北师大版高中数学必修5第二章《解三角形》正、余弦定理的综合运用(二)
高中数学 第二章 解三角形 2_1_1_2 正弦定理的变形及三角形面积公式课件 北师大版必修5

课堂探究 互动讲练 类型一 正弦定理的变形应用 [例 1] 在△ABC 中,B=30°,C=45°,c=1,求 b 及△ABC 外接圆的半径 R.
【解析】 已知 B=30°,C=45°,c=1,
由正弦定理,得sibnB=sincC=2R, 所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
a2+b2-2abcosπ3=7, 所以a2+b2-ab=7,即(a+b)2-3ab=7, 所以(a+b)2=25,所以a+b=5.
方法归纳
(1)本题采用了整体代换的思想,把a+b,ab作为整体,求解
过程既方便又灵活.
(2)三角形面积公式有多种形式,根据题中的条件选择最合适
的面积公式.在解三角形中通常选用S=
=
40 6+
2=10(
6-
2) (km).
即 C 到灯塔 A 的距离为 10( 6- 2) km.
方法归纳
解三角形应用题常见的两种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个 三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及两个(或两个 以上)三角形,这时需作出这些三角形,先解够条件的三角形,然 后逐步求出其他三角形中的解,有时需设出未知量,从几个三角 形中列出方程,解方程得出所要求的解.
(2)若 c= 7,且△ABC 的面积为323,求 a+b 的值.
【解析】
(1)因为
3a=2csinA,所以sianA=
2c 3.
由正弦定理知sianA=sincC,
所以sincC= 2c3,所以sinC=
3 2.
因为△ABC是锐角三角形,所以C=π3.
(2)因为c= 7,C=π3,
北师大版高中数学必修5 第二章《解三角形》教学设计

如图 1.1-3,当 ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的
a Bb A 定义,有 CD=
s i ns i n,则
a sinA
b sinB
,
同理可得
c sinC
b sinB
,
从而
a sinA
b sinB
c sinC
C
b
a
A
c
B
当 ABC 是钝角三角形时 ,类似可以证明请同学们补充。
八、课后反思:
北师大版高中数学必修 5 第二章《解三角形》第一课时 §2.1.1 正弦定理
教学反思
周至县第三中学 马周科
2011 年 9 月,陕西教育学院、陕西教育科学研究研究所的教学专家来我校进行新课程 及高校课堂视导,我作为我校数学教师代表上了一节课。这节课我选择了高中数学北师大版 必修 5 第二章《解三角形》第一棵时“正弦定理”,基于我校“联勤互助-高效课堂”的教学 模式设计了导学案和教学设计。导学案提前下发,让学生先进行预习;上课时,先进行教学 目标展示,指出本节课的学习目标;然后引导学生进行预习成果展示,通过提问方式检查学 生预习情况;再通过教师根据学生情况进行适当引导和讲解,进行分组探析新课;分组探析 例题;分组进行课堂练习;最后引导学生小结本节内容;安排课后训练等环节,组织学生学 习活动。课后,省教科所专家马亚军老师高屋建瓴,给予了非常详尽评价和指导,本组同志 也提出了宝贵的意见。使我很受启发,为此对这节课进行反思。
高中数学北师大版必修 5 第二章 解三角形 ( 教学设计) 周至县第三中学数学组 马周科
北师大版高中数学必修 5 第二章《解三角形》教学设计 第一课时 §2.1.1 正弦定理 周至县第三中学 马周科
高二数学必修5 正弦定理、余弦定理(二)

教学目标:
熟练掌握正、余弦定理应用,进一步熟悉三角函数公式和三角形中的有关性质,综合运用正、余弦定理、三角函数公式及三角形有关性质求解三角形问题;通过正、余弦定理在解三角形问题时沟通了三角函数与三角形有关性质的功能,反映了事物之间的内在联系及一定条件下的相互转化.
Ⅱ.讲授新课
[例1]在△ABC中,三边长为连续的自然数,且最大角是最小角的2倍,求此三角形的三边长.
分析:由于题设条件中给出了三角形的两角之间的关系,故需利用正弦定理建立边角关系.其中sin2α利用正弦二倍角展开后出现了cosα,可继续利用余弦定理建立关于边长的方程,从而达到求边长的目的.
解:设三角形的三边长分别为x,x+1,x+2,其中x∈N*,又设最小角为α,则
[例2]如图,在△ABC中,AB=4 cm,AC=3 cm,角平分线AD=2 cm,求此三角形面积.
分析:由于题设条件中已知两边长,故而联想面积公式S△ABC= AB·AC·sinA,需求出sinA,而△ABC面积可以转化为S△ADC+S△ADB,而S△ADC= AC·ADsin ,S△ADB= AB·AD·sin ,因此通过S△ABC=S△ADC+S△ADB建立关于含有sinA,sin 的方程,而sinA=2sin cos ,sin2 +cos2 =1,故sinA可求,从而三角形面积可求.
2.在△ABC中,已知角B=45°,D是BC边上一点,AD=5,AC=7,DC=3,求AB.
解:在△ADC中,
cosC= = = ,
又0<C<180°,∴sinC=
在△ABC中, =
∴AB= AC= · ·7= .
评述:此题在求解过程中,先用余弦定理求角,再用正弦定理求边,要求学生注意正、余弦定理的综合运用.
【北师大版】高中数学必修五:第2章《解三角形》2-1-17【ppt课件】

第二章 · §1 · 1.2 · 第17课时
第15页
北师大版· 数学· 必修5
45分钟作业与单元评估
二合一
解析:由sinA∶sinB∶sinC=5∶11∶13及正弦定理得a∶b∶c= 5∶11∶13.设a=5k,b=11k,c=13k,k>0,则由余弦定理得cosC= 52+112-132 <0,所以角C为钝角.故应选C. 2×5×11
第13页
北师大版· 数学· 必修5
解析:由余弦定理得
45分钟作业与单元评估
二合一
b2+c2-a2 a2+b2-c2 (2b-c) 2bc =a· 2ab , 即2b3+2bc2-2ba2-b2c-c3+a2c=a2c+b2c-c3, 上式整理后为b2+c2-a2-bc=0, b2+c2-a2 1 1 即 = ,因此cosA= .故A=60° . 2bc 2 2
45分钟作业与单元评估
45分钟作业与单元评估
二合一
1.理解余弦定理的结构特征,并会用余弦定理解三角形. 2.掌握余弦定理及其变形,并能在化简、证明中灵活运用.
第二章 · §1 · 1.2 · 第17课时
第6页
北师大版· 数学· 必修5
45分钟作业与单元评估
二合一
基础训练 作 业设计
第二章 · §1 · 1.2 · 第17课时
二合一
1 解析:由余弦定理得a2+b2-c2=2abcosC,又c2= 2 (a2+b2),得
2 2 a + b 1 2 2ab 1 2 2abcosC= (a +b ),即cosC= ≥ = ,所以选C. 2 4ab 4ab 2
答案:C
第二章 · §1 · 1.2 · 第17课时
第20页
高中数学 第二章 正余弦定理在解决三角形问题中的应用知识归纳典型例题素材 北师大版必修5

正余弦定理在解决三角形问题中的应用知识点归纳:1.正弦定理: 形式一:R 2Csin c B sin b A sin a ===; 形式二:R 2a A sin =;R 2b B sin =;R 2c C sin =;(角到边的转换) 形式三:A sin R 2a ⋅=,B sin R 2b ⋅=,C sin R 2c ⋅=;(边到角的转换) 形式四:B sin ac 21A sin bc 21C sin ab 21S ===;(求三角形的面积) 解决以下两类问题:1)、已知两角和任一边,求其他两边和一角;(唯一解)2)、已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角)。
若给出A ,b a ,那么解的个数为:无解(A sin b a <);一解(A sin b a A sin b a ≥=或者);两解(b a A sin b <<);2.余弦定理:形式一:A cos bc 2c b a 222⋅-+=,B cos ac 2c a b 222⋅-+=,C cos ab 2b a c 222⋅-+= 形式二:bc 2a c b A cos 222-+=,ac 2b c a B cos 222-+=,ab2c b a C cos 222-+=,(角到边的转换)解决以下两类问题:1)、已知三边,求三个角;(唯一解)2)、已知两边和它们得夹角,求第三边和其他两个角;(唯一解)3、角平分线定理:DCAD BC AB = ;其中BD 为角B 的角平分线。
规律方法总结:1、要正确区分两个定理的不同作用,围绕三角形面积公式及三角形外接圆直径展开三角形问题的求解。
2、两个定理可以实现将“边、角混合”的等式转化成“边或角的单一”等式。
3、记住一些结论:1,,,sin 2A B C A B C S ab C π++==均为正角;等。
4、余弦定理的数量积表示式:cos ||||BA CA A BA CA ⋅=。
北师大版高中数学必修5《二章 解三角形 1 正弦定理与余弦定理 1.2余弦定理》公开课课件_25

2.1.2 余弦定理的应用
探究:余弦定理的应用
1.利用余弦定理,可解决两类问题:
两
边 (1)及
一
两边及其夹角,求第三边和其它两个角;
角 两边和其中一边的对角,求其余的边和角;
(2)已知三边,求三个角.
2.利用余弦定理判断三角形的形状
(1)设C是△ABC中最大的角,则 a2+b2=c2⇔角C为___直__角___,△ABC是___直__角___三角形; a2+b2<c2 ⇔ 角C为 ___钝_角____,△ABC是___钝__角___三角形; a2+b2>c2 ⇔ 角C为___锐__角___,△ABC是____锐__角__三角形.
(2)应用余弦定理及其变形,通过边角之间进行互化。
题型一:已知两边及一角解三角形
例1(1)在△ABC中,若 a 1 3 ,c 2
求边 b 和角C。
,B ,
3
(2)已知在△ABC中,a=8,b=7,B=60°,求边c.
题型二:已知三边(或三边关系)解三角形
例 2 (1)已知在△ABC 中,若 a 1 ,b 3 ,c 2 ,求角
B 及角 A.
(2)已知在△ABC 中,若 a : b : c 3: 5: 7,求这个三角形的最大角
并判断三角形的形状。
题型三:判断三角形的形状
例3.在△ABC中,已知c=2acos B,试判断△ABC的形状.
思考:
在△ABC中,已知(ab+c)(b+c-a)=3bc,且 sin A=2sin B·cos C,试判断△ABC的形状.知Leabharlann 回顾1.余弦定理的 公式表述
a 2 b2 c 2 2bc cos A b2 c 2 a 2 2ac cos B
高中数学第2章解三角形22三角形中的几何计算课件北师大版必修5
1.与传统的三角形面积的计算方法相比,用两边及其夹角 正弦值之积的一半求三角形的面积有什么优势?
第3页
答:主要优势是不必计算三角形的高,只要知道三角形的 “基本量”就可以求其面积.
第4页
2.求三角形面积的常用公式. 答:(1)S=21aha(a 为 BC 的边长,ha 为 BC 边上的高). (2)S=a4bRc(R 是三角形外接圆的半径). (3)S=2R2sinAsinBsinC(R 是三角形外接圆的半径).
第8页
【解析】 ∵tanB=12,∴0<B<π2 .
∴sinB=
55,cosB=2 5
5 .
又∵tanC=-2,∴π2 <C<π.
∴sinC=2
5 5,cosC=-
5 5.
第9页
则 sinA=sin(B+C)=sinBcosC+cosBsinC
= 55×(- 55)+255×255=35.
∵sinaA=sibnB,∴a=bssiinnBA=
∴S=12absinC=2
3 3.
第15页
题型二 正、余弦定理的综合问题与方程思想 例 2 在四边形 ABCD 中,已知 AD⊥CD,AD=10,AB= 14,∠BDA=60°,∠BCD=135°,求 BC 的长.
第16页
【思路分析】 欲求 BC,在△BCD 中,已知∠BCD,∠BDC 可求,故需再知一条边;而已知∠BDA 和 AB,AD,故可在△ABD 中,用正弦定理或余弦定理求得 BD.这样在△BCD 中,由正弦定 理可求 BC.
第31页
2.等腰三角形的周长为 8,底边为 2,则底角的余弦值等于
()
2 A. 4
B.2 2
1
北师大版高中数学必修五第二章解三角形之正弦定理教案
北师大版高中数学必修5 第二章《解三角形》全部教案第一课时 §2.1.1 正弦定理一、教学目标1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2、过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3、情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
二、教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
三、教学方法:探析归纳,讲练结合 四、教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? A 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.探析新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c ==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==C a B (图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。