解三角形应用举例课件
解直角三角形应用举例(6)PPT课件

A
E
D
5
6
练习
1、水库大坝的横断面是梯形ABCD, 迎水坡BC的坡度i=1:2,背水坡AD的 坡角为60°,坝顶高CD=4m,高DE =6m,(1)分别求BC、AD及AB的长; (2)修筑100m长的堤坝需土石方多少?
D
C
A
B
7
引例
例2 某船向正东方向航行,在A处望
见某岛C在北偏东60°,此时AC之间
有无触礁危险?
请说明理由。 60 °
A
D
10
11
范例
例2 某船向正东方向航行,在A处望
见某岛C在北偏东60°,前进6海里
到B点,测得该岛在北偏东30°,已 知在该岛周围 北
6海里内有暗
东
C
礁,问若该船继续向东航行,源自有无触礁危险?请说明理由。 60 °
30°
A
B
12
分析
北
东
C
60 °
A
30°
BD
(6)
1
锐角三角函数
焦陂职高丁勇
2
导入
坡度的有关意义
铅直高度 坡度= 水平距离
B
铅
i=
h l
坡度是比 值
直 高
h
度
C
(坡角)α l 水平距离
A
i=
h l
= tanα
3
导入
坡度的有关意义
铅
直h
高
度
(坡角)α
C
l
水平距离
铅
直 高
h
度
(坡角)α l
水平距离
i 越大,则坡越陡 i 越小,则坡越缓
4
范例 例1 水库大坝的横断面是梯形,坝 顶宽6m,坝高23m,斜坡AB的坡度 是i=1:3,斜坡CD的坡度是i′=1:2.5, 求斜坡的坡角,坝底AD和坡面AB的 长(精确到0.1米)。 B 6m C
人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°
2024高中数学解三角形ppt课件

目录•三角形基本概念与性质•正弦定理及其应用•余弦定理及其应用•三角形面积公式及其应用•解三角形综合应用举例三角形基本概念与性质三角形的分类按边可分为不等边三角形、等腰三角形;按角可分为锐角三角形、直角三角形、钝角三角形。
三角形的定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。
三角形的定义与分类三角形内角和定理01三角形内角和定理三角形的三个内角之和等于180°。
02证明方法通过平行线的性质或者撕拼法等方法进行证明。
三角形外角性质三角形外角的定义三角形的一个外角等于与它不相邻的两个内角的和。
三角形外角的性质三角形的外角大于任何一个与它不相邻的内角。
三角形边与角关系01正弦定理在任意三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。
02余弦定理在任意三角形中,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
03三角形的面积公式S=1/2absinC,其中a、b为两边长,C为两边夹角。
正弦定理及其应用正弦定理的推导与证明推导过程通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。
证明方法利用三角形的面积公式和正弦函数的性质,证明正弦定理的正确性。
利用正弦定理求解三角形已知两边及夹角求第三边通过正弦定理计算出已知两边夹角对应的第三边的长度。
已知两角及夹边求其他元素利用正弦定理和三角形内角和定理,求出三角形的其他元素。
解决三角形中的角度问题通过正弦定理计算出三角形中的未知角度。
解决三角形中的边长问题利用正弦定理求出三角形中的未知边长。
解决力学问题在力学中,正弦定理可用于解决涉及三角形的问题,如力的合成与分解等。
解决光学问题在光学中,正弦定理可用于解决涉及光的反射和折射等问题。
余弦定理及其应用余弦定理的推导与证明向量法推导余弦定理通过向量的数量积和模长关系,推导余弦定理的表达式。
几何法证明余弦定理利用三角形的面积公式和正弦定理,结合相似三角形的性质,证明余弦定理。
高考数学复习考点知识讲解课件25 解三角形应用举例

— 15 —
(新教材) 高三总复习•数学
— 返回 —
测量距离问题的求解策略 (1)确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量 放在另外三角形中求解. (2)确定选用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
— 16 —
(新教材) 高三总复习•数学
— 返回 —
即 DE=si1n0705s°itna4n51°5°=sin17050°×sincs4oi5ns°1155°°=sin17050°s×inss4ii5nn°1755°°=10s0insi1n54°5°.
又 sin15°=sin(45°-30°)=
6- 4
2,所以 DE=10s0insi1n54°5°=100(
图形表示
— 返回 —
— 5—
(新教材) 高三总复习•数学
术语 名称
术语意义
图形表示 例:(1)北偏东 α:
方向角
正北或正南方向线与目标 方向线所成的__锐__角__,通
常表达为北(南)偏东(西)α
(2)南偏西 α:
— 返回 —
— 6—
(新教材) 高三总复习•数学
— 返回 —
术语 名称
术语意义
图形表示
术语 名称
术语意义
在目标视线与水平视线(两者在
同一铅垂平面内)所成的角中, 仰角与俯角 目标视线在水平视线__上__方__的
叫做仰角,目标视线在水平视线 _下__方__的叫做俯角
图形表示
— 返回 —
— 4—
(新教材) 高三总复习•数学
术语 名称
方位角
术语意义
从某点的指北方向线起按 _顺__时__针__方向到目标方向线 之间的夹角叫做方位角.方 位角 θ 的范围是0_°_≤__θ_<_3_6_0_°
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
中数学课件:1.2.2解三角形的实际应用举例——高度、角度问题(人教A版必修5)

【规范解答】在△BCD中,∠BCD=α,∠BDC=β,
∴∠CBD=180°-(α+β),
BC sin
sin[180
s
,即
]
BC sin
sin
s
.
BC sin s. sin( )
在△ABC中,由于∠ABC=90°,
AB tan , BC
【规范解答】 H tan AD H , ………………2分
AD
tan
同理: AB H ,BD h . …………………………4分
tan
tan
AD-AB=DB,故得 H H h , ………………… 6分
tan tan tan
解得: H h tan 41.24 124. ………………10分
21 .
sin ABC sin 60
21 14
3
作AD⊥BC于点D,∴当船行驶到点D时,AD最小,从而PD最小.
此时, AD ABsin ABC 3 21 3 7,
14 14
∴ PD= 1 ( 3 7)2 259 .
14
14
∴船在行驶过程中与观察站P的最短距离为
259 km.
tan tan 1.24 1.20
因此,算出的电视塔的高度H是124 m.………………12分
【误区警示】对解答本题时易犯的错误具体分析如下:
1.从A处望B处的仰角为α ,从B处望A处的俯角为β ,则α ,
β 的关系是( )
(A)α >β
(B)α =β
(C)α +β =90°
2011届高三数学一轮复习精品课件:解三角形应用举例
课堂互动讲练
考点三 测量角度
测量角度问题也就是通过解三角 形求角问题, 形求角问题,求角问题可以转化为求 该角的函数值; 该角的函数值;如果是用余弦定理求 得该角的余弦,该角容易确定, 得该角的余弦,该角容易确定,如果 用正弦定理求得该角的正弦, 用正弦定理求得该角的正弦,就需要 讨论解的情况了. 讨论解的情况了.
课堂互动讲练
结合题意 思路点拨】 【思路点拨】 画出图形 在底面三角形 中借助余弦定 理列方程 用山高h表示 用山高 表示 底面三角形未 知边长度
解方程 求出高h 求出高
课堂互动讲练
【解】 画出示意图
课堂互动练
设山高 PQ=h,则△APQ、△ BPQ 均 = , 、 为直角三角形, 为直角三角形, 在图① 在图 ①中 , PAQ=30°, PBQ=45°. ∠ = , ∠ = 1 ∴AQ = PQ = 3 h , BQ = tan30° 1 PQ = h. tan45° 在图② 在图 ②中,∠ AQB=57°+78°= 135°, = + = , AB= 2500, = ,
三基能力强化
1.两座灯塔A和B与海岸观察站 .两座灯塔 和 与海岸观察站 C的距离相等,灯塔 在观察站北偏东 的距离相等, 的距离相等 灯塔A在观察站北偏东 40°,灯塔 在观察站南偏东 °, 在观察站南偏东60° ° 灯塔B在观察站南偏东 则灯塔A在灯塔 的( 则灯塔 在灯塔B的 ) 在灯塔 A.北偏东 ° .北偏东10° B.北偏西 ° .北偏西10° C.南偏东 ° .南偏东10° D.南偏西 ° .南偏西10° 答案:B 答案:
速度追截走私船.此时, 速度追截走私船.此时,走私船正以 10 n mile/h的速度从 处向北偏东 ° 的速度从B处向北偏东 的速度从 处向北偏东30° 方向逃窜, 方向逃窜,问缉私船沿什么方向能最 快追上走私船? 快追上走私船?
人教版A版高中数学必修5:第一章解三角形_应用举例_课件23
一、解三角形应用题常见的几种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在 一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个 (或两个以上)三角形,这时需作出这些三角形,先解够条件的 三角形,然后逐步求出其他三角形中的解,有时需设出未知量, 从几个三角形中列出方程,解方程得出所要求的解.
解析:
设快艇驶离港口 B 后,最少要经过 xh,在 OA 上的点 D 处与考察船相遇.如图,连接 CD.则快艇沿线段 BC,CD 航行.
在△OBC 中,∠BOC=30°,∠CBO=60°,∴∠BCO=90°. 又 BO=120,∴BC=60,OC=60 3.故快艇从港口 B 到 小岛 C 需要 1h. 在△OCD 中,∠COD=30°,OD=20x,CD=60(x-2). 由余弦定理知,CD2=OD2+OC2-2OD·OCcos∠COD, ∴602(x-2)2=(20x)2+(60 3)2-2·20x·60 3cos30°,解得 x =3 或 x=38. ∵x>1,∴x=3. 故快艇驶离港口 B 后,最少要经过 3h 才能和考察船相遇.
分析:边读题,边画图形,如图,将条件中的角、长度 标上,求轮船离港口 A 还有多远,即求 AD 的长,在△ACD 中,已知一角(A)一边(CD),待求 AD,结合已知条件△BCD 三边长已知,由余弦定理可求三角,考虑沟通已知和未知, 可利用∠ADC 与∠BDC 互补,求∠BDC.
解析:
在△BDC 中,由余弦定理知, cos∠CDB=BD2+2BCDD·C2-D BC2 =-17,
测量距离的问题
[例 1] (2011·东北三校二模)港口 A 北偏东 30°方向的 C 处有一检查站,港口正东方向的 B 处有一轮船,距离检查站 为 31n mile,该轮船从 B 处沿正西方向航行 20n mile 后到达 D 处观测站,已知观测站与检查站距离 21n mile,问此时轮 船离港口 A 还有多远?
_高中数学第一章解三角形2应用举例4课件新人教版必修
命题方向2 正、余弦定理在生产、生活中不易到达点测距 中的应用
要测量河对岸两地 A、B 之间的距离,在岸边选取相距 100 3 m 的 C、D 两点,并测得∠ACB=75°,∠BCD=45°, ∠ADC=30°,∠ADB=45°(A、B、C、D 在同一平面内),求 A、 B 两地的距离.
[分析] 此题是测量计算河对岸两点间的距离,给出的角度较 多,涉及几个三角形,重点应注意依次解哪几个三角形才较为 简便.
跟踪练习
如图所示,a是海面上一条南北方向的海防警戒线,在a上点A 处有一个水声监测点,另两个监测点B、C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个 声波,8 s后监测点A、20 s后监测点C相继收到这一信号.在当 时的气象条件下,声波在水中的传播速度是1.5 km/s.
[解析] (1)依题意,PA-PB=1.5×8=12(km),PC-PB= 1.5×20=30(km).
∴PB=(x-12)km,PC=(18+x)km. 在△PAB 中,AB=20 km, cos∠PAB=PA2+2PAAB·A2-B PB2=x2+2022-x·20x-122=3x+5x32. 同理,cos∠PAC=723-x x. 由于 cos∠PAB=cos∠PAC, 即3x+5x32=723-x x,解得 x=1372(km).
∴cosC=-cos(A+B)=-cosAcosB+sinAsinB
=-45×
22+
22×35=-
2 10 .
(2)由(1)知 cosC=-102,∴sinC=7102, 由正弦定理,得sAinBC=sBinCA, ∴AB=10×27102=14.
2 ∴BD=7.
在△BCD 中,由余弦定理,得
2015高考总复习数学(文)课件:7.2解三角形应用举例
图 7-2-4 解:在ABD 中,设 BD=x, 则 BA2=BD2+AD2-2BD· AD· cos∠BDA, 即 142=x2+102-2· 10x· cos60°, 整理,得 x2-10x-96=0,
解得 x1=16,x2=-6(舍去).
由正弦定理,得
BC BD = , sin∠CDB sin∠BCD
5.如图 7-2-3,在日本地震灾区的搜救现场,一条搜救狗 从 A 处沿正北方向行进 x m 到达 B 处发现一个生命迹象,然后 向右转 105°,行进 10 m 到达 C 处发现另一生命迹象,这时它
10 6 3 向右转 135°后继续前行回到出发点,那么 x=_______.
图 7-2-3
考点1
16 ∴BC= · sin30°=8 2 ≈11.3(km). sin135° 答:两景点 B 与 C 的距离约为 11.3 km.
【方法与技巧】(1)利用示意图把已知量和待求量尽量集中 在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦 定理解出所需要的边和角,求得该数学模型的解.
【互动探究】 1.在相距 2 千米的 A,B 两点处测量目标 C,若∠CAB=
A.10°
B.50°
C.120°
D.130°
2.如图 7-2-2,某河段的两岸可视为平行,在河段的一岸 边选取两点 A,B,观察对岸的点C,测得∠CAB=75°,∠CBA =45°,且 AB=200 米.则 A,C 两点的距离为( A )
图 7-2-2
200 6 A. 3 米 100 6 C. 3 米 B.100 D.200 6米 2米
在 Rt△ABD 中,∠ADB=30°,则 BD= 3 AB=30 3 (m).
在△BCD 中,BC=30 m,BD=30 3 m,∠CBD=30°, 由余弦定理,得 CD2=BC2+BD2-2BC· BD· cos∠CBD