satwe软件计算结果分析
关于SATWE参数输入中两个角度的计算

在PKPM软件的SA TWE模块中“水平力与整体坐标夹角”与“斜交抗侧力构件方向附加地震数相应角度”两个参数。
1、“水平力与整体坐标夹角”参数《抗》3.4.2规定对于不规则的建筑结构,要求进行水平地震作用计算和内力调整。
该参数为地震力、风力作用方向与结构整体坐标的夹角,逆时针方向为正,单位为度。
地震力、风力总是沿着坐标轴方向作用的,所有当设计者认为在所设坐标希下的地震力、风力不能控制结构的最大受力状态时,则可以改变坐标系,使得地震力、风力沿新的坐标系作用。
地震沿着不同的方向作用,结构地震反应的大小一般也不同,结构地震反应是地震作用方向角的函数,那么必然存在某个角度使得结构地震反应值最大值,这个方向我们就称为最不利地震作用方向。
输出结构中的地震作用最大方向大于15度时,应将此方向输入重新计算。
需要注意的是,对于输入的两个不同的角度所得到的结果,程序不能自动取不利情况。
设计者需在两个不同的工作目录下分别计算,然后对计算结果对比。
2、“斜交抗侧力构件方向附加地震数相应角度”参数《抗》5.1.1规定,有斜交抗侧力构件的结构,当相交角度大于15度时,应分别计算各抗侧力构件方向的水平地震作用。
最多可允许附加5组地震。
附加地震数可在0~5之间取值。
在“相应角度”输入框填入各角度值。
该角度是与X轴正方向的夹角,逆时针方向为正,各角度之间以逗号或空格格开。
需要注意的是:多方向地震作用造成配筋增加,但对于规则结构考虑多方向地震输入时,构件配筋不会增加或增加不多。
多方向地震输入角度的选择尽可能沿着平面布置中局部柱网的主轴方向。
建议多方向地震作用的角度按对称输入。
3、区别“水平力与整体坐标夹角”不仅改变地震力而且同时改变风荷载的作用方向,而“斜交抗侧力构件附加地震角度”仅仅改变地震力方向。
对于计算结果,“水平力与整体坐标夹角”需要设计者根据输入的角度不同分两个计算工程目录,人为去比较两个不同的结果,取不利情况进行配筋设计等,而“斜交抗侧力构件附加地震角度”程序可自动考虑每一方向地震作用下构件内力的组合,可直接用于配筋计算,不需要人为判断。
剪力墙如何根据SATWE计算结果正确配筋

剪力墙如何根据SATWE计算结果配筋假设此楼层为构造边缘构件,剪力墙厚度为200,剪力墙显示“0”是指边缘构件不需要配筋且不考虑构造配筋(此时按照高规表7.2.16来配),当墙柱长小于3倍的墙厚或一字型墙截面高度不大于800mm时,按柱配筋,此时表示柱对称配筋计算的单边的钢筋面积。
水平钢筋:H0.8是指Swh范围内的水平分布筋面积(cm2),Swh范围指的就是Satwe参数中的墙水平分布筋间距,是指的双侧的,先换算成1米内的配筋值,再来配,比如你输入的间距是200 mm ,计算结果是H0.8,那就用0.8*100(乘以100是为了把cm2转换为mm2)*1000/200=400mm2 再除以2 就是200mm2 再查板配筋表就可以了所以配8@200面积250>200 满足要求了!(剪力墙厚度为200,直径8间距200 配筋率=2*50.24/(200*200)=0.25%,最小配筋率为排数*钢筋面积/墙厚度*钢筋间距)。
竖向钢筋:计算过程1000X200X0.25%=500mm2,同样是指双侧,除以2就是250mm2,Φ8@200(面积251mm2)足够。
Satwe参数中的竖向配筋率是可根据工程需要调整的,当边缘构件配筋过大时,可提高竖向配筋率。
剪力墙边缘构件中的纵向钢筋间距应该和箍筋(拉筋)的选用综合考虑一般情况下,墙的钢筋为构造钢筋,不过在屋面层短墙在大偏心受压下有时配筋很大墙竖向分布筋配筋率0.3%进行计算是不对的。
应该填0.25%(或者0.20%)。
如果填了0.3%,实际配了0.25%,则造成边缘构件主筋配筋偏小。
墙竖向分布筋按你输入配筋率,水平配筋按你输入的钢筋间距根据计算结果选筋。
规范规定的:剪力墙竖向和水平分布钢筋的配筋率,一、二、三级时均不应小于0.25%,四级和非抗震设计时均不应小于0.20%,此处的“配筋率”为水平截面全截面的配筋率,以200mm厚剪力墙为例,每米的配筋面积为:0.25% x 200 x 1000 = 500mm2,双排筋,再除以2,每侧配筋面积为250mm2,查配筋表,φ8@200配筋面积为251mm2,刚好满足配筋率要求。
PKPM结构设计软件SATWE常见问题——模型处理篇

PKPM结构设计软件SATWE常见问题——模型处理篇1 钢构件强度设计值同板件厚度有关,板件越厚,强度设计值越低,软件是如何考虑强度设计值?关键词:钢材强度设计值板厚PMSAPSatwe程序确定钢构件强度设计值时,构件正应力,包括稳定应力验算时按照截面中最厚部分来确定强度设计值;剪应力验算时则按照腹板厚度确定其抗剪强度设计值。
Pmsap程序不区分正应力和剪应力,统一按照截面中最厚的部分确定其强度设计值。
2 建模时输入的墙长和计算结果中显示的墙长不一致,为什么?关键词:SATWE,模型处理,归并,墙长变化程序为了避免由于短网格的存在导致出现狭窄单元,所以对墙边网格小于等于180的情况进行了归并。
在墙上短网格归并过程中,以尽量保证该墙的角节点位置不变为原则,即若短网格的一端为墙角点,则由另一端向该端归并。
程序处理后的计算模型如图,因为存在175的短网格,程序会按上述的规则进行归并,所以在计算结果中看到三层的墙长和二层的墙长是一致的(左图)。
若网格长度为200,超过了180,程序不会按上述原则做归并,所以三层的墙长不变(右图)。
图 2-53 覆土厚度对消防车荷载的折减关键词:覆土厚度、消防车程序未自动考虑《荷载规范》附录D,用户需手动对覆土影响消防车荷载进行折减,以折减后的等效均布荷载作为消防车活荷载标准值。
4 satwe板6情况下和slabcad对比计算结果相差很大,主要原因:关键词:satwe,弹性板,slabcad,对比①刚度不同,satwe可以考虑整体刚度,slab只是单层;②导荷方式,slabcad为有限元导荷,satwe可能是屈服曲线导荷③柱帽影响④工况的不同,slab只有恒活,读入satwe有地震和风,slab只有在板带计算时才能考虑读取的地震和风,楼板有限元无法考虑;冲切可以读取satwe的所有工况进行计算5 楼板厚度设置为0和房间开洞的区别和联系关键词:楼板、0、房间开洞、刚性楼板在勾选了刚性楼板假定的前提下,0厚板以及开洞楼板均默认为刚性板区域。
有斜杆时的楼层抗剪承载力计算对比

有斜杆时的楼层抗剪承载力计算对比很多用户反映对于布置了斜杆的楼层的抗剪承载力计算,SA TWE和YJK差别较大。
这里通过两个案例的计算对比分析,说明虽然SA TWE和YJK差别较大,但SATWE和PMSAP的差别同样较大,而PMSAP 的计算结果和YJK相同。
案例一、合肥工业大学建筑设计院项目1、整体模型地下室1层,总高36米。
YJK采用1.3版计算。
2、计算参数3、计算结果及对比分析1)对比结果问题:楼层抗剪承载力6层X方向差别大,20%。
2)YJK与SATWE及PMSAP对比楼层抗剪产生差异的原因,主要是第六层有大量斜撑,下面对斜撑抗剪承载力进行对比。
1)YJK斜撑抗剪承载力计算YJK 斜撑抗剪承载力:1569kN2)SATWE 斜撑抗剪承载力计算SATWE斜撑抗剪承载力:754.8kN 3)PMSAP斜撑抗剪承载力计算PMSAP斜撑抗剪承载力:1552kN4、结论其它层抗剪承载力相差不多,只有第六层X方向相差20%,第六层与其他层的区别是存在大量斜撑。
对比三个软件相同位置斜撑的抗剪承载力结果:YJK斜撑抗剪承载力1569kN;SATWE斜撑抗剪承载力754.8kN;PMSAP斜撑抗剪承载力1552kN,我们可以得出YJK与PMSAP结果相近,与SATWE结果差一倍,斜撑抗剪承载力的差别是造成YJK与SATWE楼层抗剪承载力差别大的原因。
根据《PKPM多高层计算软件应用指南》(中国建筑工业出版社2010)396页:“。
钢斜撑,当其与Z轴的夹角大于20°时,按钢斜撑计算受剪承载力,并与欧拉临界压力比较取小值,再向平面投影,且考虑拉压的成对作用,承载力减半。
”YJK是按照如上所述进行的计算,PMSAP也是按照同样原理计算,用2008版本的SATWE计算也会得到同样结果,但是目前的SA TWE的结果改变了,并且没有做任何说明。
案例二、中建上海建筑设计院项目1、YJK楼层抗剪承载力验算**********************************************************Ratio_Bu: 表示本层与上一层的承载力之比层号塔号 X向承载力 Y向承载力 Ratio_X Ratio_Y17 1 1.9255E+004 1.8648E+004 1.00 1.0016 1 6.5724E+004 4.9460E+004 3.41 2.6515 1 5.2031E+004 4.5626E+004 0.79 0.92 薄弱层14 1 5.6956E+004 5.1021E+004 1.09 1.1213 1 6.7453E+004 6.0844E+004 1.18 1.1912 1 7.3155E+004 6.6100E+004 1.08 1.0911 1 1.2745E+005 8.6139E+004 1.74 1.3010 1 1.4265E+005 9.3535E+004 1.12 1.099 1 1.5693E+005 1.0608E+005 1.10 1.138 1 1.9308E+005 1.0810E+005 1.23 1.027 1 2.2172E+005 1.1505E+005 1.15 1.066 1 1.6515E+005 1.0479E+005 0.74 0.91 薄弱层5 1 1.5186E+005 1.0983E+005 0.92 1.054 1 1.5442E+005 1.1009E+005 1.02 1.003 1 2.6736E+005 2.0534E+005 1.73 1.872 1 3.3934E+005 2.5558E+005 1.27 1.241 1 3.4681E+005 2.6264E+005 1.02 1.032、PMSAP 各楼层抗剪承载力及与上层承载力的比值__________________________________________________ 层号塔号 VX(kn) VY(kn) VX/VXP VY/VYP1 1 0.323E+06 0.259E+06 1.03 1.052 1 0.312E+06 0.247E+06 1.33 1.423 1 0.235E+06 0.174E+06 1.63 1.604 1 0.144E+06 0.109E+06 1.01 1.015 1 0.142E+06 0.107E+06 0.88 1.076 1 0.161E+06 0.100E+06 0.75 0.877 1 0.216E+06 0.115E+06 1.12 1.048 1 0.193E+06 0.111E+06 1.32 1.009 1 0.146E+06 0.111E+06 1.11 1.1310 1 0.132E+06 0.981E+05 1.13 1.0811 1 0.117E+06 0.907E+05 1.76 1.4212 1 0.662E+05 0.639E+05 1.09 1.0913 1 0.608E+05 0.586E+05 1.18 1.1914 1 0.513E+05 0.493E+05 1.04 0.9415 1 0.491E+05 0.524E+05 0.80 0.9016 1 0.612E+05 0.584E+05 3.98 3.8117 1 0.154E+05 0.153E+05 1.00 1.00********************************************************************** 3、SATWE抗剪承载力及承载力比值 *********************************************************************** Ratio_Bu: 表示本层与上一层的承载力之比----------------------------------------------------------------------层号塔号 X向承载力 Y向承载力 Ratio_Bu:X,Y----------------------------------------------------------------------17 1 0.1929E+05 0.1858E+05 1.00 1.0016 1 0.7224E+05 0.6151E+05 3.75 3.3115 1 0.5903E+05 0.6408E+05 0.82 1.0414 1 0.5554E+05 0.5256E+05 0.94 0.8213 1 0.6568E+05 0.6234E+05 1.18 1.1912 1 0.7118E+05 0.6780E+05 1.08 1.0911 1 0.1267E+06 0.9094E+05 1.78 1.3410 1 0.1384E+06 0.9887E+05 1.09 1.099 1 0.1535E+06 0.1111E+06 1.11 1.128 1 0.1789E+06 0.1111E+06 1.17 1.007 1 0.1993E+06 0.1170E+06 1.11 1.056 1 0.1708E+06 0.1016E+06 0.86 0.875 1 0.1538E+06 0.1118E+06 0.90 1.104 1 0.1551E+06 0.1127E+06 1.01 1.013 1 0.2557E+06 0.1967E+06 1.65 1.742 1 0.3379E+06 0.2647E+06 1.32 1.351 1 0.3472E+06 0.2759E+06 1.03 1.04X方向最小楼层抗剪承载力之比: 0.82 层号: 15 塔号: 1Y方向最小楼层抗剪承载力之比: 0.82 层号: 14 塔号: 14、结论(1)楼层抗剪承载力计算结果YJK(1.4版本)与PMSAP结果基本一致。
剪力墙如何根据SATWE计算结果配筋

剪力墙如何根据SATWE计算结果配筋|假设此楼层为构造边缘构件,剪力墙厚度为200,剪力墙显示“0”是指边缘构件不需要配筋且不考虑构造配筋(此时按照高规表7.2.16来配),当墙柱长小于3倍的墙厚或一字型墙截面高度不大于800mm时,按柱配筋,此时表示柱对称配筋计算的单边的钢筋面积。
水平钢筋:H0.8是指Swh范围内的水平分布筋面积(cm2),Swh范围指的就是Satwe 参数中的墙水平分布筋间距,是指的双侧的,先换算成1米内的配筋值,再来配,比如你输入的间距是200 mm ,计算结果是H0.8,那就用0.8*100(乘以100是为了把cm2转换为mm2)*1000/200=400mm2 再除以2 就是200mm2 再查板配筋表就可以了所以配8@200面积250>200 满足要求了!(剪力墙厚度为200,直径8间距200 配筋率=2*50.24/(200*200)=0.25%,最小配筋率为排数*钢筋面积/墙厚度*钢筋间距)。
竖向钢筋:计算过程1000X200X0.25%=500mm2,同样是指双侧,除以2就是250mm2,Φ8@200(面积251mm2)足够。
Satwe参数中的竖向配筋率是可根据工程需要调整的,当边缘构件配筋过大时,可提高竖向配筋率。
剪力墙边缘构件中的纵向钢筋间距应该和箍筋(拉筋)的选用综合考虑一般情况下,墙的钢筋为构造钢筋,不过在屋面层短墙在大偏心受压下有时配筋很大墙竖向分布筋配筋率0.3%进行计算是不对的。
应该填0.25%(或者0.20%)。
如果填了0.3%,实际配了0.25%,则造成边缘构件主筋配筋偏小。
墙竖向分布筋按你输入配筋率,水平配筋按你输入的钢筋间距根据计算结果选筋。
规范规定的:剪力墙竖向和水平分布钢筋的配筋率,一、二、三级时均不应小于0.25%,四级和非抗震设计时均不应小于0.20%,此处的“配筋率”为水平截面全截面的配筋率,以200mm厚剪力墙为例,每米的配筋面积为:0.25% x 200 x 1000 = 500mm2,双排筋,再除以2,每侧配筋面积为250mm2,查配筋表,φ8@200配筋面积为251mm2,刚好满足配筋率要求。
结构设计软件PKPM中SATWE 模块的参数输入详解

关于结构设计软件PKPM中SATWE 模块的参数输入1 遵循的依据和规范⑴《建筑结构荷载规范》GB 50009-2001⑵《混凝土结构设计规范》GB 50010-2010⑶《建筑抗震设计规范》GB 50011-2010⑷《高层建筑混凝土结构技术规程》JGJ 3-2002以上规范、规程文中分别简称为《荷规》、《砼规》、《抗规》、《高规》。
2 SATWE 参数设置2.1 总信息⑴水平力与整体坐标角:一般情况下取0度,平面复杂(如L型、三角型)或抗侧力结构非正交时,应分别按各抗侧力构件方向角算一次;当给出最大地震力作用方向时,可按该方向角输入计算,配筋取三者的大值.根据抗震规范5.1.1-2规定,当结构存在相交角大于15度的抗侧力构件时,应分别计算各抗侧力构件方向的水平地震作用.⑵砼容重:钢筋砼计算重度,考虑饰面的影响应取大于25。
⑶钢材容重:一般取78,如果考虑饰面设计者可以适量增加。
⑷裙房层数:层数是计算层数.高规规定:与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级,主楼结构在裙房顶部上下各一层应适当加强抗震措施;因此该数必须给定.⑸转换层所在的层号:层号为计算层号,同时还应当注意,当转换层号大于等于三层时,程序自动对落地剪力墙、框支柱抗震等级增加一级,对转换层梁、柱及该层的弹性板定义仍要人工指定.⑹地下室层数:程序据此信息决定底部加强区范围和内力调整,当地下室局部层数不同时,以主楼地下室层数输入.⑺墙元细分最大控制长度:可取1~5之间的数值,一般取2就可满足计算要求.⑻墙元侧向节点信息:内部节点:一般选择内部节点,当有转换层时,需提高计算精度是时,可以选取外部节点.⑼恒活荷载计算信息:一次性加载计算:主要用于多层结构,而且多层结构最好采用这种加载计算法.用于高层结构计算时,在进行上部结构计算采用“模拟施工方法1”在基础计算时,用“模拟施工方法2”的计算结果,这样得出的基础结果比较合理.⑽结构体系:宜在给出的多种体系中选最接近实际的一种.2.2 风荷载信息⑴地面粗糙度类别:分为A-D 4类,详见《荷规》.⑵修正后的基本风压:详见《荷规》.⑶结构的基本周期:宜取程序默认值(按《高规》附录B公式B.0.2),同时建议按结构近似周期计算公式再计算一次,然后将所得值与程序默认相比较.⑷体型系数:体型无变化时取1.体型系数取值详见《荷规》7.3.1和《高规》3.2.5.2.3 地震信息⑴结构规则性信息:根据结构的规则性选取.⑵扭转耦联信息:建议总是采用,非耦联可作为补充验算.⑶偶然偏心:单向地震力计算时选“是”,多层规则结构可不考虑,详见《高规》3.3.3条,计算单向地震力,应考虑偶然偏心的影响.5%的偶然偏心,“是”从施工角度考虑的.⑷计算振型个数:详见《抗规》5.2.2条、5.2.3条;《高规》5.1.13条.2.4 活荷信息⑴柱、墙设计时活荷载:PM和基础计算模块中只能折减一次,此处建议不折减.相关规定详见《荷规》4.1.2条.⑵考虑活荷不利布置的层数:多层应取全部楼层,高层宜取全部楼层.详见《高规》5.1.8条.2.5 调整信息⑴梁刚度增大系数:装配式楼板取1.0;现浇楼板取值1.3~2.0,一般取2.0.详见《高规》5.2.2条.⑵梁端弯矩调幅系数:现浇框架梁0.8~0.9,装配整体式框架梁0.7~0.8.详见《高规》5.2.3条.⑶梁设计弯矩增大系数:放大梁跨中弯矩,取值 1.0~1.3;已考虑活荷不利布置时,宜取1.0.⑷连梁刚度折减系数:一般工程取0.7,位移由风载控制时取≥0.8.详见《抗规》5.2.1条.⑸梁扭矩折减系数:现浇楼板(刚性假定)取值0.4~1.0,一般取0.4;现浇楼板(弹性楼板)取1.0;详见《高规》5.2.4条.⑹全楼地震力放大系数:用于调整抗震安全度,取值0.85~1.50,一般取1.0.⑺ 0.2Q O调整起始层号:用于框剪(抗震设计时),纯框填0.详见《抗规》6.2.13条1款;《高规》8.1.4条.⑻ 0.2Q O调整终止层号:用于框剪(抗震设计时),纯框填0;详见《抗规》6.2.13条1款;《高规》8.1.4条.⑼顶塔楼内力放大起算层号:按突出屋面部分最低层号填写,无顶塔楼填0.⑽顶塔楼内力放大:计算振型数为9~15及以上时,宜取1.0(不调整);计算振型数为3时,取1.5.⑾九度结构及一级框架梁柱超配筋系数:取1.15,详见《抗规》6.2.4条.⑿是否按抗震规范5.2.5调整楼层地震力:用于调整剪重比,详见《抗规》5.2.5条.⒀是否调整与框支柱相连的梁内力:一般不调整,详见《高规》10.2.7条.⒁剪力墙加强区超算层号:详见《抗规》6.1.10条; 《高规》7.1.9条.⒂强制指定的薄弱层个数:强制指定时选用,否则填0,详见《抗规》5.5.2条,《高规》4.6.4条.2.6 设计信息⑴结构重要性系数:详见《砼规》3.2.1条,3.2.2条.及《余热发电规范》⑵柱计算长度计算原则:一般按有侧移来计算.⑶梁柱重叠部分简化:详见《高规》5.3.4条.⑷是否考虑P-Delt效应:据有关分析结果,7度以上抗震设防的建筑,风荷载起位移控制作用,可不考虑P-Delt效应.⑸是否按砼规范(7.3.11-3)计算砼柱计算长度系数:一般工程选【是】,详见《砼规》7.3.11条3款.2.7 配筋信息此项的选项所参考的规范比较集中,详见《砼规》4.2.1条,4.2.3条及表4.2.3-1.2.8 荷载组合此项标签内的选项所参考的规范相对比较集中,详见下表:分项系数荷载类型适用条文恒荷载《荷规》3.2.5活荷载《荷规》3.2.5风荷载《荷规》3.2.5水平地震力《抗规》5.1.1、5.4.1竖向地震力《抗规》5.1.1、5.4.1特殊荷载《荷规》3.2.5组合系数荷载类型适用条文活荷载《荷规》4.1.1风荷载《荷规》7.1.4参考文献:PKPM使用手册。
剪力墙边缘构件计算简图与边缘构件配筋结果相差很大的原因
剪力墙边缘构件计算简图与边缘构件配筋结果相差很大的原因•根据《SATWE软件说明书》第92页的解释,剪软件说书第的解释剪力墙阴影区的计算主筋的原则如下:•以上原则可以看出,SATWE软件计算边缘构件阴影区面积时是按照单肢墙计算暗柱面积并进行影区面积时是按照单肢墙计算暗柱面积,并进行叠加得到的。
•但经常有设计院的朋友提出,SATWE软件配筋简图中显示的配筋面积相加后与边缘构件配筋简图中显示的配筋面积相差甚远,边缘构件简图中显示的配筋面积往往比配筋简图中经相加后得到的大很多,不知为何?在此,本人拟结合具体工程实例,与广大设计人员探讨一下剪力墙边缘构件配筋的计算过程。
•工程实例一工程实例•某剪力墙结构,第二层局部墙肢平面简图如下:此段墙体抗震等级为三级。
由于其位处底部加强区,根据《抗震规范》表6.4.5-3,得到抗震等级为三级的剪力墙结构约束边缘构件最小配筋率为001A 和6Φ14者之间的较大值配筋率为0.01Ac和6Φ14二者之间的较大值。
根据《高规》7.1.8 注1可知,此段L形墙体各肢截面高度与厚度之比均小于8,程序判断为短肢剪力墙并以白色外边线显示由此根据墙体2为短肢剪力墙,并以白色外边线显示。
由此根据《高规》7.2.2-5的规定,短肢剪力墙的全部竖向钢筋的配筋率,三级不宜小于1.0%。
右图所示为SATWE软件计算的此段剪力墙在配筋简图中的计算结果。
计算结果显示,墙体1一端暗柱配筋面积为14,墙体2为0。
根据墙体1《SATWE说明书》中的解释,0表示此段墙体构造配筋。
墙体1和2计算结果文本文件显示如下:墙体1配筋计算结果墙体2配筋计算结果SATWE•软件在边缘构件简图中显示,边缘构件1的配筋面积为5471mm2,边缘构件2的配筋面积为边缘构件2 2381mm2。
•查边缘构件1和2的文本文件计算结果如下文件,计算结果如下:边缘构件1边缘构件1计算结果边缘构件2计算结果•按照《SATWE说明书》的解释,边缘构件1的配筋面积为:1350×2+1200(边缘构件2构造配筋面积)=3900mm2,而程序计算结果为5470.5mm2;边缘构件2为构造配筋,阴影区面积为120000mm2,根据《抗规》表6.4.5-3的要求,0.01Ac=1200mm2,6Φ14=923.16mm2,二者取大值,其构造纵筋配筋面积为1200mm2,程序输出的阴影区配筋面积为2381.2mm2,由此可见二者相差很多。
(整理)@怎样根据satwe计算结果配置剪力墙箍筋和纵筋.
怎样根据satwe计算结果配置剪力墙箍筋和纵筋1、砼规中墙的保护层最小厚度是15,实际工程中可取30。
具体由设分在设计中说明中定。
2、由satwe算出边缘构件配筋后,可以看到其纵筋截面积和箍筋体积配箍率。
砼等级为C30,箍筋为HPB235,保护层厚度为30,剪力墙为三级抗震。
以25号边缘构件为例。
首先根据下表知道图中两个边缘构件均为构造配箍。
又根据下表及高规7.2.17.4.1),0.005X200X400=400mm24φ12=452mm2, 纵筋为构造配筋以上两个表为选配纵筋和箍筋的标准。
3、对于纵筋来说,是否可以选用4φ12,如下图呢?根据高规7.2.17.3规定上图箍筋无支长度为400,大于了300,不满足要求,故改成下图即6φ12。
在TZS软件的剪力墙2006工具中所指的“分布筋”实际上是指边缘构件的受力筋。
下图选定了纵筋(分布筋)的直径和间距后,程序自动计算出纵筋配筋率为0.85%。
对照中南标03ZG003第56页6φ12,可看到纵筋最少配筋和配筋率与TSZ所选是一致的。
4、对于箍筋来说,高规表7.2.17表明箍筋最小直径为6,最小间距为150。
把梁数据填入下图TSZ,可见体积配箍率为0.28%<0.681%,再次选择“快捷生成”,框选原来的边缘构件。
故改为φ8@100后即满足要求,见下图5、6、因此直接查中南标03ZG003,或用TSZ成图均可。
但标准是唯一的。
7、可见有些构造要求配筋是“双控”的。
即要满足最小配筋率,同时又要满足最小直径,间距的要求。
满足其中一个要求,另一个不一定满足。
8、9、另外,用TSZ成图后,把光标放在剪力墙边缘构件的钢筋上,可实时显示纵筋配筋率和箍筋配筋率。
方便检查。
多层框架房屋STAWE结构整体计算时设计参数合理选取的几点思考
多层框架房屋STAWE结构整体计算时设计参数合理选取的几点思考摘要:多层框架房屋结构设计中如何确保工程项目的安全性和经济性,在结构整体计算中的参数选取对其有着极为重要的作用。
本文主要从以下几点,针对多层框架房屋结构整体计算进行了简单思考。
关键词:多层框架房屋结构设计;安全性;合理性;经济性随着我国经济的发展和城市化进程的加快,结构设计计算软件的成熟,结构工程师们越来越依赖结构软件的计算,虽然我国设计行业已经实行注册制度,但现阶段设计人员业务素质良莠不济,有的设计人员只知道按软件默认的参数设置进行计算,各类参数与实际情况不符合,对计算结果不能做出合理的判断,这在很大程度上为建筑工程埋下了安全隐患,而且还造成了经济浪费。
在设计中,要以规范为标准,按工程实际情况,合理取舍计算参数,对所有计算结果的分析和判断,保证其数据的正确性、合理性以及科学性,待所有的数据都合理取舍后,再进行结构设计。
在目前结构计算普遍采用pkpm结构计算软件的情况下,为了保证结构计算的合理性和有效性,准确地分析和选择计算信息中各项参数显得尤为重要。
多层框架房屋结构设计中如何确保工程项目的安全性和经济性,在结构整体计算中的参数选取对其有着极为重要的作用。
本文主要从以下几点,针对多层框架房屋结构整体计算设计参数进行梳理分析。
1、水平力的夹角参数实际上是指水平力与整体坐标之间的夹角参数,建筑物的整体坐标建立以后,认为风荷载和地震力总是沿着坐标轴方向作用,将建筑物沿顺时针方向旋转一个角度,使结构在设定的坐标系下,风荷载和地震力作用下,处于最不利的受力状态下。
计算结果表明,在水平力夹角不是零的情况下,结果在结构整体计算中应该选择总刚度分析方法,则结构本身的周期、振型等固有特性不会改变,也就是结构的周期值、各周期振型的平动系数、扭转系数不变,但是平动系数的两个方向的分量有所改变;如果在结构整体计算中选择侧刚分析方法,结构模型的侧向刚度将随之改变,结构的周期和振型也会发生变化,因此建议在结构整体结构计算时,在各种情况下均采用总刚分析方法,不应采用侧刚分析方法。
史上最全PKPM-SATWE参数设置介绍
总信息 (4)水平力与整体坐标夹角 (4)混凝土容重 (5)钢材容重 (5)裙房层数 (5)转换层所在层号 (5)嵌固端所在层号 (6)地下室层数 (8)墙元细分最大控制长度 (8)弹性板细分最大控制长度 (8)转换层指定为薄弱层 (8)对所有楼层强制采用刚性楼板假定 (9)地下室强制采用刚性楼板假定 (9)墙梁跨中节点作为刚性楼板从节点 (10)计算墙倾覆力矩时只考虑腹板和有效翼缘 (11)弹性板与梁变形协调 (12)采用自定义构件施工次序 (12)结构材料信息 (13)结构体系 (13)恒活荷载计算信息 (13)施工次序 (15)风荷载计算信息 (16)地震作用计算信息 (16)结构所在地区 (17)特征值求解方式 (17)“规定水平力”的确定方式 (17)墙元侧向节点信息 (18)风荷载信息 (19)地面粗糙度类别 (19)修正后的基本风压 (19)X、Y向结构基本周期 (21)风荷载作用下结构的阻尼比 (22)承载力设计时风荷载效应放大系数 (22)用于舒适度验算的风压 (23)用于舒适度验算的结构阻尼比 (23)顺风向风振 (23)横风向风振 (24)扭转风振 (25)水平风体型系数 (25)设缝多塔背风面体形系数 (26)特殊风体型系数 (27)地震信息 (27)结构规则性信息 (27)设防地震分组 (28)设防烈度 (28)砼框架、剪力墙、钢框架抗震等级 (29)抗震构造措施的抗震等级 (30)中震(或大震)设计 (31)按主振型确定地震内力符号 (31)按抗规(6.1.3-3)降低嵌固端以下抗震构造措施的抗震等级 (32)程序自动考虑最不利水平地震作用 (32)斜交抗侧力构件方向附加地震数,相应角度 (32)考虑偶然偏心 (32)考虑双向地震作用 (33)计算振型个数 (34)重力荷载代表值的活载组合值系数 (34)周期折减系数 (35)结构的阻尼比 (35)特征周期、地震影响系数最大值、用于12层以下规则砼框架结构薄弱层验算的地震影响系数最大值(罕遇地震) (36)竖向地震参与振型数 (36)竖向地震作用系数底线值 (36)自定义地震影响系数曲线 (36)活荷信息 (37)柱墙、基础设计时活荷载 (37)梁活荷不利布置最高层号 (38)柱墙基础活荷载折减系数 (38)考虑结构使用年限的活荷载调整系数 (38)梁楼面活荷载折减设置 (38)调整信息 (39)梁端负弯矩调幅系数 (39)梁活荷载内力放大系数 (39)梁扭矩折减系数 (40)托墙梁刚度放大系数 (40)连梁刚度折减系数 (41)支撑临界角 (41)柱/墙实配钢筋超配系数 (41)中梁刚度放大系数 (42)梁刚度放大系数按2010规范取值 (42)砼矩形梁转T形(自动附加楼板翼缘) (43)部分框支剪力墙结构底部加强区剪力墙抗震等级自动提高一级 (43)调整与框支柱相连的梁内力 (43)框支柱调整系数上限 (44)抗规(5.2.5)调整 (44)弱/强轴方向动位移比例 (45)按刚度比判断薄弱层的方式 (45)指定薄弱层个数及相应的各薄弱层层号 (46)薄弱层地震内力放大系数、自定义调整系数 (46)全楼地震作用放大系数 (47)顶塔楼地震作用放大起算层号及放大系数 (47)设计信息 (49)结构重要性系数 (49)钢构件截面净毛面积比 (49)梁按压弯计算的最小轴压比 (49)考虑P-delta效应 (49)按高规或高钢规进行构件设计 (49)框架梁端配筋考虑受压钢筋 (49)结构中的框架部分轴压比限值按照纯框架结构的规定采用 (50)剪力墙构造边缘构件的设计执行高规7.2.16-4条的较高配筋要求 (50)当边缘构件轴压比小于抗规6.4.5条规定的限值时一律设置构造边缘构件 (51)按混凝土规范B.0.4条考虑柱二阶效应 (51)保护层厚度 (51)过渡层信息 (52)柱配筋计算原则 (52)梁柱重叠部分简化为刚域 (52)钢柱计算长度系数 (53)配筋信息 (54)墙竖向分布筋配筋率 (54)NSW层数和NSW配筋率 (55)箍筋间距 (55)结构底部需要单独指定墙竖向分布筋配筋率的层数NSW/配筋率 (55)梁抗剪配筋采用交叉斜筋方式时,箍筋与对角斜筋的配筋强度比 (55)采用冷轧带肋钢筋(需自定义) (55)荷载组合 (57)地下室信息 (57)土层水平抗力系数的比例系数(M值)/扣除地面以下几层的回填土约束 (57)外墙分布筋保护层厚度 (58)回填土容重、回填土侧压力系数 (59)室外地坪标高、地下水位标高 (59)室外地面附加荷载 (59)生成SATWE数据文件及数据检查 (60)保留用户自定义的柱、梁、支撑长度系数 (60)保留用户自定义的水平风荷载 (60)保留用户自定义的边缘构件信息 (60)剪力墙边缘构件的类型 (60)构造边缘构件尺寸 (60)生成用于定制计算书的荷载简图 (60)SATWE计算控制参数 (62)忽略数检警告信息 (62)刚心坐标、层刚度比计算 (62)形成总刚并分解 (62)结构地震作用计算 (62)结构位移计算 (62)全楼构件内力计算 (62)构件配筋及验算 (62)配筋起始/终止层 (62)层刚度比计算 (62)地震作用分析方法 (62)线性方程组解法 (62)位移输出方式 (62)总信息水平力与整体坐标夹角说明书:地震作用和风荷载的方向缺省是沿着结构建模的整体坐标系X轴和Y轴方向成对作用的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SATWE软件计算结果分析 一、位移比、层间位移比控制 规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。
高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:
结构休系 Δu/h限值 框架 1/550 框架-剪力墙,框架-核心筒 1/800 筒中筒,剪力墙 1/1000 框支层 1/1000 名词释义: (1) 位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。 (2) 层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。 其中: 最大水平位移:墙顶、柱顶节点的最大水平位移。 平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。 层间位移角:墙、柱层间位移与层高的比值。 最大层间位移角:墙、柱层间位移角的最大值。 平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。
控制目的: 高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:
1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。 2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。 3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。
结构位移输出文件(WDISP.OUT) Max-(X)、Max-(Y)----最大X、Y向位移。(mm) Ave-(X)、Ave-(Y)----X、Y平均位移。(mm) Max-Dx ,Max-Dy : X,Y方向的最大层间位移 Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移 Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。 Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值
即要求: Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5 Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5 Y方向相同
电算结果的判别与调整要点: 1.若位移比(层间位移比)超过1.2,则需要在总信息参数设置中考虑双向地震作用; 2.验算位移比需要考虑偶然偏心作用,验算层间位移角则不需要考虑偶然偏心; 3.验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响 4.最大层间位移、位移比是在刚性楼板假设下的控制参数。构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移,而后采用弹性楼板进行构件分析。
5.因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位。 位移比(层间位移比):主要为限制结构平面布置的不规则性,以避免产生过大的偏心而导致结构产生较大的扭转效应。见抗规3.4.2(P8),高规 4.3.5(P25)及相应的条文说明。位移比(包括层间位移比,下同)不满足规范要求,说明结构的刚心偏离质心的距离较大,扭转效应过大,结构抗侧力构件布置不合理。 见PKPM的WDISP.Out“各个工况中最大位移与层平均位移的比值”,最大层间位移与平均层间位移的比值不大于1.2。
位移比不满足规范要求时的调整方法: 1、程序调整:SATWE程序不能实现。 2、结构调整:只能通过调整改变结构平面布置,减小结构刚心与质心的偏心距;调整方法如下:
1)由于位移比是在刚性楼板假定下计算的,结构最大水平位移与层间位移往往出现在结构的边角部位;因此应注意调整结构外围对应位置抗侧力构件的刚度,减小结构刚心与质心的偏心距。同时在设计中,应在构造措施上对楼板的刚度予以保证。
2)对于位移比不满足规范要求的楼层,也可利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中,快速找到位移最大的节点,加强该节点对应的墙、柱等构件的刚度。节点号在“SATWE位移输出文件”中查找。也可找出位移最小的节点削弱其刚度,直到位移比满足要求。
层间位移角:主要为限制结构在正常使用条件下的水平位移,确保高层结构应具备的刚度,避免产生过大的位移而影响结构的承载力、稳定性和使用要求。见高规 4.6.1、4.6.2(P30)和4.6.3及相应的条文说明。层间位移角不满足规范要求,说明结构的上述要求无法得到满足。但层间位移角过分小,则说明结构的经济技术指标较差,宜适当减少墙、柱等竖向构件的截面面积。
见PKPM的WDISP.out中“各工况下x,y方向最大层间位移角” 层间位移角不满足规范要求时的调整方法: 1、程序调整:SATWE程序不能实现。 2、结构调整:只能通过调整增强竖向构件,加强墙、柱等竖向构件的刚度。 1)由于高层结构在水平力的作用下将不可避免地发生扭转,所以符合刚性楼板假定的高层结构的最大层间位移往往出现在结构的边角部位,因此应注意加强结构外围对应位置抗侧力构件的刚度,减小结构的侧移变形。同时在设计中,应在构造措施上对楼板的刚度予以保证。
2)利用程序的节点搜索功能在SATWE的“分析结果图形和文本显示”中的“各层配筋构件编号简图”中快速找到层间位移角超过规范限值的节点,加强该节点对应的墙、柱等构件的刚度。节点号在“SATWE位移输出文件”中查找。
二、周期比控制 规范条文: 新高规的4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。
(抗归中没有明确提出该概念,所以多层时该控制指标可以适当放松,但一般不大于1.0。)
名词释义: 周期比:即结构扭转为主的第一自振周期(也称第一扭振周期)Tt与平动为主的第一自振周期(也称第一侧振周期)T1的比值。周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。
对于通常的规则单塔楼结构,如下验算周期比: 1) 根据各振型的平动系数大于0.5,还是扭转系数大于0.5,区分出各振型是扭转振型还是平动振型 2) 通常周期最长的扭转振型对应的就是第一扭转周期Tt,周期最长的平动振型对应的就是第一平动周期T1
3) 对照“结构整体空间振动简图”,考察第一扭转/平动周期是否引起整体振动,如果仅是局部振动,不是第一扭转/平动周期。再考察下一个次长周期。
4) 考察第一平动周期的基底剪力比是否为最大 5) 计算Tt/T1,看是否超过0.9 (0.85) 多塔结构周期比: 对于多塔楼结构,不能直接按上面的方法验算,而应该将多塔结构切分成多个单塔,按多个单塔结构分别计算。
周期、地震力与振型输出文件(WZQ.OUT) 考虑扭转耦联时的振动周期(秒)、X,Y 方向的平动系数、扭转系数
振型号 周期 转角 平动系数 (X+Y) 扭转系数 1 0.6306 110.18 0.99 ( 0.12+0.88 ) 0.01 2 0.6144 21.19 0.95 ( 0.82+0.12 ) 0.05 3 0.4248 2.39 0.06 ( 0.06+0.00 ) 0.94 4 0.1876 174.52 0.96 ( 0.95+0.01 ) 0.04 5 0.1718 85.00 1.00 ( 0.01+0.99 ) 0.00 6 0.1355 5.03 0.05 ( 0.05+0.00 ) 0.95 7 0.0994 177.15 0.97 ( 0.97+0.00 ) 0.03 8 0.0849 87.63 1.00 ( 0.00+1.00 ) 0.00 9 0.0752 12.73 0.03 ( 0.03+0.00 ) 0.97
X 方向的有效质量系数: 97.72% Y 方向的有效质量系数: 96.71% 即要求: 0.4248/0.6306=0.67 <0.9 97.72% 96.71% >90% 说明无需再增加振型计算 电算结果的判别与调整要点: 1. 对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。
2. 振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行计算。而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。至于振型数的确定,应按上述[高规]5.1.13条(高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%)执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。([耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,直到参与计算振型的[有效质量系数]≥90%)
3. 如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。考虑周期比限制以后,以前看来规整的结构平面,从新规范的角度来看,可能成为“平面不规则结构”。一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是要加强外圈结构刚度、增设抗震墙、增加外围连梁的高度、削弱内筒的刚度。
4. 扭转周期控制及调整难度较大,要查出问题关键所在,采取相应措施,才能有效解决问题。 a)扭转周期大小与刚心和形心的偏心距大小无关,只与楼层抗扭刚度有关; b)剪力墙全部按照同一主轴两向正交布置时,较易满足;周边墙与核心筒墙成斜交布置时要注意检查是否满足; c)当不满足周期限制时,若层位移角控制潜力较大,宜减小结构竖向构件刚度,增大平动周期; d)当不满足周期限制时,且层位移角控制潜力不大,应检查是否存在扭转刚度特别小的层,若存在应加强该层的抗扭刚度; e)当不满足扭转周期限制,且层位移角控制潜力不大,各层抗扭刚度无突变,说明核心筒平面尺度与结构总高度之比偏小,应加大核心筒平面尺寸或加大核心筒外墙厚,增大核心筒的抗扭刚度。 f)当计算中发现扭转为第一振型,应设法在建筑物周围布置剪力墙,不应采取只通过加大中部剪力墙的刚度措施来调整结构的抗扭刚度。