3分)(浙江舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的 长为( )
8.(3分)(浙江舟山)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的.5 B.
2 C.
2.5 D. 3
主要考点: 圆锥的计算. 思路分析: 半径为6的半圆的弧长是6 ,圆锥的底面周长等于侧面展开图的扇形弧长,因 而圆锥的底面周长是6 ,然后利用弧长公式计算. 详细解答: 解:设圆锥的底面半径是r, 则得到2 r=6 , 解得:r=3, 这个圆锥的底面半径是3. 故选D. 名家点评: 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧 紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2) 圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键. 9.(3分)(浙江舟山)如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD 和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰 好经过点D,则CD的长为( )
2019年浙江省舟山市中考数学试卷-解析版

2019年浙江省舟山市中考数学试卷一、选择题(本大题共10小题,共30.0分) 1. −2019的相反数是( )A. 2019B. −2019C. 12019D. −120192. 2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( )A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1063. 如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A.B. C. D.4. 2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是( )A. 签约金额逐年增加B. 与上年相比,2019年的签约金额的增长量最多C. 签约金额的年增长速度最快的是2016年D. 2018年的签约金额比2017年降低了22.98%5. 如图是一个2×2的方阵,其中每行、每列的两数和相等,则a 可以是( )A. tan60°B. −1C. 0D. 12019 6. 已知四个实数a ,b ,c ,d ,若a >b ,c >d ,则( )A. a +c >b +dB. a −c >b −dC. ac >bdD. a c >bd7. 如图,已知⊙O 上三点A ,B ,C ,半径OC =1,∠ABC =30°,切线PA交OC 延长线于点P ,则PA 的长为( )A. 2B. √3C. √2D. 128. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. {4x +6y =383x +5y =48 B. {4y +6x =483y +5x =38 C. {4x +6y =485x +3y =38D. {4x +6y =483x +5y =389.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA′′B′′C′′,则点C的对应点C′′的坐标是()A. (2,−1)B. (1,−2)C. (−2,1)D. (−2,−1)10.小飞研究二次函数y=−(x−m)2−m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=−x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当−1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A. ①B. ②C. ③D. ④二、填空题(本大题共6小题,共24.0分)11.分解因式:x2−5x=______.12.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为_____.13.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,−a,−b的大小关系为_____(用“<”号连接).14.在x2+______+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.AB2,则15.如图,在△ABC中,若∠A=45°,AC2−BC2=√55tanC=______.16.如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC=12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为______cm;连接BD,则△ABD的面积最大值为______cm2.三、解答题(本大题共8小题,共66.0分)17.小明解答“先化简,再求值:1x+1+2x2−1,其中x=√3+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.19.如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=kx的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O′A′B′当这个函数图象经过△O′A′B′一边的中点时,求a的值.20.在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).21.在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);75757979797980808182828383848484【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.17940%277B75.1777645%211(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.22.某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE=70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,√3≈1.73)23.某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=150t−15刻画;当25≤t≤37时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015求:①m关于的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)24.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=ℎ,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P′,画正方形P′Q′M′N′,使点Q′,M′在BC边上,点N′在△ABC内,然后连结BN′,并延长交AC于点N,画NM⊥BC于点M,NP⊥NM 交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.答案和解析1.【答案】A【解析】解:因为a的相反数是−a,所以−2019的相反数是2019.故选:A.根据相反数的意义,直接可得结论.本题考查了相反数的意义.理解a的相反数是−a,是解决本题的关键.2.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.4.【答案】C【解析】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.≈9.3%.D、错误.下降了:244.5−221.6244.5故选:C.两条折线图一一判断即可.本题考查折线统计图,解题的关键是理解题意读懂图象信息,属于中考常考题型.5.【答案】D3+20,【解析】解:由题意可得:a+|−2|=√8则a+2=3,解得:a=1,故a可以是12019.故选:D.直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.6.【答案】A【解析】解:∵a >b ,c >d , ∴a +c >b +d . 故选:A .直接利用不等式的基本性质分别化简得出答案.此题主要考查了不等式的性质,正确掌握不等式的基本性质是解题关键. 7.【答案】B【解析】解:连接OA , ∵∠ABC =30°,∴∠AOC =2∠ABC =60°, ∵PA 是⊙O 的切线, ∴∠OAP =90°, ∵OA =OC =1,∴AP =OAtan60°=1×√3=√3, 故选:B .连接OA ,根据圆周角定理求出∠AOP ,根据切线的性质求出∠OAP =90°,解直角三角形求出AP 即可.本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径. 8.【答案】D【解析】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: {4x +6y =483x +5y =38. 故选:D .直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.此题主要考查了二元一次方程组的应用,正确得出等式是解题关键. 9.【答案】A【解析】 【分析】本题考查旋转变化、轴对称变化,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意可以写出点C 的坐标,然后根据与y 轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决. 【解答】解:∵已知菱形OABC 的顶点A(1,2) ,B(3,3) ∴点C 的坐标为(2,1),∴点C′的坐标为(−2,1), ∴点C′′的坐标为(2,−1), 故选:A .10.【答案】C【解析】解:二次函数y =−(x −m)2−m +1(m 为常数) ①∵顶点坐标为(m,−m +1)且当x =m 时,y =−m +1 ∴这个函数图象的顶点始终在直线y =−x +1上 故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得−(x−m)2−m+1=0,其中m≤1解得:x1=m−√−m+1,x2=m+√−m+1∵顶点坐标为(m,−m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|−m+1|=|m−(m−√−m+1)|解得:m=0或1当m=1时,二次函数y=−(x−1)2,此时顶点为(1,0),与x轴的交点也为(1,0),不构成三角形,舍去;∴存在m=0,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴x1+x22>m∵二次函数y=−(x−m)2−m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且a=−1<0∴y1>y2故结论③错误;④当−1<x<2时,y随x的增大而增大,且a=−1<0∴m的取值范围为m≥2.故结论④正确.故选:C.根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.本题主要考查了二次函数图象与二次函数的系数的关系,是一道综合性比较强的题目,需要利用数形结合思想解决本题.11.【答案】x(x−5)【解析】解:x2−5x=x(x−5).故答案为:x(x−5).直接提取公因式x分解因式即可.此题考查的是提取公因式分解因式,关键是找出公因式.12.【答案】23【解析】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为46=23;故答案为:23.画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.本题考查了树状图法求概率以及概率公式;画出树状图是解题的关键.13.【答案】b<−a<a<−b【解析】【分析】本题考查了有理数的大小比较,掌握有理数的大小比较法则是:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小是本题的关键.根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴−b>a,b<−a,∴四个数a,b,−a,−b的大小关系为b<−a<a<−b.故答案为:b<−a<a<−b14.【答案】±4x【解析】解:要使方程有两个相等的实数根,则△=b2−4ac=b2−16=0得b=±4故一次项为±4x故答案为±4x要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2−4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.15.【答案】√5【解析】解:如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2−BC2=(AD+DC)2−(DC2+BD2)=AD2+DC2+2AD⋅DC−DC2−BD2=2AD⋅DC=2BD⋅DC,∵AC2−BC2=√55AB2,∴2BD⋅DC=√55×2BD2,∴DC=√55BD,∴tanC=BDDC =√55BD=√5.故答案为√5.过B作BD⊥AC于D,易证△ABD是等腰直角三角形,那么AD=BD.根据勾股定理得出AB2=AD2+DB2=2BD2,BC2=DC2+BD2,那么AC2−BC2=(AD+DC)2−(DC2+BD2)=2BD⋅DC,代入AC2−BC2=√55AB2,得出DC=√55BD,进而根据正切函数的定义即可求解.本题考查了解直角三角形,等腰直角三角形的判定与性质,勾股定理,锐角三角函数定义,难度适中.证明出AC2−BC2=(AD+DC)2−(DC2+BD2)=2BD⋅DC,是解题的关键.16.【答案】(24−12√2)(24√3+36√2−12√6)【解析】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4√3cm,AB=8√3cm,ED=DF=6√2cm如图,当点E沿AC方向下滑时,得△E′D′F′,过点D′作D′N⊥AC于点N,作D′M⊥BC于点M∴∠MD′N=90°,且∠E′D′F′=90°∴∠E′D′N=∠F′D′M,且∠D′NE′=∠D′MF′=90°,E′D′=D′F′∴△D′NE′≌△D′MF′(AAS)∴D′N=D′M,且D′N⊥AC,D′M⊥CM∴CD′平分∠ACM即点E沿AC方向下滑时,点D′在射线CD上移动,∴当E′D′⊥AC时,DD′值最大,最大值=√2ED−CD=(12−6√2)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12−6√2)=(24−12√2)cm 如图,连接BD′,AD′,∵S△AD′B=S△ABC+S△AD′C−S△BD′C∴S△AD′B=12BC×AC+12×AC×D′N−12×BC×D′M=24√3+12(12−4√3)×D′N当E′D′⊥AC时,S△AD′B有最大值,∴S△AD′B最大值=24√3+12(12−4√3)×6√2=(24√3+36√2−12√6)cm2.故答案为:(24−12√2),(24√3+36√2−12√6)过点D′作D′N⊥AC于点N,作D′M⊥BC于点M,由直角三角形的性质可得BC=4√3cm,AB=8√3cm,ED=DF=6√2cm,由“AAS”可证△D′NE′≌△D′MF′,可得D′N=D′M,即点D′在射线CD上移动,且当E′D′⊥AC时,DD′值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD′B=12BC×AC+12×AC×D′N−12×BC×D′M=24√3+12(12−4√3)×D′N,则E′D′⊥AC时,S△AD′B有最大值.本题考查了轨迹,全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定点D的运动轨迹是本题的关键.17.【答案】解:步骤①②有误,原式=+==,当x=+1时,原式==.【解析】本题考查的是分式的化简求值,掌握异分母分式的减法法则是解题的关键.18.【答案】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB//CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.【解析】根据SAS即可证明△ABE≌△CDF可得AE=CF.本题考查矩形的性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.19.【答案】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,OB,∴∠AOB=60°,OC=12∵B(4,0),∴OB=OA=4,∴OC=2,AC=2√3.把点A(2,2√3)代入y=k,得k=4√3.x∴反比例函数的解析式为y=4√3;x(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=√3,B′E=1.∴O′E=3,把y=√3代入y=4√3,得x=4,x∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=√3,O′H=1.,得x=4,把y=√3代入y=4√3x∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.【解析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.本题考查了用待定系数法求反比例函数的解析式,掌握直角三角形、等边三角形的性质以及分类讨论思想是解题的关键.20.【答案】解:(1)由勾股定理得:CD=AB=CD′=√5,BD=AC=BD′′=√13,AD′=BC=AD′′=√10;画出图形如图1所示;(2)如图2所示.【解析】本题考查了平行四边形的判定与性质、勾股定理、平行线分线段成比例定理;熟练掌握勾股定理好平行线分线段成比例定理是解题的关键.(1)由勾股定理得:CD=AB=CD′=√5,BD=AC=BD′′=√13,AD′=BC=AD′′=√10;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.21.【答案】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×24=240(人),50答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;=240(人);(2)A小区500名居民成绩能超过平均数的人数:500×2450(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B 小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.本题考查的是频数直方图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.【答案】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB//CG//DE,∴∠DCG=180°−∠CDE=110°,∴∠BCG=∠BCD−∠GCD=30°,∴∠ABC=180°−∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=CD×cos70°≈0.51(米),在Rt△BCN中,CN=BC×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH−DE≈0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.【解析】(1)过点C作CG⊥AM于点G,证明AB//CG//DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D 作DH ⊥AM 于点H ,过点C 作CK ⊥DH 于点K ,如图3,通过解直角三角形求得求得DH ,最后便可求得结果.此题主要考查了解直角三角形的应用,充分体现了数学与实际生活的密切联系,解题的关键是正确构造直角三角形.23.【答案】解:(1)把(25,0.3)代入p =−1160(t −ℎ)2+0.4得:0.3=−1160(25−ℎ)2+0.4 解得:ℎ=29或ℎ=21,∵25≤t ≤37∴ℎ=29.(2)①由表格可知,m 是p 的一次函数,设m =kp +b把(0.2,0),(0.3,10)代入得{0=0.2×k +b 10=0.3×k +b解得{k =100b =−20∴m =100p −20.②当10≤t ≤25时,p =150t −15∴m =100(150t −15)−20=2t −40;当25≤t ≤37时,p =−1160(t −ℎ)2+0.4∴m =100[−1160(t −ℎ)2+0.4]−20=−58(t −29)2+20 ∴m ={2t −40, 10≤t ≤25−58(t −29)2+20 ,25≤t ≤37 ③当20≤t ≤25时,增加的利润为:600m +[100×30−200(30−m)]=800m −3000=1600t −35000当t =25时,增加的利润的最大值为1600×25−35000=5000元;当25<t ≤37时,增加的利润为:600m +[100×30−400(30−m)]=1000m −9000=−625(t −29)2+11000 ∴当t =29时,增加的利润的最大值为11000元.综上,当t =29时,提前20天上市,增加的利润最大,最大值为11000元.【解析】(1)把(25,0.3)代入p =−1160(t −ℎ)2+0.4中,便可求得h ;(2)①由表格可知,m 是p 的一次函数,由待定系数法可解;②分别求出当10≤t ≤25时和当25≤t ≤37时的函数解析式即可;③分别求出当20≤t ≤25时,增加的利润和当25<t ≤37时,增加的利润,然后比较两种情况下的最大值,即可得结论.本题综合考查了待定系数法求二次函数和一次函数的解析式以及一次函数和二次函数的实际应用,难度较大.24.【答案】(1)解:如图1中,∵PN//BC,∴△APN∽△ABC,∴PNBC =AEAD,即PNa=ℎ−PNℎ,解得PN=aℎa+ℎ(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN//M′N′,∴△BN′M′∽△BNM,∴M′N′MN =BN′BN,同理可得:P′N′PN =BN′BN∴M′N′MN =P′N′PN,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形(4)如图,过点N作ND⊥ME于点D∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM∵∠BMN=∠QEM=90°∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°∴△QEM≌△MDN(AAS)∴EQ=DM=12EM,∵∠BMN=∠QEM=90°∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴BQBE =BEBM=EQEM=12,∴BM=2BE,BE=2BQ∴BM=4BQ ∴QM=3BQ=MN,BN=5BQ∴MNBN=3BQ5BQ=35∴BN=53MN=53(aℎa+ℎ)【解析】(1)理由相似三角形的性质构建方程即可解决问题;(2)根据题意画出图形即可;(3)首先证明四边形PQMN是矩形,再证明MN=PN即可;(4)过点N作ND⊥ME于点D,由等腰三角形的性质可得∠NEM=∠MNE,ED=DM,由“AAS”可证△QEM≌△MDN,可得EQ=DM=12EM,通过证明△BEQ∽△BME,可得BM=2BE,BE=2BQ,即可求BN的长.本题属于四边形综合题,考查了正方形的性质和判定,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.。
2019年浙江省舟山市中考数学试卷原卷附解析

2019年浙江省舟山市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个密闭不透明的盒子里有若干个白球,在不允许将球全部倒出来的情况下,为估计白球的个数,小刚向其中放人 8 个黑球,摇匀后从中随机模出一个球记下颜色,再把它放回盒中,不断重复,共模球 400 次,其中 88次摸到黑球,估计盒中大约有白球( )A .28 个B .30 个C . 36 个D . 42 个 2.下列图形不相似的是( ) A . 所有的圆B .所有的正方形C .所有的等边三角形D .所有的菱形 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,DB=2,则DE ∶BC 的值为( )A .32B .21C .43D .53 4.如图,Rt △OAC 中,∠OAC=90°,OA=6,AC=4,扇形OAB 的半径为OA ,交⌒AB 的长等于3,则图中阴影部分的面积为( ) OC 于点B ,如A .15B .6C .4D .3 各点中,在反比例函数2y x=-图象上的是( ) 5.下列A .(21), B .233⎛⎫⎪⎝⎭, C .(21)--,D .(12)-, 6.如图,△OAP 、△ABQ 均是等腰直角三角形,点 P 、Q 在函数4(0)y x x=>的图象上,直角顶点 A .B 均在x 轴上,则点B 的坐标为( )A 21,0)B 51,0)C . (3,0)D .(1-,0)7.已知点P (x ,y )在第二象限,且12x +=,23y -=,则点P 的坐标为( )A .(-3,5)B .(1,-l )C .(-3,-l )D .(1,5)8.在A 33-),B (22,-2),C (-222 D 23-)四个点中,在第四象限的点的个数为( )B C D EA.1个B.2个C.3个D.4个9.如图,要使 a∥b,则∠2 与∠3 满足条件()A.∠2=∠3 B.∠2+∠3=90°C.∠2+∠3=180°D.无法确定10.下列每组数分别是三根小木棒的长度,首尾顺次相接能组成三角形的是()A.10 cm , 2 cm , 15 cm B.15 cm , 9 cm , 25 cmC.6 cm , 9 cm, 15 cm D.5 cm , 5 cm , 5 cm11.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是()A.明天本市70%的时间下雨,30%的时间不下雨B.明天本市70%的地区下雨,30%的地区不下雨C.明天本市一定下雨D.明天本市下雨的可能性是70%12.如图所示,在图①中,Rt△OAB绕其直角顶点0每次旋转90°,旋转3次得到右边的图形,在图②中,四边形OABC绕0点每次旋转120°,旋转2次得到右边的图形.以下四个图形中,不能通过上述方式得到的是()13.如图足球是由32块黑白相间的牛皮缝制而成的,黑皮可看做正五边形,白皮可看做正六边形,设白皮有x块,则黑皮有(32-x)块,每块白皮有六条边,共6x条边,因每块黑皮有三条边和白皮连在一起,故黑皮有3x条边,要求出白皮黑皮的块数,列出的方程正确的是()A.3x=32-x B.3x=5(32-x)C.6x=32-x D.5x=3(32-x)二、填空题14.若圆锥的母线长为3 cm,底面半径为2 cm,则圆锥的侧面展开图的面积.15.如图,AB⊥BC,BC⊥CD,当时,Rt△ABC≌Rt△DCB(只需写出一个条件).16.如图,∠1与∠2是两条直线被AC所截形成的内错角,那么这两条直线为与.17.如图,在△ABC中,已知∠BAC=80°,∠B=40°,AD是△ABC的角平分线,那么∠ADB= .18.若一个三角形的两条高在这个三角形的外部,那么这个三角形的形状是___________三角形.19.利用平方差公式计算(2+1)(22+1)(24+1)(28+1)+1= .20.如图所示,在△ABC中,∠B=35°,∠C=60°,AE是∠BAC的平分线,AD⊥BC于D,则∠DAE的度数为.21.某件商品原价为a 元,先涨价20%后,又降价20%,现价是元.22.当 x= 0.5 时,||23xx= .三、解答题23.如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正方体.从这些小正方体中任意取出一个,求取出的小正方体:(1)三面涂有颜色的概率;(2)两面涂有颜色的概率;(3)各个面都没有颜色的概率.24.如图,把四边形 ABCD 放大到原来的两倍.25.如图所示,在一块长为32m ,宽为l5m 的矩形草地上,在中间要设计一横二竖的等宽的供居民散步的小路,要使小路的面积是草地面积的去,请问小路的宽应是多少?26.在容器里有 1 5℃的水 4 升,现在要把 5 升水注入里面,使容器里混合后的水的温度(即平均温度)不低于 25℃,且不高于30℃,试问注入 5 升水的温度应在什么范围内?27.如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形.(要求:尺规作图,保留作图痕迹,不写作法和证明) A28.人们发现某种蟋蟀在1min 时间内所叫次数 x(次)与当地温度 T(℃)之间的关系可近似地表示成T= ax+b,下面是该种蟋蟀1min 所叫次数与温度变化情况对照表:(2)如果蟋蟀1min 时间内叫了 63 次,那么估计该地当时的温度大约是多少?29.在“跳蚤市场”活动中初一(1)班的销售额为n元,初一(2)班的销售额是初一(1)班的的2倍少28元,初一(3)班的销售额比初一(1)班的一半多42元,问三个班一共销售商品多少元?30.2006年某市全年完成生产总值264亿元,比2005年增长23%,问:(1)2005年该市全年生产总值是多少亿元?(精确到1亿元)(2)预计该市2008年生产总值可达到386.5224亿元,则2006 ~2008年该市生产总值的年平均=)1.21= 1.22【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.A4.D5.D6.B7.A8.C9.C10.D11.DD13.B二、填空题14.6π15.答案不唯一,如AB=CD16.AB ,CD17.100°18.钝角19.21620.12.5°21.0.96a22.-1三、解答题23.解:(1)因为三面涂有颜色的小正方体有8个,∴P (三面涂有颜色)81648==(或0.125); (2)因为两面涂有颜色的小正方体有24个,∴P (两面涂有颜色)243648==(或0.375); (3)因为各个面都没有涂颜色的小正方体共有8个,∴P (各个面都没有颜色)=81648=如图中四边形A 1B 1C 1D 1.25.lm26.33°~42°27.(1)只要度量残留的三角形模具片的B C ∠∠,的度数和边BC 的长, 因为两角及其夹边对应相等的两个三角形全等;(2)略28. (1)17a =,3b =;(2) 12℃ 29.(3.5n+14)元30.(1)2005年该市生产总值为264(123%)215÷+≈(亿元);(2)该市2006~2008年生产总值平均年增长率为386.5224 1.2110.2121%264=-==。
2019年浙江省舟山市中考数学试卷含答案

线 BC 方向滑动.当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长为
连接 BD,则△ABD 的面积最大值为
cm2.
cm;
三、解答题(本题有 8 小题,第 17~19 题每题 6 分,第 20、21 题每题 8 分,第 22、23 题每题 10 分,第 24 题 12 分,共 66 分)友情提示:做解答题,别忘了写出必要的 过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.
线于点 P,则 PA 的长为
()
A.2
B. 3
C. 2
D. 1
2
8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我
国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹
x 两,牛每头 y 两,根据题意可列方程组为
()
A.
4x 3x
6y 5y
则点 C 的对应点 C 的坐标是
()
数学试卷 第 2 页(共 8 页)
A.(2,-1)
B.(1,-2)
C.(-2,1)
D.(-2,-1)
10.小飞研究二次函数 y=(x﹣m)2 m 1(m 为常数)性质时如下结论:①这个函数
图象的顶点始终在直线 y= x 1上;②存在一个 m 的值,使得函数图象的顶点与 x
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
--------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---------------
2019年浙江省舟山市中考数学试卷(含解析)完美打印版

2019年浙江省舟山市中考数学试卷一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019B.﹣2019C.D.﹣2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×1063.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1C.0D.120196.(3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>7.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P,则P A的长为()A.2B.C.D.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.9.(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y 轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)10.(3分)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=.12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).14.(4分)在x2++4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.15.(4分)如图,在△ABC中,若∠A=45°,AC2﹣BC2=AB2,则tan C=.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为cm2.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.18.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).21.(8分)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD =140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE =70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)23.(10分)某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t ﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t ≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)24.(12分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.2019年浙江省舟山市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分)1.(3分)﹣2019的相反数是()A.2019B.﹣2019C.D.﹣【分析】根据相反数的意义,直接可得结论.【解答】解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.(3分)2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A.38×104B.3.8×104C.3.8×105D.0.38×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:380000=3.8×105故选:C.3.(3分)如图是由四个相同的小正方形组成的立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.4.(3分)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【分析】两条折线图一一判断即可.【解答】解:A、错误.签约金额2017,2018年是下降的.B、错误.与上年相比,2016年的签约金额的增长量最多.C、正确.D、错误.下降了:≈9.3%.故选:C.5.(3分)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1C.0D.12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解答】解:由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.6.(3分)已知四个实数a,b,c,d,若a>b,c>d,则()A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>【分析】直接利用等式的基本性质分别化简得出答案.【解答】解:∵a>b,c>d,∴a+c>b+d.故选:A.7.(3分)如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线P A交OC延长线于点P,则P A的长为()A.2B.C.D.【分析】连接OA,根据圆周角定理求出∠AOP,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵过点A作⊙O的切线交OC的延长线于点P,∴∠OAP=90°,∵OA=OC=1,∴AP=OA tan60°=1×=,故选:B.8.(3分)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为()A.B.C.D.【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【解答】解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:D.9.(3分)如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y 轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)【分析】根据题意可以写出点C的坐标,然后根据与y轴对称和与原点对称的点的特点即可得到点C″的坐标,本题得以解决.【解答】解:∵点C的坐标为(2,1),∴点C′的坐标为(﹣2,1),∴点C″的坐标的坐标为(2,﹣1),故选:A.10.(3分)小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=﹣x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当﹣1<x<2时,y随x的增大而增大,则m的取值范围为m≥2.其中错误结论的序号是()A.①B.②C.③D.④【分析】根据函数解析式,结合函数图象的顶点坐标、对称轴以及增减性依次对4个结论作出判断即可.【解答】解:二次函数y=﹣(x﹣m)2﹣m+1(m为常数)①∵顶点坐标为(m,﹣m+1)且当x=m时,y=﹣m+1∴这个函数图象的顶点始终在直线y=﹣x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得﹣(x﹣m)2﹣m+1=0,其中m≤1解得:x1=m﹣,x2=m+∵顶点坐标为(m,﹣m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|﹣m+1|=|m﹣(m﹣)|解得:m=0或1∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x1+x2>2m∴∵二次函数y=﹣(x﹣m)2﹣m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x1<x2,且﹣1<0∴y1>y2故结论③错误;④当﹣1<x<2时,y随x的增大而增大,且﹣1<0∴m的取值范围为m≥2.故结论④正确.故选:C.二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:x2﹣5x=x(x﹣5).【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).12.(4分)从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.【分析】画出树状图,共有6个等可能的结果,甲被选中的结果有4个,由概率公式即可得出结果.【解答】解:树状图如图所示:共有6个等可能的结果,甲被选中的结果有4个,∴甲被选中的概率为=;故答案为:.13.(4分)数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).【分析】根据两个负数比较大小,其绝对值大的反而小和负数都小于0,即可得出答案.【解答】解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b14.(4分)在x2+±4x+4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.【分析】要使方程有两个相等的实数根,即△=0,则利用根的判别式即可求得一次项的系数即可.【解答】解:要使方程有两个相等的实数根,则△=b2﹣4ac=b2﹣16=0得b=±4故一次项为±4x故答案为±4x15.(4分)如图,在△ABC中,若∠A=45°,AC2﹣BC2=AB2,则tan C=.【分析】过B作BD⊥AC于D,易证△ABD是等腰直角三角形,那么AD=BD.根据勾股定理得出AB2=AD2+DB2=2BD2,BC2=DC2+BD2,那么AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=2BD•DC,代入AC2﹣BC2=AB2,得出DC=BD,进而根据正切函数的定义即可求解.【解答】解:如图,过B作BD⊥AC于D,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2﹣BC2=(AD+DC)2﹣(DC2+BD2)=AD2+DC2+2AD•DC﹣DC2﹣BD2=2AD•DC=2BD•DC,∵AC2﹣BC2=AB2,∴2BD•DC=×2BD2,∴DC=BD,∴tan C===.故答案为.16.(4分)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,AC =12cm.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为(24﹣12)cm;连接BD,则△ABD的面积最大值为(24+36﹣12)cm2.【分析】过点D'作D'N⊥AC于点N,作D'M⊥BC于点M,由直角三角形的性质可得BC=4cm,AB =8cm,ED=DF=6cm,由“AAS”可证△D'NE'≌△D'MF',可得D'N=D'M,即点D'在射线CD 上移动,且当E'D'⊥AC时,DD'值最大,则可求点D运动的路径长,由三角形面积公式可求S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N,则E'D'⊥AC时,S△AD'B有最大值.【解答】解:∵AC=12cm,∠A=30°,∠DEF=45°∴BC=4cm,AB=8cm,ED=DF=6cm如图,当点E沿AC方向下滑时,得△E'D'F',过点D'作D'N⊥AC于点N,作D'M⊥BC于点M∴∠MD'N=90°,且∠E'D'F'=90°∴∠E'D'N=∠F'D'M,且∠D'NE'=∠D'MF'=90°,E'D'=D'F'∴△D'NE'≌△D'MF'(AAS)∴D'N=D'M,且D'N⊥AC,D'M⊥CM∴CD'平分∠ACM即点E沿AC方向下滑时,点D'在射线CD上移动,∴当E'D'⊥AC时,DD'值最大,最大值=ED﹣CD=(12﹣6)cm∴当点E从点A滑动到点C时,点D运动的路径长=2×(12﹣6)=(24﹣12)cm如图,连接BD',AD',∵S△AD'B=S△ABC+S△AD'C﹣S△BD'C∴S△AD'B=BC×AC+×AC×D'N﹣×BC×D'M=24+(12﹣4)×D'N当E'D'⊥AC时,S△AD'B有最大值,∴S△AD'B最大值=24+(12﹣4)×6=(24+36﹣12)cm2.故答案为:(24﹣12),(24+36﹣12)三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)小明解答“先化简,再求值:+,其中x=+1.”的过程如图.请指出解答过程中错误步骤的序号,并写出正确的解答过程.【分析】根据分式的减法法则进行化简,代入计算即可.【解答】解:步骤①②有误,原式=+==,当x=+1时,原式==.18.(6分)如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.【分析】根据SAS即可证明△ABE≌△CDF可得AE=CF.【解答】解:添加的条件是BE=DF(答案不唯一).证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF.19.(6分)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.【分析】(1)过点A作AC⊥OB于点C,根据等边三角形的性质得出点A坐标,用待定系数法求得反比例函数的解析式即可;(2)分两种情况讨论:①反比例函数图象过AB的中点;②反比例函数图象过AO的中点.分别过中点作x轴的垂线,再根据30°角所对的直角边是斜边的一半得出中点的纵坐标,代入反比例函数的解析式得出中点坐标,再根据平移的法则得出a的值即可.【解答】解:(1)过点A作AC⊥OB于点C,∵△OAB是等边三角形,∴∠AOB=60°,OC=OB,∵B(4,0),∴OB=OA=4,∴OC=2,AC=2.把点A(2,2)代入y=,得k=4.∴反比例函数的解析式为y=;(2)分两种情况讨论:①点D是A′B′的中点,过点D作DE⊥x轴于点E.由题意得A′B′=4,∠A′B′E=60°,在Rt△DEB′中,B′D=2,DE=,B′E=1.∴O′E=3,把y=代入y=,得x=4,∴OE=4,∴a=OO′=1;②如图3,点F是A′O′的中点,过点F作FH⊥x轴于点H.由题意得A′O′=4,∠A′O′B′=60°,在Rt△FO′H中,FH=,O′H=1.把y=代入y=,得x=4,∴OH=4,∴a=OO′=3,综上所述,a的值为1或3.20.(8分)在6×6的方格纸中,点A,B,C都在格点上,按要求画图:(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).【分析】(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形即可;(2)根据平行线分线段成比例定理画出图形即可.【解答】解:(1)由勾股定理得:CD=AB=CD'=,BD=AC=BD''=,AD'=BC=AD''=;画出图形如图1所示;(2)如图2所示.21.(8分)在“创全国文明城市”活动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);【信息二】图中,从左往右第四组的成绩如下【信息三】A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数.(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握垃圾分类知识的情况.【分析】(1)因为有50名居民,所以中位数落在第四组,中位数为75;(2)A小区500名居民成绩能超过平均数的人数:500×=200(人);(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【解答】解:(1)因为有50名居民,所以中位数落在第四组,中位数为75,故答案为75;(2)500×=240(人),答:A小区500名居民成绩能超过平均数的人数240人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.22.(10分)某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD =140°.初始位置如图1,斗杆顶点D与铲斗顶点E所在直线DE垂直地面AM于点E,测得∠CDE =70°(示意图2).工作时如图3,动臂BC会绕点B转动,当点A,B,C在同一直线时,斗杆顶点D升至最高点(示意图4).(1)求挖掘机在初始位置时动臂BC与AB的夹角∠ABC的度数.(2)问斗杆顶点D的最高点比初始位置高了多少米?(精确到0.1米)(参考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,≈1.73)【分析】(1)过点C作CG⊥AM于点G,证明AB∥CG∥DE,再根据平行线的性质求得结果;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,通过解直角三角形求得DE,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,如图3,通过解直角三角形求得求得DH,最后便可求得结果.【解答】解:(1)过点C作CG⊥AM于点G,如图1,∵AB⊥AM,DE⊥AM,∴AB∥CG∥DE,∴∠DCG=180°﹣∠CDE=110°,∴BCG=∠BCD﹣∠DCG=140°﹣110°=30°,∴∠ABC=180°﹣∠BCG=150°;(2)过点C作CP⊥DE于点P,过点B作BQ⊥DE于点Q,交CG于点N,如图2,在Rt△CPD中,DP=1.5×cos70°≈0.51(米),在Rt△BCN中,CN=1.2×cos30°≈1.04(米),所以,DE=DP+PQ+QE=DP+CN+AB=2.35(米),如图3,过点D作DH⊥AM于点H,过点C作CK⊥DH于点K,在Rt△CKD中,DK=CD×sin50°≈1.16(米),所以,DH=DK+KH=3.16(米),所以,DH﹣DE=0.8(米),所以,斗杆顶点D的最高点比初始位置高了0.8米.23.(10分)某农作物的生长率p与温度t(℃)有如下关系:如图,当10≤t≤25时可近似用函数p=t ﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p之间满足已学过的函数关系,部分数据如下:求:①m关于p的函数表达式;②用含t的代数式表示m.③天气寒冷,大棚加温可改变农作物生长速度.大棚恒温20℃时每天的成本为100元,计划该作物30天后上市,现根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若欲加温到25<t ≤37,由于要采用特殊方法,成本增加到400元/天.问加温到多少度时增加的利润最大?并说明理由.(注:农作物上市售出后大棚暂停使用)【分析】(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4中,便可求得h;(2)①由表格可知,m是p的一次函数,由待定系数法可解;②分别求出当10≤t≤25时和当25≤t≤37时的函数解析式即可;③分别求出当20≤t≤25时,增加的利润和当25<t≤37时,增加的利润,然后比较两种情况下的最大值,即可得结论.【解答】解:(1)把(25,0.3)代入p=﹣(t﹣h)2+0.4得:0.3=(25﹣h)2+0.4解得:h=29或h=21,∵25≤t≤37∴h=29.(2)①由表格可知,m是p的一次函数,设m=kp+b把(0.2,0),(0.3,10)代入得解得∴m=100p﹣20.②当10≤t≤25时,p=t﹣∴m=100(t﹣)﹣20=2t﹣40;当25≤t≤37时,p=﹣(t﹣h)2+0.4∴m=100[﹣(t﹣h)2+0.4]﹣20=(t﹣29)2+20∴m=③当20≤t≤25时,增加的利润为:600m+[100×30﹣200(30﹣m)]=800m﹣3000=1600t﹣35000当t=25时,增加的利润的最大值为1600×25﹣35000=5000元;当25<t≤37时,增加的利润为:600m+[100×30﹣400(30﹣m)]=1000m﹣9000=﹣625(t﹣29)2+11000∴当t=29时,增加的利润的最大值为11000元.综上,当t=29时,提前20天上市,增加的利润最大,最大值为11000元.24.(12分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB 上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.【分析】(1)理由相似三角形的性质构建方程即可解决问题;(2)根据题意画出图形即可;(3)首先证明四边形PQMN是矩形,再证明MN=PN即可;(4)过点N作ND⊥ME于点D,由等腰三角形的性质可得∠NEM=∠MNE,ED=DM,由“AAS”可证△QEM≌△MDN,可得EQ=DM=EM,通过证明△BEQ∽△BME,可得BM=2BE,BE=2BQ,即可求BN的长.【解答】(1)解:如图1中,∵PN∥BC,∴△APN∽△ABC,∴,即,解得PN=(2)能画出这样的正方形,如图2中,正方形PNMQ即为所求.(3)证明:如图2中,由画图可知:∠QMN=∠PQM=∠NPQ=∠BM′N′=90°,∴四边形PNMQ是矩形,MN∥M′N′,∴△BN′M′∽△BNM,∴,同理可得:∴,∵M′N′=P′N′,∴MN=PN,∴四边形PQMN是正方形(4)如图,过点N作ND⊥ME于点D∵MN=EN,ND⊥ME,∴∠NEM=∠MNE,ED=DM∵∠BMN=∠QEM=90°∴∠EQM+∠EMQ=90°,∠EMQ+∠EMN=90°∴∠EMN=∠EQM,且MN=QN,∠QEM=∠NDM=90°∴△QEM≌△MDN(AAS)∴EQ=DM=EM,∵∠BMN=∠QEM=90°∴∠BEQ+∠NEM=90°,∠BME+∠NME=90°∴∠BEQ=∠BME,且∠MBE=∠MBE∴△BEQ∽△BME∴=,∴BM=2BE,BE=2BQ∴BM=4BQ∴QM=3BQ=MN,BN=5BQ∴∴BN=MN=()。
浙江省嘉兴、舟山市2019年中考数学试卷解析版

2,任意
画△ ABC ,在 AB 上任取一点 P',画正方形 P'Q'M 'N',使 Q',M '在 BC 边上, N'在△ ABC 内,连结 BN'并延 长交 AC 于点 N,画 NM ⊥BC 于点 M ,NP⊥ NM 交 AB 于点 P, PQ⊥ BC 于点 Q,得到四边形 PPQMN .小 波把线段 BN 称为“波利亚线” . ( 3)推理:证明图 2 中的四边形 PQMN 是正方形.
1.73)
23.( 10 分)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展. ( 1)温故:如图 1,在△ ABC 中, AD⊥ BC 于点 D,正方形 PQMN 的边 QM 在 BC 上,顶点 P,N 分别在
AB , AC 上,若 BC= 6, AD= 4,求正方形 PQMN 的边长. ( 2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图
PA 的长为(
)
A.2
B.
C.
D.
8.( 3 分)中国清代算书《御制数理精蕴》中有这样一题: “马四匹、牛六头,共价四十八两(我国古代货币
单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹
x 两,牛每头 y 两,根据题意可
列方程组为(
)
A.
B.
C.
D.
9.( 3 分)如图,在直角坐标系中,已知菱形 OABC 的顶点 A( 1, 2), B( 3, 3).作菱形 OABC 关于 y 轴的
( 4)拓展:在( 2)的条件下,在射线 BN 上截取 NE= NM ,连结 EQ, EM(如图 3).当 tan∠ NBM = 时,
2019年浙江省舟山市中考数学试卷附解析

2019年浙江省舟山市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知1sin2A=,且∠A为锐角,则∠A=()A.30°B.45°C.60°D.75°2.两个相似三角形的相似比是 2:3,其中较大的三角形的面积为 36 cm2,则较小的三角形的面积是()A.16cm2B.18 cm2 C.2O cm2D.24 cm23.若—个矩形较短的边长为5,两条对角线所夹的锐角为60°,则这个矩形的面积是()A.50 B.25 C.253D.253 24.将方程(43)(21)1x x+-=化为一般形式,下列正确的是()A.28650x x+-=B.28550x x--=C.26550x x+-=D.26650x x-+=5.如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程s(m)与时间t(s)之间的函数关系图象分别为折线OABC和线段OD,下列说法正确的是()A.乙比甲先到达终点B.乙测试的速度随时间增加而增大C.比赛进行到29.4 S时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快6.若0a<,则下列各点中在第二象限内的()A.(-2,a)B.(-2,a-)C.(a,-2)D.(a-,2)7.底面是n边形的直棱柱棱的条数共有()A.2n+B.2n C.3n D.n8.观察下图,下列选项正确的为()①面积最大的是亚洲;②南美洲、北美洲、非洲约占总面积的50%;③非洲约占全球面积的15;④南美洲的面积是大洋洲面积的2倍A .①②B .①②③④C .①④D .①②④ 9.如图是小明家一年的费用统计图,从该统计图中可以看出的信息是( )A .小明家有3口人B .小明家一年的费用需要2万元C .小明家生活方面费用占总费用的35%D .小明家的收入很高10.下列计算中,正确的是( )A .23a b ab +=B .770ab ba -+=C .22245x y xy x y -=-D .235x x x +=二、填空题11.手电筒、台灯发出的光线形成的投影是 .12.二次函数y=x 2-2x-3与x 轴两交点之间的距离为 .13.已知3x=4y ,则yx =________. 14.如图,火焰 AC 通过纸板 EF 上的一个小孔0照射到屏幕上形成倒立的实像,像的长 度 BD= 2 cm ,QA = 60 cm ,OB = 20 cm ,则火焰 AC 的长为 cm .15.若直线 y=-2x+1与双曲线k y x=的一个交点为(2,n),则n= ,k= . 16.如图是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.17.如图,在△ABC 和△DBC 中,E ,F ,G ,H 分别是AB ,DB ,DC ,AC 的中点,AD =3,BC=8,则四边形EFGH的周长为.18.平行四边形的面积为S,边长为5,该边上的高为h,则S与h的关系为;当h=2时,S= ;当S=40时,h= .19.如图,ΔDEF是ΔABC以直线GH为对称变换所得的像.请写出图中的各对全等三角形: .20.有一个均匀的正十二面体形状的骰子,其中 3个面标有“1 ”,1个面标有“2”,4 个面标有“3”, 1 个面标有“4”,2 个面标有“5”,1 个面标有“6”,将这个骰子掷出后,数字朝上的可能性最大,为.21.常见的非负数的表示方式有, .(用含字母a的式子表示).22.如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是____________________________(将你认为正确的结论序号填上).三、解答题23.小明和小刚用如图所示的两个转盘做游戏. 游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得 1 分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方都公平?24.判断命题“有两边长分别为3和4的等腰三角形的周长是l0”的真假,并说明理由.25.已知y=x2-5x+4,问x取什么值时,y的值等于0?x取什么值时,y的值等于4?26.如图,AB为⊙0的直径,C为⊙0上一点,AD⊥CD于D,AC平分∠DAB.求证:CD 是⊙0的切线.27.某中学库存 960 套旧桌凳,修理后捐助贫困山区学校. 现有甲、乙两个木工小组都想承揽这项业务. 经协商后得知:甲小组单独修理比乙小组多用 20 天;乙小组每天修的套数是甲小组的 1.5 倍;学校每天需付甲小组修理费 80元,付乙小组 120 元.(1)甲、乙两个木工小组每天各修桌凳多少套?(2)在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天 10 元的生活补助. 现有以下三种修理方案供选择:①由甲单独修理;②由乙单独修理;③由甲、乙共同合作修理. 你认为哪种方案既省时又省钱?试比较说明.28.甲、乙两个工程队合做一项工程,两队合做2天后,由乙队单独做 1 天就可全部完成.已知乙队单独做全部工程所需天数是甲队单独做所需天数的32倍,求甲、乙两队单独做分别需多少天?29.在社会实践活动中,某校甲、乙、丙三位同学共同调查了高峰时段宁波二环路十三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下.甲同学说:“二环路的车流量为每小时10000辆.”乙同学:“四环路比三环路每小时多2000辆.”丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍.”请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流晕各是多少.30.从某种卫生纸的外包装上得到以下资料:每卷纸有两层300格,每格面积为11.4厘米×11厘米,如图1. 用尺量出整卷卫生纸横切面的半径与纸筒内芯的半径分别为 5.8厘米和2.3厘米,如图2. 那么该卫生纸每层的厚度是多少厘米( 取3.14,结果精确到 0.001厘米)?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.C5.C6.B7.C8.D9.C10.B二、填空题中心投影12.413.4314.615.一3,一616.17.1118.S=5h,10,819.△ABC与△DEF,△EGH与△BGH 20.3,1321.,2a,||a22.①②③三、解答题23.公平,将两个转盘所转到的数字求积中可以得到()21 63P==积为奇数,()4263 P==积为偶数从表明的积分为12233⨯=;小刚的积分为22133⨯=∴小故游戏对双方公平24.是假命题,当腰为4,底边为3时,三角形的周长为11x 取1、4时,y 的值等于0;x 取0、5值时,y 的值等于4.26.连结OC ,∵OC=OA ,∴∠OCA=∠0AC=∠CAD ,∴OC ∥AD ,又∵AD ⊥CD ,∴OC ⊥CD ,即CD 是⊙0的切线.27.(1)甲每天修16 套,乙每天修 24 套;(2)甲、乙合作省时又省钱28.各需4天和6 天29.设高峰时段三环路,的车流量为每小时x 辆,则高峰时段四环路的车流量为每小时(2000x +)辆.根据题意,得3(2000)210000x x -+=⨯,解得11000x =, ∴200013000x +=辆.答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13 000辆. 30.设该卫生纸每层的厚度为x 厘米.可列方程221111.43002(5.8 2.3)11x π⨯⨯⨯⨯=-⨯,∴=0.013x答:该两层卫生纸的厚度约为 0.013厘米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---------------- 密★启用前 _ -------------------- __ 一、选择题(本题有 10 小题,每题 3 分,共 30 分.请选出各题中唯一的正确选项,不___号 卷 A .2019 B . -2019 C . 1 __ 2019 D . - 2019生 __ 考 __ __ ____ ___ __ 上___ 答 __ __ __ __ A B C D _ --------------------年 5 月 26 日第 5 届中国国际大数据产业博览会召开.某市在五届数博会上的产业 学 .. A . a + c >b + dB . a - c >b - dC . ac >bdD . >A . ⎨⎧4 x + 6 y = 38 ⎩5x + 3 y = 38 D . ⎨⎩3x + 5 y = 38 3.如图 “ ⎩ B 3 .A -------------绝A .签约金额逐年增加在--------------------浙江省舟山市 2019 年初中毕业生学业考试数学B .与上年相比,2019 年的签约金额的增长量最多C .签约金额的年增长速度最快的是 2016 年D .2018 年的签约金额比 2017 年降低了 22.98%_ ____ __ 1. -2019的相反数是 ( )_ _ A . 38 ⨯104 B . 3.8 ⨯104 C . 3.8 ⨯105 D . 0.38 ⨯106_ _ _ _ _ _ _ _ 名__ 姓 _ _ ___ __校业 毕(满分 120 分,考试时间 120 分钟)此 卷Ⅰ(选择题)选、多选、错选,均不得分)1 -------------------- 2.2019 年 1 月 3 日 10 时 26 分,“嫦娥四号”探测器飞行约 380 000 千米,实现人类探测器首次在月球背面软着陆.数据 380 000 用科学记数法表示为 ( ) --------------------是由四个相同的小正方形组成的立体图形,它的俯视图为 ( )--------------------题签约金额的折线统计图如图.下列说法正确的是 ( )无--------------------5.如图是一个 2 ⨯ 2 的方阵,其中每行、每列的两数和相等,则 a 可以是 ( )A . tan60︒B . -1C .0D .120196.已知四个实数 a ,b ,c ,d ,若 a >b , a >b ,则 ( )a bc d7.如图,已知 O 上三点 A ,B ,C ,半径 O C =1 , ∠ABC =30︒ ,切线 PA 交 OC 延长线于点 P ,则 PA 的长为 ( )A .2B . 3C . 2D .128.中国清代算书《御制数理精蕴》中有这样一题: 马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头 y 两,根据题意可列方程组为 ( )⎧4x + 6 y = 48⎩3x + 5 y = 48 B . ⎨3 y + 5x =38 ⎧4x + 6 y = 48 ⎧4x + 6 y = 48 C . ⎨9.如图,在直角坐标系中,已知菱形 O ABC 的顶点 (1,2), (3,) 作菱形 OABC 关于y 轴的对称图形 O A' B ' C ' ,再作图形 OA'B'C'关于点 O 的中心对称图形 O A "B "C " , 则点 C 的对应点 C " 的坐标是 ( )效数学试卷 第 1 页(共 20 页) 数学试卷 第 2 页(共 20 页). . 1 . , . - x 2 A B 17.小明解答“先化简,再求值: 1 F CFA (2,-1)B (,-2)C (-21)D (-2,-1)10.小飞研究二次函数 y = (﹣ m )- m + 1 (m 为常数)性质时如下结论:①这个函数图象的顶点始终在直线 y = - x + 1 上;②存在一个 m 的值,使得函数图象的顶点与 x轴的两个交点构成等腰直角三角形;③点 (x ,y )与点 (x ,y )在函数图象上,1122若 x <x , x + x >2m ,则 y <y ;④当-1<x <2 时,y 随 x 的增大而增大,则 m121212的取值范围为 m ≥2.其中错误结论的序号是 ()16.如图,一副含 30︒ 和 45︒ 角的三角板 ABC 和 EDF 拼合在个平面上,边 AC 与 EF 重合, AC =12 cm .当点 E 从点 A 出发沿 AC 方向滑动时,点 F 同时从点 C 出发沿射线 BC 方向滑动.当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长为 cm ;连接 BD ,则 △ABD 的面积最大值为 cm 2.三、解答题(本题有 8 小题,第 17~19 题每题 6 分,第 20、21 题每题 8 分,第 22、23题每题 10 分,第 24 题 12 分,共 66 分)友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.A .①B .②C .③D .④卷Ⅱ(非选择题)二、填空题(共 6 小题,每小题 4 分,满分 24 分)11.分解因式: x 2 - 5 x =.12.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为.13.数轴上有两个实数 a ,b ,且 a >0 , b <0 , a + b <0 ,则四个数 a ,b , -a , -b 的大小关系为 (用“< ”号连接).14.如图,在O 中,弦 AB =1 ,点 C 在 AB 上移动,连结 OC ,过点 C 作 CD ⊥ OC 交O 于点 D ,则 CD 的最大值为.2x + 1 + x 2 - 1 ,其中 x =解答过程中错误步骤的序号,并写出正确的解答过程.3 + 1 .”的过程如图.请指出15.在 x 2 ++4=0 的括号中添加一个关于 x 的一次项,使方程有两个相等的实数根.数学试卷 第 3 页(共 20 页)18.如图,在矩形 ABCD 中,点 E , 在对角线 BD .请添加一个条件,使得结论“ AE = ”成立,并加以证明.数学试卷 第 4 页(共 20 页)ky = 的图象上. ____ ____ _____ __ 上 --------------------)在图 2 中仅用无刻度的直尺,把线段 AB 三等分(保留画图痕迹,不写画法). __姓 __ 答__ __ __ 题__ B 0 _ 的 【 ----------------19.如图,在直角坐标系中,已知点 (4,),等边三角形 OAB 的顶点 A 在反比例函数在 -------------------- x(1)求反比例函数的表达式.(2)把 △OAB 向右平移 a 个单位长度,对应得到△O ' A ' B ' 当这个函数图象经过△O ' A ' B ' 一边的中点时,求 a 的值.此--------------------_ __ __ __ __卷 号 -------------------- 生 __ 考 __ __ 20.在 6 ⨯ 6 的方格纸中,点 A ,B ,C 都在格点上,按要求画图: __ (1)在图 1 中找一个格点 D ,使以点 A ,B ,C ,D 为顶点的四边形是平行四边形.(2 __ _ _ _ _ _ _ _ _ 名__ _ -------------------- _ _ __ ____ 21.在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识 --------------------情况进行调查.其中 A 、B 两小区分别有 500 名居民参加了测试,社区从中各随机校 学 抽取 50 名居民成绩进行整理得到部分信息: 业毕【信息一】A 小区 50 名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):无--------------------信息二】上图中,从左往右第四组的成绩如下:7575 79 79 79 79 80 808182828383848484【信息三】A 、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):小区 平均数 中位数 众数 优秀率 方差A 75.1 # 79 40% 277B 75.1 77 76 45% 211根据以上信息,回答下列问题:(1)求 A 小区 50 名居民成绩的中位数.(2)请估计 A 小区 500 名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析 A ,B 两小区参加测试的居民掌握垃圾分类知识的情况.22.某挖掘机的底座高 AB =0.8 米,动臂 BC =1.2米, C D =1.5米,BC 与 CD 的固定夹角 ∠BCD =140︒ .初始位置如图 1,斗杆顶点 D 与铲斗顶点 E 所在直线 DE 垂直地面 AM 于点 E ,测得 ∠CDE =70︒(示意图 2).工作时如图 3,动臂 BC 会绕点 B 转动,当点 A ,B ,C 在同一直线时,斗杆顶点 D 升至最高点(示意图 4). (1)求挖掘机在初始位置时动臂 BC 与 AB 的夹角 ∠ABC 的度数.(2)问斗杆顶点 D 的最高点比初始位置高了多少米(精确到 0.1 米)?(参考数据: sin50︒ ≈ 0.77 , cos50︒ ≈ 0.64,sin70︒ ≈ 0.94 , cos70︒ ≈ 0.34 ,3 ≈ 1.73 )效数学试卷 第 5 页(共 20 页)数学试卷 第 6 页(共 20 页)t 50 t - - t 2 3).当 tan ∠NBM = 时,猜想 ∠QEM 的度数,并尝试证明.t23.小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.24.(12 分)某农作物的生长率 p 与温度(℃)有如下关系:如图 1,当10 ≤ t ≤25 时(1)温故:如图 1,在 △ABC 中, AD ⊥ BC 于点 D ,正方形 PQMN 的边 QM 在 BC 上,顶点 P ,N 分别在 AB ,AC 上,若 BC =6 , AD =4 ,求正方形 PQMN 的边长.可 近 似 用 函 数 p =t - 1p = (﹣h )+ 0.4 刻画. 15 刻 画 ; 当 25 ≤ t ≤ 37 时 可 近 似 用 函 数(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进 行操作:如图 2,任意画 △ABC ,在 AB 上任取一点 P ' ,画正方形 P ' Q ' M ' N ' , 使 Q ' , M ' 在 BC 边上, N ' 在 △ABC 内,连结 BN ' 并延长交 AC 于点 N ,画NM ⊥ BC 于点 M ,NP ⊥ NM 交 AB 于点 P ,PQ ⊥ BC 于点 Q ,得到四边形 PPQMN .小波把线段 BN 称为“波利亚线”.(3)推理:证明图 2 中的四边形 PQMN 是正方形.(4)拓展:在(2)的条件下,在射线 BN 上截取 NE =NM ,连结 EQ ,EM (如图34请帮助小波解决“温故”、“推理”、“拓展”中的问题.(1)求 h 的值.(2)按照经验,该作物提前上市的天数 m (天)与生长率 p 满足函数关系:生长率 p 0.2 0.25 0.3 0.35提前上市的天数 m (天) 0 5 10 15①请运用已学的知识,求 m 关于 p 的函数表达式;②请用含 t 的代数式表示 m .(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒 温 20℃ 时,每天的成本为 200 元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600 元.因此给大棚继续加温,加温后每 天成本 w (元)与大棚温度(℃)之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).数学试卷 第 7 页(共 20 页) 数学试卷 第 8 页(共 20 页)=,4433-2--2--|-2x浙江省舟山市2019年初中毕业生学业考试数学答案解析【解析】由格点和菱形特点可得C(2,1)心对称点C"(2,-1).,关于y轴对称点C'(-2,1),C'关于原点O中1.【答案】A【解析】-2019的相反数表示为-(-2019)=2019.【考点】相反数2.【答案】C【解析】科学记数法a⨯10n,要求1≤|a|<10.【考点】科学计数法3.【答案】B【解析】主视方向分两层,下一层两个正方形,上一层一个正方形,并在左侧.【考点】三视图4.【答案】C【解析】2016年增长了381.3-40.9=340.4亿元,2019年增长了200.7亿元.2016年增长速最快.【考点】统计图,折线统计图,增长率5.【答案】D【解析】a+2=1+2,得a=1【考点】列阵求和,解方程,立方根,零次幂,绝对值.6.【答案】A【解析】由a>b,c>d得a+c>b+c,b+c>b+d,得a+c>b+d.【考点】不等式及其性质.7.【答案】B【解析】连接OA,则∠A O C=2∠A B C60︒∠O A P=90︒,得PO=2OA=2, AP=PO2-AO2=3.【考点】圆周角定理,圆的切线,勾股定理,30︒角的直角三角形性质8.【答案】D【解析】匹马6头牛共计48两:x+6y=48;匹马5头牛共计38两:x+5y=38.【考点】列二元一次方程组解应用题9.【答案】A数学试卷第9页(共20页)【考点】轴对称,中心对称及性质,菱形的性质.10.【答案】C【解析】解:二次函数y=(x-m)-m+1(m为常数)①∵顶点坐标为(m,m+1)且当x=m时,y=-m+1∴这个函数图象的顶点始终在直线y=-x+1上故结论①正确;②假设存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形令y=0,得(x-m)-m+1=0,其中m≤1解得:x=m--m+1,x=m+-m+1∵顶点坐标为(m,m+1),且顶点与x轴的两个交点构成等腰直角三角形∴|-m+1|=|m(m--m+1)解得:m=0或1∴存在m=0或1,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形故结论②正确;③∵x+x>2m12∴x1+x2>m2∵二次函数y=(x-m)-m+1(m为常数)的对称轴为直线x=m∴点A离对称轴的距离小于点B离对称轴的距离∵x<x,且-1<012∴y>y12故结论③错误;④当-1<x<2时,y随x的增大而增大,且-1<0∴m的取值范围为m≥2.【考点】一次函数、二次函数的性质,等腰直角三角形.11.【答案】x(x﹣5)【解析】考虑提取公因式x,得:x2-5x=(x-5).【考点】因式分解数学试卷第10页(共20页)而 OC ⊥ AB 时,OC 最小,此时 OC = x 2 - AB ⎪ ,∴CD 的最大值为 r 2 - 2r - 2 2 22 217.【答案】步骤①、②有误.原式 = (x + 1)(x - 1) (x + 1)(x -1) (x +1)(x -1) x -1 .6 = .24 AB ⎪= AB = ⨯ 1=, △S + △S - △S 有最大值,= 1 ' ⨯ = BC ⨯ AC + ⨯ AC ⨯ D ' N - ⨯ BC ⨯ D ' M =24 3 + 1 ⨯最大值=24 3 + 1 4 ⨯ 2 12.【答案】23【解析】画树状图.P = 4 2 3【考点】画树状图求概率.13.【答案】 b < - a <a < - b【解析】由 a >0, b <0, a + b <0, 得 a < b .借助数轴可以比较大小,得 b < - a <a < - b .【考点】有理数大小的比较,有理数的加法法则,相反数的意义. 14.【答案】12【解析】解:连接 OD ,如图,∵ CD ⊥ OC , ∴ ∠COD =90︒ ,∴ CD = OD 2 - OC 2= x 2 - OC 2 ,当 OC 的值最小时,CD 的值最大,⎛ 1 ⎫2 ⎝ 2 ⎭⎛ 1 ⎫ 1 1 1⎝ ⎭ 22 2【考点】垂径定理,勾股定理,弦心距.15.【答案】±4x【解析】答案不唯一,解:要使方程有两个相等的实数根,则 △=b 2 - 4ac =b 2 - 16=0得 b = ± 4故一次项为 ±4 x【考点】根的判别式16.【答案】(24 - 12),(24 + 36 - 12) 【解析】解:∵ AC =12 cm , ∠A =30︒ , ∠DEF =45︒∴ BC =4 3 cm , AB =8 3 cm , ED =DF =6 2 cm如图,当点 E 沿 AC 方向下滑时,得 △E ' D ' F ,过点 D'作 D ' N ⊥ AC 于点 N ,作数学试卷 第 11 页(共 20 页)D ' M ⊥ BC 于点 M∴ MD ' N =90︒ ,且 ∠E ' D ' F '=90︒∴ ∠E ' D ' N =∠F ' D ' M ,且 ∠D ' NE '=∠D ' M F '=90︒ , E ' D '=D ' F ' ∴ △D ' NE △'≌ D ' M F (AAS )∴ D ' N =D ' M ,且 D ' N ⊥ AC ,D ' M ⊥ CM∴ CD ' 平分 ∠ACM即点 E 沿 AC 方向下滑时,点 D'在射线 CD 上移动,∴当 E ' D ' ⊥ AC 时, DD ' 值最大,最大值= 2ED - CD =(12 - 6 2)cm ∴当点 E 从点 A 滑动到点 C 时,点 D 运动的路径长=2 (12 - 6 2)=(24 - 12 2)cm 如图,连接 BD ' , AD ' ,∵ =△S AD'B △S BD'C ∴ 1 1 1 (12- 4 3) D ' N 当 △S AD'B E ' D ' ⊥ AC 时,∴ (12﹣ 3) 6 2=(24 3 + 36 ﹣12 6)cm 2.△SAD'B【考点】特殊角的直角三角形,运动点的轨迹线路,勾股定理,不规则图形面积的计 算.x - 2 x + 1+ =时,原式 = 1 = 3当 x = 3 + 1 3 3数学试卷第12页(共20页)∴∠AOB=60︒,OC=OB,把点A2,3)代入y=,得k=43x;x ,得x=4,x,得x=4,B01''1【解析】错误第1步:分式的加减是利用分式的基本性质进行通分,分子分母同乘以一个不等于0的数或式,分式的值不变.【考点】分式的加减,求代数式的值.18.【答案】添加的条件是BE=DF(答案不唯一)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∴∠ABD=∠BDC,又∵BE=DF(添加),∴△ABE≌△CDF(SAS),∴AE=CF【解析】答案不唯一,如BE=DF,AE∥CF等.【考点】矩形的性质,全等三角形的判定和性质.19.【答案】解:(1)如图1,过点A作AC⊥OB于点C,∵△OAB是等边三角形,12∵(4,),∴OB=OA=4,∴OC=2,AC=23.k(2x∴反比例函数的解析式为y=43(2)如图2,分两种情况讨论:①点D是A'B'的中点,过点D作DE⊥x轴于点E由题意得A'B'=4,∠A'B'E=60︒,在Rt△DEB'中,B'D=2,DE=3,B'E=.∴O'E=3,把y=3代入y=43∴OE=4,∴a=OO'=1;数学试卷第13页(共20页)②如图3,点F是A'O'的中点,过点F作FH⊥x轴于点H由题意得AO'=4,∠AO'B'=60︒,在Rt△FO'H中,FH=3,O'H=.把y=3代入y=43∴OH=4,∴a=OO'=3,综上所述,a的值为1或3【解析】(1)求点的坐标:一般过点坐标轴的垂线,求出点到两坐标轴的距离即可.(2)分两种情况,即双曲线过A'O'的中点或A'B'的中点两种可能.【考点】反比例函数的图像和性质,正三角形的性质,平移.20.【答案】解:(1)由勾股定理得:CD=AB=CD'=10,BD=AC=BD''=13,AD'=BC=AD''=10;画出图形如图1所示;(2)如图2所示【解析】(1)分别过三角形的顶点作对边的平行线,就可以找到.(2)利用平行线等分线段的方法.【考点】格点图形,平行四边形的判定三等分线段.数学试卷第14页(共20页)50=240(人),50=48%,则超过平均数人数约为(.∴PNAD,即21.【答案】(1)75(分)(2)500×24(3)①从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;②从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;③从中位数看,B小区至少有一半的居民成绩高于平均数分三个不同层次的评价:A层次:能从1个统计量进行分析。