楞次定律现象
楞次定律

此外: ①“阻碍”表示了能量的转化关系,正因为存在阻碍作用, 才能将其它形式的能量转化为电能; ②感应电流的磁场总是阻碍引起感应电流的相对运动.
为什么会出现这种现象? 这些现象的背后原因是什么?
楞次定律是能量守恒定律 在电磁感应 现象中的反映.
总结
• (1)对楞次定律的理解 • 从磁通量变化的角度看:感应电流总要阻碍磁通量的变化 • 从导体和磁体的相对运动的角度来看:感应电流总要阻碍相对运动 • (2)楞次定律中“阻碍”的含意: • 阻碍不是阻止;可理解为“增反减同”或者说是“来拒去留”
理解“阻碍”
1.谁起的阻碍作用???
答:感应电流的磁场起的阻碍作用。
2.阻碍什么??? 答:阻碍的是磁通量的变化而不是磁通量本身 3.如何阻碍??? 答:当磁通量增加时,感应电流的磁场方向与原磁场方向相反,当磁通量 减小时,感应电流的磁场方向与原磁场方向相同, 即“增反减同” 4.结果如何??? 答:阻碍不是阻止,只是延缓了磁通量变化的快慢,结果是增加的还是 增加, 减少的还是减少。
谢谢观看
明 确 几 个 定 律 的 内 容
定则定律
适用的基本物理现象
安培定则 判断电流产生的磁场方向 左手定则 判断磁场对电流、运动电荷的作用 力方向 右手定则 判断闭合电路的一部分做切割磁感 线的运动时产生的感应电流方向 穿过闭合电路的磁通量发生变化时 楞次定律 产生的感应电流的方向(判断闭合 电路的一部分做切割磁感线运动时, 是它的一种特殊应用)
• 楞次定律(LENZ‘S LAW)是一条电磁学的定律,可以用来判断由
电磁感应而产生的电动势的方向。它是由德国物理学家海因里 希· 楞次(HEINRICH FRIEDRICH LENZ)在1834年提出。
楞次定律物理知识点

楞次定律物理知识点即磁通量变化感应电流感应电流磁场磁通量变化。
楞次定律的内容:感应电流的磁场总是阻碍引起感应电流为磁通量变化。
楞次定律是判断感应电动势方向的定律,但它是通过感应电流方向来表述的。
按照这个定律,感应电流只能采取这样一个方向,在这个方向下的感应电流所产生的磁场一定是阻碍引起这个感应电流的那个变化的磁通量的变化。
我们把“引起感应电流的那个变化的磁通量”叫做“原磁道”。
因此楞次定律可以简单表达为:感应电流的磁场总是阻碍原磁通的变化。
所谓阻碍原磁通的变化是指:当原磁通增加时,感应电流的磁场(或磁通)与原磁通方向相反,阻碍它的增加;当原磁通减少时,感应电流的磁场与原磁通方向相同,阻碍它的减少。
从这里可以看出,正确理解感应电流的磁场和原磁通的关系是理解楞次定律的关键。
要注意理解“阻碍”和“变化”这四个字,不能把“阻碍”理解为“阻止”,原磁通如果增加,感应电流的磁场只能阻碍它的增加,而不能阻止它的增加,而原磁通还是要增加的。
更不能感应电流的“磁场”阻碍“原磁通”,尤其不能把阻碍理解为感应电流的磁场和原磁道方向相反。
正确的理解应该是:通过感应电流的磁场方向和原磁通的方向的相同或相反,来到达“阻碍”原磁通的“变化”即减或增。
楞次定律所反映提这样一个物理过程:原磁通变化时( 原变),产生感应电流(I感),这是属于电磁感应的条件问题;感应电流一经产生就在其周围空间激发磁场( 感),这就是电流的磁效应问题;而且I感的方向就决定了感的方向(用安培右手螺旋定那么判定); 感阻碍原的变化——这正是楞次定律所解决的问题。
这样一个复杂的过程,可以用图表理顺如下:楞次定律也可以理解为:感应电流的效果总是要对抗(或阻碍)产生感应电流的原因,即只要有某种可能的过程使磁通量的变化受到阻碍,闭合电路就会努力实现这种过程:(1)阻碍原磁通的变化(原始表速);(2)阻碍相对运动,可理解为“来拒去留”,具体表现为:假设产生感应电流的回路或其某些局部可以自由运动,那么它会以它的运动来阻碍穿过路的磁通的变化;假设引起原磁通变化为磁体与产生感应电流的可动回路发生相对运动,而回路的面积又不可变,那么回路得以它的运动来阻碍磁体与回路的相对运动,而回路将发生与磁体同方向的运动;(3)使线圈面积有扩大或缩小的趋势;(4)阻碍原电流的变化(自感现象)。
电磁感应现象 楞次定律

磁通量的变化量ΔΦ 磁通量的变化量:ΔΦ=Φ末-Φ初 计算Φ变化时要注意初、末状态的磁通量方向是否相同。 还可用磁感线条数的增减来判断Φ的增减
【例】如图所示,一水平放置的矩形闭合线圈abcd在细长磁铁N极附近下 落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ, 且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过程中,线圈中的磁通量 A.是增加的; B.是减少的 C.先增加,后减少; D.先减少,后增加 解析:条形磁铁在 N极附近的分布情况 如图所示, 由图可知线圈中磁通量是先减少,后增 加.D选项正确
感应电流的方向
楞次定律:感应电流具有这样的方向,即感应电流的磁场总是 要阻碍引起感应电流的磁通量的变化. S 【注意】“阻碍”并不 S N N 乙 丙 甲 丁 是“阻止”,而是当磁通 S 量增加时,感应电流的磁 S N N 场与原磁场方向相反;磁 通量减少时,感应电流的 N S S 磁场与原磁场方向相同. N 感应电流的磁场延缓了 原磁通量的变化的快慢, 但不影响原磁通量的变化 结果.
楞次定律课件

感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。在直流电路中 ,当通过线圈的磁通量发生变化时,线圈中会产生感应电流,其方向可根据楞次定律来判断。
交流电路中感应电流判断方法
法拉第电磁感应定律
在交流电路中,感应电动势的大小与磁通量对时间的变化率成正比。因此,当交流电源的频率、线圈的匝数和磁 通量的变化率一定时,感应电动势的大小也就确定了。根据楞次定律,感应电流的方向总是要阻碍原磁通量的变 化,所以在交流电路中,感应电流的方向会不断改变。
02 楞次定律实验验 证
实验器材准备与操作步骤
实验器材:电磁铁、电流表、电压表、滑动变 阻器、导线、开关等。
01
操作步骤
02
04
调节滑动变阻器,使电流表示数逐渐增大, 观察电磁铁吸引大头针的数量变化。
05
当电流表示数达到某一值时,迅速断开开 关,观察电磁铁吸引大头针的数量变化。
按照实验电路图连接好电路,检查无误后 闭合开关。
楞次定律课件
目录
• 楞次定律基本概念 • 楞次定律实验验证 • 楞次定律数学表达式推导 • 楞次定律在电路分析中应用 • 楞次定律在生活生产中应用实例 • 总结回顾与拓展延伸
01 楞次定律基本概 念
楞次定律定义及表述
楞次定律定义
感应电流具有这样的方向,即感 应电流的磁场总要阻碍引起感应 电流的磁通量的变化。
相量图分析法
在交流电路中,可以使用相量图来表示相位关系。通过画出电压、电流和磁通量的相量图,可以直观地判断感应 电流的方向和大小。
复杂电路分析方法与技巧
支路电流法
对于复杂电路,可以将其分解为若干个简单的支路,然后分别对每个支路应用基尔霍夫定 律和欧姆定律进行分析。通过列写方程并求解,可以得到各支路的电流和电压值,进而判 断感应电流的方向和大小。
楞次定律精品课件

掌握了楞次定律的基本概念和表述,能够准确描述定律的内容和意义。
能够运用楞次定律分析电磁感应现象,理解其在电气设备工作原理中的应用。
通过课程学习和实践练习,提高了自己的思维能力和解决问题的能力。
《电磁学》等电磁学相关教材。
教材
中国大学MOOC、网易公开课等在线教育平台提供的电磁学相关课程。
实验器材:电磁铁、线圈、电流表、开关、导线等。
操作过程
1. 将线圈与电流表连接,并固定在支架上。
2. 将电磁铁放置在线圈附近,并调整其与线圈的相对位置。
3. 打开开关,使电磁铁通电并产生磁场。
4. 观察并记录电流表的读数变化及感应电流的方向。
5. 改变电磁铁的电流方向或线圈的位置,重复上述操作。
楞次定律精品课件
目录
楞次定律基本概念与原理楞次定律数学表达式与计算方法楞次定律在电路分析中应用楞次定律实验验证与误差分析楞次定律在生活、科技领域应用课程总结与拓展延伸
01
CHAPTER
楞次定律基本概念与原理
感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
楞次定律定义
一个10匝的线圈,面积为0.01m²,放在磁感应强度为0.5T的匀强磁场中,以50Hz的频率绕垂直于磁感线的轴匀速转动,求线圈中产生的感应电动势的最大值Em。
练习1
一个单匝线圈在匀强磁场中绕垂直于磁感线的轴匀速转动,产生的感应电动势e = Eₘsinωt。若t = 0时线圈平面与磁感线垂直,且此时感应电动势为零,则线圈转动的角速度ω和感应电动势的最大值Eₘ分别为多少?
03
02
01
1
2
3
应用楞次定律分析电力系统中各元件的电压、电流关系,以及系统稳态运行时的功率分布和损耗计算。
高中物理教科选修课件楞次定律

相关知识点回顾与总结
楞次定律内容
感应电流具有这样的方向,即感 应电流的磁场总要阻碍引起感应
电流的磁通量的变化。
楞次定律的理解
感应电流的磁场不一定与原磁场 方向相反,只是在原磁场的磁通 量增大时两者方向相反,而在原 磁场的磁通量减小时,两者方向
相同。
楞次定律的应用
判断感应电流的方向,判断电磁 感应现象中能量转化问题。
在电磁感应现象中,机械能转化为电能, 电能再转化为其他形式的能量(如热能、 光能等)。
能量在转化过程中会有一定的损失,因此 能量转化效率是评价电磁感应现象能量利 用效果的重要指标。
通过优化电磁感应装置的设计、提高导体 的导电性能、降低电阻等方法,可以提高 能量转化效率。
03
楞次定律在电路中应用
直流电路中楞次定律应用
节点电压法
选取电路中的某些节点作为参考点 ,将其他节点的电压表示为参考点 电压的函数。然后根据楞次定律和 基尔霍夫定律列出节点电压方程进 行求解。
04
实验验证与误差分析
实验设计思路及步骤
设计思路:通过对比实验,验证楞次定律的正 确性,并分析实验误差。
01
准备实验器材,包括线圈、电流表、电压 表、电源等。
前沿动态介绍及展望
电磁感应现象的研究
电磁感应是物理学中的重要现象,近年来在超导材料、拓扑物态 等领域的研究中取得了重要进展。
楞次定律在新技术中的应用
随着科技的发展,楞次定律在电磁炮、无线充电等新技术中得到了 广泛应用。
未来研究方向
未来研究将关注电磁感应现象中的微观机制、高效能量转换等方面 ,同时探索其在新能源、环保等领域的应用潜力。
表达式意义
当磁通量增加时,感应电动势的方向 与磁通量的方向相反;当磁通量减少 时,感应电动势的方向与磁通量的方 向相同。
《楞次定律》完整版课件

练习题与解答示例
• 练习题一:一矩形线圈在匀强磁场中绕垂直于磁场的轴匀速转 动,产生的感应电动势与时间的关系为 e = Eₘsinωt ,则 ( )
练习题与解答示例
A. t = 0 时,线圈的 磁通量为零
C. t = 0.5π/ω 时,e 达到最大值
B. t = 0 时,线圈平 面与中性面重合
D 正确。
练习题与解答示例
练习题二:关于电磁感应现象,下列 说法中正确的是 ( )
B. 只要闭合电路在做切割磁感线运动, 电路中就有感应电流
A. 只要有磁通量穿过电路,电路中就 有感应电流
练习题与解答示例
C. 只要穿过闭合电路的磁通量足够大,电路中就有感应电流
D. 只要穿过闭合电路的磁通量发生变化,电路中就有感应电 流
探究电磁感应现象中感应电流的方向 与磁通量变化之间的关系
验证楞次定律的正确性,加深对电磁感 应现象的理解
实验器材和步骤
器材:电流表、线圈、磁铁、电池等
01
02
步骤
1. 将线圈接在电流表上,构成闭合回路
03
04
2. 用磁铁在线圈附近快速移动,观察电流 表的指针偏转情况
3. 改变磁铁移动的方向或速度,重复上述 实验
互感现象的应用
变压器、电动机等设备中 利用互感现象实现电压变 换和能量传递。
涡流及其应用与防止
涡流的概念
当变化的磁场作用于导体时,会在导体内部产生感应电流,该电流在导体内部形成闭合回路, 称为涡流。
涡流的应用
电磁炉、感应加热器等设备中利用涡流产生热量,实现加热和烹饪等功能。
涡流的防止
在电气设备中,为了避免涡流产生的热量对设备造成损害,可以采取增加铁芯材料电阻率、 减小铁芯截面积等措施来减小涡流。同时,在高频电路中,可以采用多层电路板、分布式布 线等技术来减小涡流的影响。
楞次定律和自感现象ppt课件全

专题分类突破
章末整合
三、电磁感应中的电路问题
1.首先要找到哪一部分导体相当于电源,分清内外电路
处于磁通量变化的磁场中的线圈或切割磁感线的导体相当于 电源,该部分导体的电阻相当于内电阻;而其余部分的电路 则是外电路.
2.路端电压、感应电动势和某段导体两端的电压三者的区别:
vm=Im(BRL+r)=3 m/s.
专题分类突破
章末整合
五、电磁感应中的能量问题
1.过程分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程. (2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用 ,因此,要维持感应电流的存在,必须有“外力”克服安培力做功 .此过程中,其他形式的能转化为电能.“外力”克服安培力做了 多少功,就有多少其他形式的能转化为电能.
(2)MN右侧上翻后面积减半,等效电路如图2所示
E SB 1 π 0.42 4 V=0.32 V
t t 2
π
2
P1
R1
E R2
R1 1.28102 W
专题分类突破
章末整合
四、电磁感应中的动力学问题
解决此类问题的一般思路是:先由法拉第电磁感应定律求感应 电动势,然后根据欧姆定律求感应电流,再求出安培力,再后 依照力学问题的处理方法进行,如进行受力情况分析、运动情 况分析.流程为:
导体切割磁感线产生感应电动势
感应电流
电流受到安培力
感应电动势变化
速度变化
加速度变化
合外力变化
周而复始循环,最终加速度等于零,导体达到稳定运动状态
专题分类突破
例5 U形金属导轨abcd原来静止放在 光滑绝缘的水平桌面上,范围足够大、方 向竖直向上的匀强磁场穿过导轨平面,一 根与bc等长的金属棒PQ平行bc放在导轨 上,棒左边靠着绝缘的固定竖直立柱e、f. 已知磁感应强度B=0.8 T.导轨质量M= 2 kg.其中bc段长0.5 m,bc段电阻R=0.4 Ω.其余部分电阻不计;金属棒PQ质量m =0.6 kg、电阻r=0.2 Ω、与导轨间的动 摩擦因数μ=0.2.若向导轨施加方向向左、 大小为F=2 N的水平拉力,如图所示.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
楞次定律现象
一、什么是楞次定律
楞次定律(Lenz’s law)是由德国物理学家海因里希·楞次于1834年提出的一个基本定律,它描述了磁场变化引起的感应电流的方向。
楞次定律是电磁感应现象的重要规律之一,也是电磁场理论的基石之一。
二、楞次定律的表达方式
楞次定律可以用以下方式来表达:
•当一个导体中的磁通量发生变化时,其内部会产生感应电动势。
•这个感应电动势的方向总是阻碍磁通量变化的原因。
三、楞次定律的原理解析
楞次定律的原理可以从法拉第电磁感应定律和洛伦兹力的方向来解析。
根据法拉第电磁感应定律,当导体中的磁通量发生变化时,会在导体中产生感应电动势。
根据洛伦兹力的方向,当电流通过导体时,会受到一个力的作用,这个力的方向与磁场的方向和电流的方向有关。
根据这两个定律,可以得出楞次定律的结论:感应电动势的方向总是阻碍磁通量变化的原因。
也就是说,如果导体中的磁通量增加,感应电动势的方向会使得导体中产生的电流产生一个磁场,这个磁场的方向与原来的磁场相反;如果导体中的磁通量减少,感应电动势的方向会使得导体中产生的电流产生一个磁场,这个磁场的方向与原来的磁场相同。
四、楞次定律的应用
楞次定律在实际应用中有着广泛的应用,下面列举几个常见的应用:
1. 感应电动机
感应电动机是一种常见的电动机类型,它利用楞次定律的原理工作。
当感应电动机的转子中的磁场发生变化时,会在定子中产生感应电流,从而产生一个磁场,这个磁场与转子的磁场相互作用,产生一个力,驱动转子转动。
2. 感应加热
感应加热是一种利用感应电流产生的热量进行加热的技术。
当导体中的磁通量发生变化时,会在导体中产生感应电流,这个感应电流会产生 Joule 热,从而使导体加热。
3. 磁悬浮列车
磁悬浮列车是一种利用磁力进行悬浮和驱动的交通工具。
磁悬浮列车利用楞次定律的原理,通过使导体中的感应电流和磁场相互作用,产生一个力,使列车悬浮在轨道上,并且驱动列车运动。
4. 感应制动
感应制动是一种利用感应电流产生的力来制动的技术。
当导体中的磁通量发生变化时,会在导体中产生感应电流,这个感应电流会产生一个力,与运动方向相反,从而使运动物体减速或停止。
五、实验验证楞次定律
为了验证楞次定律,可以进行以下实验:
1.在一个闭合电路中,放置一个磁铁。
当磁铁静止时,电路中没有电流。
2.将磁铁向电路靠近,观察电路中的电流变化。
根据楞次定律,电流的方向应
该与磁铁的运动方向相反。
3.将磁铁远离电路,观察电路中的电流变化。
根据楞次定律,电流的方向应该
与磁铁的运动方向相同。
通过实验可以验证楞次定律的正确性。
六、总结
楞次定律是描述磁场变化引起的感应电流方向的定律,它表明感应电动势的方向总是阻碍磁通量变化的原因。
楞次定律在实际应用中有着广泛的应用,如感应电动机、感应加热、磁悬浮列车和感应制动等。
通过实验可以验证楞次定律的正确性。
楞次定律的发现和应用推动了电磁场理论的发展,对现代科学技术的进步起到了重要的推动作用。