电磁场与电磁波复习资料

合集下载

电磁场与电磁波期末复习知识点归纳课件

电磁场与电磁波期末复习知识点归纳课件

01
02
03
无线通信
电磁波用于无线通信,如 手机、无线网络和卫星通 信。
雷达技术
电磁波用于探测、跟踪和 识别目标,广泛应用于军 事和民用领域。
电磁兼容性
电磁波可能干扰其他电子 设备的正常工作,需要采 取措施确保兼容性。
THANKS
感谢观看
03
高强度的电磁波照射会使生物体局部温度升高,可能造成损伤。
对材料的影响
电磁感应
电磁波在导电材料中产生感应电流,可能导致材料发热或产生磁场。
电磁波吸收与散射
某些材料能吸收或散射电磁波,用于制造屏蔽材料或隐身技术。
电磁波诱导材料结构变化
长时间受电磁波作用,某些材料可能发生结构变化或分解。
对信息传输的影响
电磁场与电磁波期末复习知识 点归纳课件
ቤተ መጻሕፍቲ ባይዱ
目录
• 电磁场与电磁波的基本概念 • 静电场与恒定磁场 • 时变电磁场与电磁波 • 电磁波的传播与应用 • 电磁辐射与天线 • 电磁场与电磁波的效应
01
电磁场与电磁波的基本概 念
电磁场的定义与特性
总结词
描述电磁场的基本特性,包括电场、磁场、电位移矢量、磁感应强度等。
电磁波的折射
当电磁波从一种介质传播到另一种介质时,会发生折射现象,折射角与入射角的关系由斯涅尔定律确 定。
电磁波的散射与吸收
电磁波的散射
散射是指电磁波在传播过程中遇到障碍物时,会向各个方向散射,散射强度与障碍物的 尺寸、形状和介电常数等因素有关。
电磁波的吸收
不同介质对不同频率的电磁波吸收能力不同,吸收系数与介质的电导率、磁导率和频率 等因素有关。
微波应用
微波广泛应用于雷达、通信、加热等领域, 如微波炉利用微波的能量来加热食物。

电磁场与电磁波复习题

电磁场与电磁波复习题

第二章(选择)1、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将( A )A升高B降低C不会发生变化D无法确定2、下列关于高斯定理的说法正确的是(A)A如果高斯面上E处处为零,则面内未必无电荷。

B如果高斯面上E处处不为零,则面内必有静电荷。

C如果高斯面内无电荷,则高斯面上E处处为零。

D如果高斯面内有净电荷,则高斯面上E处处不为零3、以下说法哪一种是正确的(B)A电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向B电场中某点电场强度的方向可由E=F/q确定,其中q0为试验电荷的电荷量,q0可正可负,F为试验电荷所受的电场力C在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同D以上说法都不正确4、当一个带电导体达到静电平衡时(D)A表面曲率较大处电势较高B表面上电荷密度较大处电势较高C导体内部的电势比导体表面的电势高D导体内任一点与其表面上任一点电势差等于零5、下列说法正确的是(D)A场强相等的区域,电势也处处相等B场强为零处,电势也一定为零C电势为零处,场强也一定为零D场强大处,电势不一定高6、就有极分子电介质和无极分子电介质的极化现象而论(D)A、两类电介质极化的微观过程不同,宏观结果也不同B、两类电介质极化的微观过程相同,宏观结果也相同C、两类电介质极化的微观过程相同,宏观结果不同D、两类电介质极化的微观过程不同,宏观结果相同7、下列说法正确的是( D )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷B闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零C闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

D闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零8、根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( D )A若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷B若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零C若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷D介质中的电位移矢量与自由电荷和极化电荷的分布有关9、将一个带正电的带电体A从远处移到一个不带电的导体B附近,导体B的电势将(A)A升高B降低C不会发生变化10、一平行板电容器充电后与电源断开,再将两极板拉开,则电容器上的(D)A、电荷增加B、电荷减少C、电容增加D、电压增加(判断)1、两个点电荷所带电荷之和为Q,当他们各带电量为Q/2时,相互间的作用力最小(×)2、已知静电场中某点的电势为-100V,试验电荷q0=3.0x10-8C,则把试验电荷从该点移动到无穷远处电场力作功为-3.0x10-6J (√)3、电偶极子的电位与距离平方成正比,电场强度的大小与距离的二次方成反比。

电磁场电磁波复习重点

电磁场电磁波复习重点

电磁场电磁波复习重点第一章矢量分析1、矢量的基本运算标量:一个只用大小描述的物理量。

矢量:一个既有大小又有方向特性的物理量,常用黑体字母或带箭头的字母表示。

2、叉乘点乘的物理意义会计算3、通量源旋量源的特点通量源:正负无旋度源:是矢量,产生的矢量场具有涡旋性质,穿过一曲面的旋度源等于(或正比于)沿此曲面边界的闭合回路的环量,在给定点上,这种源的(面)密度等于(或正比于)矢量场在该点的旋度。

4、通量、环流的定义及其与场的关系通量:在矢量场F中,任取一面积元矢量dS,矢量F与面元矢量dS的标量积F.dS定义为矢量F穿过面元矢量dS的通量。

如果曲面 S 是闭合的,则规定曲面的法向矢量由闭合曲面内指向外;环流:矢量场F沿场中的一条闭合路径C的曲线积分称为矢量场F沿闭合路径C的环流。

如果矢量场的任意闭合回路的环流恒为零,称该矢量场为无旋场,又称为保守场。

如果矢量场对于任何闭合曲线的环流不为零,称该矢量场为有旋矢量场,能够激发有旋矢量场的源称为旋涡源。

电流是磁场的旋涡源。

5、高斯定理、stokes定理静电静场高斯定理:从散度的定义出发,可以得到矢量场在空间任意闭合曲面的通量等于该闭合曲面所包含体积中矢量场的散度的体积分,即散度定理是闭合曲面积分与体积分之间的一个变换关系,在电磁理论中有着广泛的应用。

Stokes定理:从旋度的定义出发,可以得到矢量场沿任意闭合曲线的环流等于矢量场的旋度在该闭合曲线所围的曲面的通量,即斯托克斯定理是闭合曲线积分与曲面积分之间的一个变换关系式,也在电磁理论中有广泛的应用。

6、亥姆霍兹定理若矢量场在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则当矢量场的散度及旋度给定后,该矢量场可表示为亥姆霍兹定理表明:在无界空间区域,矢量场可由其散度及旋度确定。

第二章电磁场的基本规律1、库伦定律(大小、方向)说明:1)大小与两电荷的电荷量成正比,与两电荷距离的平方成反比;2)方向沿q1 和q2 连线方向,同性电荷相排斥,异性电荷相吸引;3)满足牛顿第三定律。

电磁场与电磁波总复习

电磁场与电磁波总复习

一、 单项选择题1.两个矢量的矢量积(叉乘)满足以下运算规律( B )A. 交换律 A B B A ⨯=-⨯B. 分配率 ()A B C A B A C ⨯+=⨯+⨯C. 结合率D. 以上均不满足 2. 下面不是矢量的是( C )A. 标量的梯度B. 矢量的旋度C. 矢量的散度D. 两个矢量的叉乘 3. 下面表述正确的为( B )A. 矢量场的散度结果为一矢量场B. 标量场的梯度结果为一矢量(具有方向性,最值方向)C. 矢量场的旋度结果为一标量场D. 标量场的梯度结果为一标量 4. 矢量场的散度在直角坐标下的表示形式为( D )A .A A A x y z ∂∂∂++∂∂∂B .y x z x y z A A Ae e e x y z ∂∂∂++∂∂∂C .x y z A A A e e e x y z ∂∂∂++∂∂∂ D . y x zA A A xy z ∂∂∂++∂∂∂ 5. 散度定理的表达式为( A )体积分化为面积分 A. sVA ds AdV ⋅=∇⋅⎰⎰⎰⎰⎰Ò B.sVA ds A dV⨯=∇⋅⋅⎰⎰⎰⎰⎰ÒC.sVA ds A dV ⨯=∇⨯⋅⎰⎰⎰⎰⎰Ò D.sVA ds A dV ⋅=∇⨯⋅⎰⎰⎰⎰⎰Ò 6. 斯托克斯定理的表达式为(B )面积分化为线积分A. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ B.()LsA dl A ds⋅=∇⨯⋅⎰⎰⎰ÑC.()LsA dl A ds ⨯=∇⨯⋅⎰⎰⎰Ñ D. ()LsA dl A ds ⋅=∇⋅⋅⎰⎰⎰Ñ 7. 下列表达式成立的是( C ) 两个恒等式()0A ∇∇⨯=g ,()0u ∇⨯∇=A.()sVAds A dV =∇⨯⋅⎰⎰⎰⎰⎰Ò; B. ()0u ∇∇=g ;C. ()0A ∇∇⨯=g ;D. ()0u ∇⨯∇=g8. 下面关于亥姆霍兹定理的描述,正确的是( A )(注:只知道散度或旋度,是不能全面反映场的性质的)A. 研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。

高中物理经典复习资料:电磁场和电磁波

高中物理经典复习资料:电磁场和电磁波

【基础知识归纳】大小和方向都做周期性变化的电流叫做振荡电流.能产生振荡电流的电路叫振荡电路,L C 电路是最简振荡电路中产生振荡电流的过程中,线圈中的电流、电容器极板上的电量及其与之相联系的磁场能、1.振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能和磁场能的周期性2.振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零;电路中的电流和磁场能均增大,直到最大值.充电时,情况相反.电容器正反向充放电一次,便完成一次振荡的全过程.图13—2—1图13—2—13.周期和频率:电磁振荡完成一次周期性变化所用的时间叫做电磁振荡的周期.1 s 内完成电磁振荡的次数叫做电磁振荡的频率.对LCT =LCπ2 f =LCπ21三、电磁场和电磁波1(1(2)不仅电流能够产生磁场,变化的电场也能产生2变化的电场和磁场总是相互联系的,形成一个不可分割的统一体,即为电磁场,电磁场由近及远的传3在真空中,任何频率的电磁波的传播速度都等于光速c =3.00×108 m/s .其波速、波长、周期频率间关系为:c =Tλ=f λ(1)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验成功的证实了电磁波的存在. (2)在电磁波中,电场强度和磁感应强度是互相垂直的,且都和电磁波的传播方向垂直,所以电磁(3)电磁波的(41.调制:在无线电应用技术中,首先将声音、图象等信息通过声电转换、光电转换等方式转为电信号,这种电信号频率很低,不能用来直接发射电磁波.把要传递的低频率电信号“加”到高频电磁波上,1.电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最2.调谐:调谐电路的固有频率可以在一定范围内连续改变,将调谐电路的频率调节到与需要接收的某个频率的电磁波相同,即,使接收电路产生电谐振的过程叫做调谐.3.检波:从接收到的高频振荡中分离出所携带的信号的过程叫做检波.检波是调制的逆过程,也叫4.无线电的接收:天线接收到所有的电磁波,经调谐选择出所需要的电磁波,再经检波取出携带的电视系统主要由摄像机和接收机组成.把图象各个部位分成一系列小点,称为像素,每幅图象至少要有几十万个像素.摄像机将画面上各个部分的光点,根据明暗情况逐点逐行逐帧地变为强弱不同的信号电中国电视广播标准采用每1 s传送25帧画面,每帧由625雷达是利用无线电波来测定物体位置的无线电设备,一般由天线系统、发射装置、接收装置、输出装【方法解析】麦克斯韦电磁理论是理解电磁场和电磁波的关键所在,应注意领会以下内容:变化的磁场可产生电场,产生的电场的性质是由磁场的变化情况决定的,均匀变化的磁场产生稳定的电场,非均匀变化的磁场产生【典型例题精讲】[例1]L C振荡电路中,某时刻磁场方向如图13—2—2所示,则下列说法错误的是图13—2—2ABCD.若电容器【解析】先根据安培定则判断出电流的方向,若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B叙述正确,由楞次定律知D叙述亦正确.因而错误选项只有C【思考】(1)若磁场正在增强,则电场能和磁场能是如何转化的?电容器是充电还是放电?线圈两端的电压是增大还是减小?(2)若此时磁场最强(t=0),试画出振荡电流i和电容器上板带电量q随时间t变化的图象?(3)若使该振荡电路产生的电磁波的波长更短些,可采取什么措施?(包括:线圈匝数、铁芯、电介【思考提示】(1)磁场增强,磁场能增大,电场能减小,电容器放电,电容器两端电压降低,线圈(2LC,为减小λ,需减小L或C.(3)根据λ=cT和T=2π【设计意图】[例2]某电路中电场随时间变化的图象如图13—2—3所示,能发射电磁波的电场是图13—2—3【解析】变化的电场可产生磁场,产生的磁场的性质是由电场的变化情况决定的.均匀变化的电场图A中电场不随时间变化,不会产生磁场.图B和图C中电场都随时间做均匀的变化,在周围空间产生稳定的磁场,这个磁场不能再激发电场,所以不能激起电磁波.图D中电场随时间做不均匀的变化,能在周围空间产生变化的磁场,而这磁场的变化也是不均匀的,又能产生变化的电场,从而交织成一个不【设计意图】通过本例说明形成【达标训练】1.建立电磁场理论的科学家是_______.用实验证明电磁波存在的科学家是_______【答案】 麦克斯韦2 ABCD .电磁波的传播速度总是3.0×108m/s【答案】B3A .波长和频率BC .波长和波速D【答案】C4A .①③BC .①④D【答案】A5.关于电磁波,下列说法中正确的是 ABC.电磁波由真空进D【解析】 任何频率的电磁波在真空中的传播速度都是c ,故AB 都错.电磁波由真空进入介质,波速变小,而频率不变,C对.变化的电场、磁场由变化区域向外传播就形【答案】C6.无线电广播的中波段波长的范围是187 m ~560 m ,为了避免邻近电台的干扰,两个电台的频率范围至少应差104 Hz,则在此波段中最多能容纳的电台数约为多少个【解析】f max =1871038min⨯=λcHz =1.6×106Hzf min =5601038max⨯=λcHz =0.54×106Hzn =466min max 101054.0106.1⨯-⨯=-f f f ∆=106【答案】1067.某收音机接收电磁波的波长范围在577 m 到182 m【解析】 根据c =λff 1=57710381⨯=λcHz =5.20×105Hzf 2=18210382⨯=λcHz =1.65×106Hz所以,频率范围为5.20×105 Hz ~1.65×106Hz【答案】 5.20×105 Hz ~1.65×106Hz8.关于LCA BC D【答案】9.L C 振荡电路中,某时刻的电流方向如图13—2—4所示,则下列说法中正确的是A BCD .【答案】D10.在L C 振荡电路中,电容器C 的带电量随时间变化的图象如图13—2—5所示,在1×10-6 s 到2×10-6s 内,关于电容器的充(或放)电过程及因此产生的电磁波的波长,正确的结论是A .充电过程,波长为1200 m B .充电过程,波长为1500 m C .放电过程,波长为1200 m D .放电过程,波长为1500 m【解析】 在1×10-6s 到2×10-6s 内,电容器带电量增大,属充电过程.产生的电磁波周期T =4×10-6s ,波长λ=cT =3×108×4×10-6 m =1200 m【答案】 A11.L C 振荡电路中,某时刻磁场方向如图13—2—6所示,则下列说法错误的是图13—2—6A B C D【解析】 若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A 正确.若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B 正确,由楞次定律知D【答案】12.在L C 振荡电路中,电容C 两端的电压U C 随时间变化的图象如图13—2—7所示,根据图象可以确定振荡电路中电场能最大的时刻为_______,在T /2~3T /4时间内电容器处于_______状态,能量转化情况是_______【解析】 电容器两极板间电压最大时,电场能最大,由图可知电场能最大时刻为0,2T ,T .在2T ~43T 时间内,两极板间电压变小,电容器处于放电状态,电场能正转化为磁场能.T【答案】0,2,T;放电;电场能转化为磁场能。

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题(含答案)电磁场与电磁波复习题⼀、填空题1、⽮量的通量物理含义是⽮量穿过曲⾯的⽮量线总数,散度的物理意义⽮量场中任意⼀点处通量对体积的变化率。

散度与通量的关系是⽮量场中任意⼀点处通量对体积的变化率。

2、散度在直⾓坐标系的表达式 z A y A x A z yxA A ??++=??=ρρdiv ;散度在圆柱坐标系下的表达;3、⽮量函数的环量定义⽮量A 沿空间有向闭合曲线C 的线积分,旋度的定义过点P 作⼀微⼩曲⾯S,它的边界曲线记为L,⾯的法线⽅与曲线绕向成右⼿螺旋法则。

当S 点P 时,存在极限环量密度。

⼆者的关系 ndS dC e A ρρ?=rot ;旋度的物理意义点P 的旋度的⼤⼩是该点环量密度的最⼤值;点P 的旋度的⽅向是该点最⼤环量密度的⽅向。

4.⽮量的旋度在直⾓坐标系下的表达式。

5、梯度的物理意义标量场的梯度是⼀个⽮量,是空间坐标点的函数。

梯度的⼤⼩为该点标量函数?的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向等值⾯、⽅向导数与梯度的关系是梯度的⼤⼩为该点标量函数的最⼤变化率,即该点最⼤⽅向导数;梯度的⽅向为该点最⼤⽅向导数的⽅向,即与等值线(⾯)相垂直的⽅向,它指向函数的增加⽅向.; 6、⽤⽅向余弦cos ,cos ,cos αβγ写出直⾓坐标系中单位⽮量l e r 的表达式;7、直⾓坐标系下⽅向导数u的数学表达式是,梯度的表达式8、亥姆霍兹定理的表述在有限区域内,⽮量场由它的散度、旋度及边界条件唯⼀地确定,说明的问题是⽮量场的散度应满⾜的关系及旋度应满⾜的关系决定了⽮量场的基本性质。

9、麦克斯韦⽅程组的积分形式分别为 0()s l s s l sD dS Q BE dl dS t B dS D H dl J dS t ?=??=-??=?=+r r r r r r r r g r r r r r g ????其物理描述分别为10、麦克斯韦⽅程组的微分形式分别为 020E /E /t B 0B //t B c J E ρεε??=??=-=??=+??r r r r r r r其物理意义分别为11、时谐场是激励源按照单⼀频率随时间作正弦变化时所激发的也随时间按照正弦变化的场,⼀般采⽤时谐场来分析时变电磁场的⼀般规律,是因为任何时变周期函数都可以⽤正弦函数表⽰的傅⾥叶级数来表⽰;在线性条件下,可以使⽤叠加原理。

理工类专业课复习资料-电磁场与电磁波公式总结

理工类专业课复习资料-电磁场与电磁波公式总结

电磁场与电磁波复习第一部分知识点归纳第一章矢量分析1、三种常用的坐标系(1)直角坐标系微分线元:dz a dy a dx a R d z y x →→→→++=面积元:⎪⎩⎪⎨⎧===dxdy dS dxdzdS dydzdS zyx ,体积元:dxdydzd =τ(2)柱坐标系长度元:⎪⎩⎪⎨⎧===dz dl rd dl drdl z r ϕϕ,面积元⎪⎩⎪⎨⎧======rdrdzdl dl dS drdz dl dl dS dz rd dl dl dS z zz r z r ϕϕϕϕ,体积元:dzrdrd d ϕτ=(3)球坐标系长度元:⎪⎩⎪⎨⎧===ϕθθϕθd r dl rd dl drdl r sin ,面积元:⎪⎩⎪⎨⎧======θϕθϕθθθϕϕθθϕrdrd dl dl dS drd r dl dl dS d d r dl dl dS r r r sin sin 2,体积元:ϕθθτd drd r d sin 2=2、三种坐标系的坐标变量之间的关系(1)直角坐标系与柱坐标系的关系⎪⎪⎩⎪⎪⎨⎧==+=⎪⎩⎪⎨⎧===z z x y yx r zz r y r x arctan,sin cos 22ϕϕϕ(2)直角坐标系与球坐标系的关系⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=⎪⎩⎪⎨⎧===z yz y x z z y x r r z r y r x arctan arccos ,cos sin sin cos sin 222222ϕθθϕθϕθ(3)柱坐标系与球坐标系的关系⎪⎪⎩⎪⎪⎨⎧=+=+=⎪⎩⎪⎨⎧===ϕϕθθϕϕθ22'22''arccos ,cos sin z r z zr r r z r r 3、梯度(1)直角坐标系中:za y a x a grad z y x∂∂+∂∂+∂∂=∇=→→→μμμμμ(2)柱坐标系中:za r a r a grad z r∂∂+∂∂+∂∂=∇=→→→μϕμμμμϕ1(3)球坐标系中:ϕμθθμμμμϕθ∂∂+∂∂+∂∂=∇=→→→sin 11r a r a r a grad r 4.散度(1)直角坐标系中:zA y A x A A div zy X ∂∂+∂∂+∂∂=→(2)柱坐标系中:z A A r rA r r A div zr ∂∂+∂∂+∂∂=→ϕϕ1)(1(3)球坐标系中:ϕθθθθϕθ∂∂+∂∂+∂∂=→A r A r A r rr A div r sin 1)(sin sin 1)(1225、高斯散度定理:⎰⎰⎰→→→→=⋅∇=⋅ττττd A div d A S d A S,意义为:任意矢量场→A 的散度在场中任意体积内的体积分等于矢量场→A 在限定该体积的闭合面上的通量。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题 ▲1.矢量的通量物理含义是矢量穿过曲面的矢量线的总和; 散度的物理意义是矢量场中任意一点处通量对体积的变化率; 散度与通量的关系是散度一个单位体积内通过的通量。 2.散度在直角坐标系zAyAxAAdivZYX散度在圆柱坐标系

zAArrrArAdivZr1)(1

▲3,矢量函数的环量定义 

lldAC

;旋度的定义MAXlSSldAArotlim0;

二者的关系 lSldASdA)(;旋度的物理意义:最大环量密度和最大环量密度方向。 4.旋度在直角坐标系下的表达式)()()(yAxAexAzAezAyAezyzzxyyZx

▲5.梯度的物理意义:函数最大变化率和最大变化率方向 ; 等值面、方向导数与梯度的关系是:方向导数是标量场中某一点沿某一方向等值面的变化率,梯度是方向导数的最大值。

6.用方向余弦cosα 、cosβ、cosγ写出直角坐标系中单位矢量le的表达式coscoscoszyxleeee

▲7.直角坐标系下方向导数lu

的数学表达式 coscoscoszuyuxu;梯度

coscoscoszyxeee

▲8.亥姆霍茨定理表述在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定; 说明的问题是要确定一个矢量或一个矢量描述的场,须同时确定其散度和旋度 ▲9.麦克斯韦方程组的积分表达式分别为

1.SQSdD;2.SdtBldElS;3.0SSdB;4.SlSdtDJldH)( 其物理描述分别为1.电荷是产生电场的通量源 2.变换的磁场是产生电场的漩涡源 3.磁感应强度的散度为0,说明磁场不可能由通量源产生; 4.传导电流和位移电流产生磁场,他们是产生磁场的漩涡源。

▲10.麦克斯韦方程组的微分表达式分别为 1.D ;2.tBE; 3.0B; 4.tDJH 其物理描述分别为同第九题 11.时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场; 一般采用时谐场来分析时变电磁场的一般规律,是因为1.任何时变周期函数都可以用正弦函数表示的傅里叶级数来描述 2.在线性条件下可以使用叠加原理

▲12.坡印廷矢量的数学表达式 HES; 其物理意义 电磁能量在空间的能流密度; 表达式SSdHE)(的物理意义单位时间内穿出闭合曲面S的电磁能流大小 ▲13.电介质的极化是指在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。 两种极化现象分别是 位移极化(无极分子的极化) ;转向极化(有极分子的极化)。 产生的现象分别有 1.电偶极子有序排列 2.表面上出现束缚电荷 3.影响外电场分布;

描述电介质极化程度或强度的物理量是极化矢量P ▲14.折射率的定义是vcn/;折射率与波速和相对介电常数之间的关系分别为rn2,

ncv/ ▲15.磁介质是指 在外加磁场的作用下,能产生磁化现象,并能影响外磁场分布的物质; 磁介质的种类可分别有抗磁质 、顺磁质 、铁磁质 、亚铁磁质; 介质的磁化是指 在外磁场作用下,物质中的原子磁矩将受到一个力矩的作用,所有原子都趋于与外磁场方向一致的排列,彼此不再抵消,结果对外产生磁效应,影响磁场分布的现象;

描述介质磁化程度地物理量是M磁化矢量

16.介质的三个物态方程分别是ED、HB、EJC 17.静态场是指 不随时间变化的场;静态场包括 静电场 、恒定电场 、恒定磁场; 分别是由静止电荷或静止带电体 、载有恒定电流的导体内部及其周围介质 、载有恒定电流的导体的周围或内部产生的。 18.静电场中的麦克斯韦方程组的积分形式分别为

1.VSdVSdD2.0lldE3.0SSdB4.SlSdJldH; 静电场中的麦克斯韦方程组的微分形式分别为 1.D 2.0E 3.0B 4.JH 19.对偶原理的内容是 如果描述两种物理现象的方程具有相同的数学形式,并且具有相似或对应的边界条件,那么它们的数学解形式相同;

叠加原理的内容是)ba(,0)(0,02122212均为常数,,那么如果ba; 唯一性定理的内容是对于任一静态场,在边界条件给定后,空间各处的场也就唯一的确定了 ▲20.电磁场的亥姆霍兹方程组是1。02

2002tEE 2。022

002tBB

▲21.电磁波的极化是指均匀平面波传播过程中,在某一波阵面上电场矢量的振动状态随时间变化的方式。 其三种基本形式分别是左旋极化波 、右旋极化波 、随机极化波

▲22.工程上经常用到的损耗正切,其无耗介质的表达式是 0tanC

其表示的物理含义是 无耗介质内部没有传导电流; 损耗正切越大说明 介质中传导电流越大,电磁波能量损耗越大; 有耗介质的损耗介质是个复数,说明均匀平面波中电场强度矢量和磁场强度矢量之间存在相位差。 ▲23.一般用介质的损耗正切不同取值说明介质在不同情况下的性质,一个介质是良介质的损耗正切远小于1 ,属于非色散介质;当表现为良导体时,损耗正切远大于1,属于色散介质。 ▲24.波的色散是指不同频率的波将以不同的速率在介质中传播,其相应的介质为色散介质,波的色散是由 介质 特性所决定的。色散介质分为正常色散和非正常色散介质,前者波长大的波,其相速度 大,群速 小于 相速;后者是波长大的波,其相速度 小,群速 大于 相速;在无色散介质中,不同波长的波相速度 相等 ,其群速 等于 相速。

▲25.色散介质与介质的折射率的关系是 irinnn

;耗散介质是指波在其中传播会发生

能量损耗的介质 ▲26.趋肤效应是指 当交变电流通过导体时,随着电流变化频率的升高,导体上所流过的电流将越来越集中于导体表面附近,导体内部的电流越来越小的现象;

趋肤深度的定义是 电磁波的振幅衰减到1e时,它透入导电介质的深度;趋肤深度的表达式 1 二、名词解释 ▲1.传导电流、位移电流 传导电流:自由电荷在导电媒质中作有规则运动而形成的电流 位移电流:电介质内部的电量将会随着电场的不断变化而产生一种持续的微观迁移,从而形成的一种电流 2.电介质的极化、磁介质的磁化 电介质的极化:在外电场作用下,电介质中出现有序排列的电偶极子,表面上出现束缚电荷的现象。 磁介质的磁化:在外磁场作用下,物质中的原子磁矩将受到一个力矩的作用,所有原子都趋于与外磁场方向一致的排列,彼此不再抵消,结果对外产生磁效应,影响磁场分布的现象 3.静电场、恒定电场、恒定磁场 静电场:静止电荷或静止带电体产生的场 恒定电场:载有恒定电流的导体内部及其周围介质中产生的电场 恒定磁场:载有恒定电流的导体的周围或内部产生的磁场 4.对偶定理、叠加原理、唯一性定理 对偶原理:如果描述两种物理现象的方程具有相同的数学形式,并且具有相似或对应的边界条件,那么它们的数学解形式相同; 叠加原理:)ba(,0)(0,02122212均为常数,,那么如果ba; 唯一性定理:对于任一静态场,在边界条件给定后,空间各处的场也就唯一的确定了 ▲5.镜像法、分离变量法、格林函数法、有限差分法 镜像法:利用一个称为镜像电荷的与源电荷相似的点电荷或线电荷来代替或等效实际电荷所产生的感应电荷,然后通过计算由源电荷和镜像电荷共同产生的合成电场,而得到源电荷与实际的感应电荷所产生的合成电场的方法。 分离变量法:把一个多变量的函数表示成为几个单变量函数的乘积后再进行计算的方法。 格林函数法:用镜像法或其他方法找到与待求问题对应的格林函数,然后将它代入第二格林公式导出的积分公式就可得到任一分布源的解得方法。 有限差分法:在待求场域内选取有限个离散点,在各个离散点上以差分方程近似代替各点上的微分方程,从而把以连续变量形式表示的位函数方程转化为以离散点位函数表示的方程组的方法。 ▲6.电磁波、平面电磁波、均匀平面电磁波 电磁波:是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面 平面电磁波:对应任意时刻t,在其传播空间具有相同相位的点所构成的等相位面为平面的电磁波 均匀平面电磁波:任意时刻,其所在的平面中场的大小和方向都是不变的平面电磁波。 ▲7.相速、群速 相速:恒定相位面在波中向前推进的速度。 群速:一段波的包络上具有某种特性(例如幅值最大)的点的传播速度 ▲8.电磁波的极化 电磁波的极化:均匀平面波传播过程中,在某一波阵面上电场矢量的振动状态随时间变化方式。 9.滞后位与动态位

上面的分析说明,在时刻t,空间某点所观察到的矢量位和标量位是由crrtp/时刻的电流或电荷产生的,也就是说,在空间某点并不会立刻感受到波源的影响,而是要滞后一

段时间crrp/,这个滞后效应是由于电磁波的速度为有限值而引起的,于是我们又可将随时间变化的位函数A和称为动态位或滞后位。 ▲10.色散介质、耗散介质 色散介质:电磁波在其中传播的速度与波的频率有关的介质 耗散介质:电磁波在其中传播会出现能量损耗的介质。

三、简答题 1.散度和旋度均是用来描述矢量场的,它们之间有什么不同? 答:散度描述的是场中任意一点通量对体积的变化率 旋度描述的是场中任意一点最大环量密度和最大环量密度方向。 ▲2.亥姆霍兹定理的描述及其物理意义是什么? 答:亥姆霍茨定理:在有限区域的任一矢量场由它的散度,旋度以及边界条件唯一地确定;

相关文档
最新文档