1.1正弦、余弦定理

合集下载

1.1.1正弦定理

1.1.1正弦定理

3.不解三角形,判断下列三角形解的个数. 导学号 54742105 (1)a=5,b=4,A=120° ; (2)a=7,b=14,A=150° ; (3)a=9,b=10,A=60° .
[解析]
正弦定理适用于任意三角形,故①②均不正确;由正弦定理可知,
三角形一旦确定,则各边与其所对角的正弦的比就确定了,故③正确;由比例
性质和正弦定理可推知④正确.故选B.
2.在△ABC 中,B=30° ,C=45° ,c=1,求边 b 的长及△ABC 外接圆的半径 R. 导学号 54742001
a<b
无解 无解 一解 ________ ________ a=bsinA ________ a<bsinA
已知 a、b、A,△ABC 解的情况如下图示. (ⅰ)A 为钝角或直角时解的情况如下:
(ⅱ)A为锐角时,解的情况如下:
1.有关正弦定理的叙述: ①正弦定理只适用于锐角三角形; ②正弦定理不适用于钝角三角形; ③在某一确定的三角形中,各边与它的对角的正弦的比是定值; ④在△ABC 中,sinA︰sinB︰sinC=a︰b︰c. 其中正确的个数是 导学号 54742000 ( B ) A.1 C.3 B.2 D.4
1.回顾学过的三角形知识填空
180° ;三条边满足:两边之和________ 大于 第三 (1)任意三角形的内角和为________
小于 第三边,并且大边对________ 大角 ,小边对________ 小角 . 边,两边之差________
a2+b2=c2 2.直角三角形的三边长a,b,c(斜边)满足勾股定理,即____________.
第一章
解三角形 1.1 正弦定理和余弦定理
第1课时 正弦定理

(人教版)数学必修五:1.1《正弦定理和余弦定理(1)》课件

(人教版)数学必修五:1.1《正弦定理和余弦定理(1)》课件
(2)利用正弦定理可以解决的两类解三角形问题: ①已知任意两角与一边,求其他两边和一角.
②已知任意两边与其中一边的对角,求其他的边和角.
(3)已知两边及其中一边对角,判断三角形解的个数的方 法:①应用三角形中大边对大角的性质以及正弦函数的值域判 断解的个数.
图示已知a、b、A,△ABC解的情况. (ⅰ)A为钝角或直角时解的情况如下:
外接圆的半径 R.
[解析] 已知 B=30°,C=45°,c=1.
由正弦定理,得sibnB=sincC=2R,
所以 b=cssiinnCB=1×sinsi4n53°0°= 22,
2R=sincC=sin145°=
2,得
R=
2 2.
所以,b=
22,△ABC
外接圆的半径
R=
2 2.
3.解三角形
(1)定义:一般地,把三角形三个角 A、B、C 和它们的对边 a、b、c 叫做三角形的元素.已知三角形的几个元素求其他元 素的过程叫做解三角形.
(3)sinB=bsina60°=190×
23=5 9 3,而
35 2<
9
3<1,
∴当 B 为锐角时,满足 sinB=593的 B 的取值范围为
60°<B<90°.
∴对应的钝角 B 有 90°<B<120°,也满足 A+B<180°,所以
△ABC 有两解.
已知两角和一边解三角形
在△ABC 中,已知 A=60°,B=45°,c=2,解 三角形.
有关正弦定理的叙述:
①正弦定理只适用于锐角三角形;
②正弦定理不适用于钝角三角形;
③在某一确定的三角形中,各边与它的对角的正弦的比是
定值;

正弦定理和余弦定理

正弦定理和余弦定理

§1.1.1 正弦定理学习目标1. 掌握正弦定理的内容;2. 掌握正弦定理的证明方法;3. 会运用正弦定理解斜三角形的两类基本问题.学习过程一、课前准备试验:固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动.思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而 .能否用一个等式把这种关系精确地表示出来?二、新课导学 ※ 学习探究探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系. 如图,在Rt ∆ABC 中,设BC =a ,AC =b ,AB =c ,根据锐角三角函数中正弦函数的定义, 有sin a A c =,sin b B c =,又sin 1cC c==, 从而在直角三角形ABC 中,sin sin sin a b cA B C==.(探究2:那么对于任意的三角形,以上关系式是否仍然成立?可分为锐角三角形和钝角三角形两种情况:当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD =sin sin a B b A =,则sin sin a bA B=, 同理可得sin sin c bC B =, 从而sin sin a b A B =sin c C=.类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立.请你试试导.新知:正弦定理在一个三角形中,各边和它所对角的 的比相等,即sin sin a b A B =sin cC=. 试试:(1)在ABC ∆中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B = C . sin sin a B b A = D .cos cos a B b A =(2)已知△ABC 中,a =4,b =8,∠A =30°,则∠B 等于 .[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =, ,sin c k C =;(2)sin sin a b A B =sin c C =等价于 ,sin sin c b C B =,sin a A =sin cC . (3)正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=;b = .②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin aA B b=;sin C = .(4)一般地,已知三角形的某些边和角,求其它的边和角的过程叫作解三角形.※ 典型例题例1. 在ABC ∆中,已知45A = ,60B = ,42a =cm ,解三角形.变式:在ABC ∆中,已知45B = ,60C = ,12a =cm ,解三角形.例2. 在6,45,2,,ABC c A a b B C ∆=== 中,求和.变式:在3,60,1,,ABC b B c a A C ∆=== 中,求和.三、总结提升 ※ 学习小结1. 正弦定理:sin sin a b A B =sin cC= 2. 正弦定理的证明方法:①三角函数的定义, 还有 ②等积法,③外接圆法,④向量法. 3.应用正弦定理解三角形: ①已知两角和一边;②已知两边和其中一边的对角.※ 知识拓展 sin sin a b A B =2sin cR C==,其中2R 为外接圆直径. 学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在ABC ∆中,若cos cos A bB a=,则ABC ∆是( ).A .等腰三角形B .等腰三角形或直角三角形C .直角三角形D .等边三角形 2. 已知△ABC 中,A ∶B ∶C =1∶1∶4, 则a ∶b ∶c 等于( ).A .1∶1∶4B .1∶1∶2C .1∶1∶3D .2∶2∶3 3. 在△ABC 中,若sin sin A B >,则A 与B 的大小关系为( ). A. A B > B. A B <C. A ≥BD. A 、B 的大小关系不能确定4. 已知∆ABC 中,sin :sin :sin 1:2:3A B C =,则::a b c = .5. 已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C ++++= .课后作业1. 已知△ABC 中,AB =6,∠A =30°,∠B =120︒,解此三角形.2. 已知△ABC 中,sin A ∶sin B ∶sin C =k ∶(k +1)∶2k (k ≠0),求实数k 的取值范围为.§1.1.2 余弦定理学习目标1. 掌握余弦定理的两种表示形式;2. 证明余弦定理的向量方法;3. 运用余弦定理解决两类基本的解三角形问题.学习过程一、课前准备复习1:在一个三角形中,各 和它所对角的 的 相等,即 = = .复习2:在△ABC 中,已知10c =,A =45︒,C =30︒,解此三角形.思考:已知两边及夹角,如何解此三角形呢?二、新课导学 ※ 探究新知 问题:在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b .∵AC =, ∴AC AC ∙=同理可得: 2222c o s a b c b c A =+-, 2222cos c a b ab C =+-.新知:余弦定理:三角形中任何一边的 等于其他两边的 的和减去这两边与它们的夹角的 的积的两倍.思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角? 从余弦定理,又可得到以下推论:222cos 2b c a A bc+-=, , . [理解定理](1)若C =90︒,则cos C = ,这时222c a b =+由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. (2)余弦定理及其推论的基本作用为:①已知三角形的任意两边及它们的夹角就可以求出第三边;c a bA BC②已知三角形的三条边就可以求出其它角.试试:(1)△ABC 中,33a =,2c =,150B = ,求b .(2)△ABC 中,2a =,2b =,31c =+,求A .※ 典型例题例1. 在△ABC 中,已知3a =,2b =,45B = ,求,A C 和c .变式:在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.例2. 在△ABC 中,已知三边长3a =,4b =,37c =,大内角.变式:在∆ABC 中,若222a b c bc =++,求角A .三、总结提升 ※ 学习小结1. 余弦定理是任何三角形中边角之间存在的共同规律,勾股定理是余弦定理的特例;2. 余弦定理的应用范围: ① 已知三边,求三角;② 已知两边及它们的夹角,求第三边.※ 知识拓展 在△ABC 中,若222a b c +=,则角C 是直角; 若222a b c +<,则角C 是钝角; 若222a b c +>,则角C 是锐角.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a =3,c =2,B =150°,则边b 的长为( ).A. 342B. 34C. 222D. 222. 已知三角形的三边长分别为3、5、7,则最大角为( ). A .60 B .75 C .120 D .1503. 已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( ). A .513x << B .13<x <5 C . 2<x <5 D .5<x <54. 在△ABC 中,|AB |=3,|AC |=2,AB 与AC 的夹角为60°,则|AB -AC|=________. 5. 在△ABC 中,已知三边a 、b 、c 满足 222b a c ab +-=,则∠C 等于 .课后作业1. 在△ABC 中,已知a =7,b =8,cos C =1314,求最大角的余弦值.2. 在△ABC 中,AB =5,BC =7,AC =8,求AB BC ⋅的值.§1.1 正弦定理和余弦定理(练习)学习目标1. 进一步熟悉正、余弦定理内容;2. 掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.学习过程一、课前准备复习1:在解三角形时已知三边求角,用 定理;已知两边和夹角,求第三边,用 定理; 已知两角和一边,用 定理.复习2:在△ABC 中,已知 A =6π,a =252,b =502,解此三角形. 二、新课导学 ※ 学习探究探究:在△ABC 中,已知下列条件,解三角形.① A =6π,a =25,b =502;② A =6π,a =5063,b =502;③ A =6π,a =50,b =502.思考:解的个数情况为何会发生变化?新知:用如下图示分析解的情况(A 为锐角时).babab a baa 已知边a,b 和∠A仅有一个解有两个解仅有一个解无解a ≥b CH=bsinA<a<b a=CH=bsinA a<CH=bsinAAC BACB1ABACB2CHHH试试:1. 用图示分析(A 为直角时)解的情况?2.用图示分析(A 为钝角时)解的情况?※ 典型例题例1. 在∆ABC 中,已知80a =,100b =,45A ∠=︒,试判断此三角形的解的情况.变式:在∆ABC 中,若1a =,12c =,40C ∠=︒,则符合题意的b 的值有_____个.例2. 在∆ABC 中,60A =︒,1b =,2c =,求sin sin sin a b cA B C++++的值.变式:在∆ABC 中,若55a =,16b =,且1sin 22032ab C =,求角C .三、总结提升 ※ 学习小结1. 已知三角形两边及其夹角(用余弦定理解决);2. 已知三角形三边问题(用余弦定理解决);3. 已知三角形两角和一边问题(用正弦定理解决);4. 已知三角形两边和其中一边的对角问题(既可用正弦定理,也可用余弦定理,可能有一解、两解和无解三种情况).※ 知识拓展在∆ABC 中,已知,,a b A ,讨论三角形解的情况 :①当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解; ②当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论: (1)若sin a b A >,则有两解; (2)若sin a b A =,则只有一解; (3)若sin a b A <,则无解.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知a 、b 为△ABC 的边,A 、B 分别是a 、b 的对角,且sin 2sin 3A B =,则a bb +的值=( ). A.13 B. 23 C. 43 D. 532. 已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大角是( ). A .135° B .90° C .120° D .150°3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ). A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加长度决定4. 在△ABC 中,sin A :sin B :sin C =4:5:6,则cos B = .5. 已知△ABC 中,cos cos b C c B =,试判断△ABC 的形状 .课后作业1. 在∆ABC 中,a xcm =,2b cm =,45B ∠=︒,如果利用正弦定理解三角形有两解,求x 的取值范围.2. 在∆ABC 中,其三边分别为a 、b 、c ,且满足2221sin 24a b c ab C +-=,求角C .。

正弦定理和余弦定理

正弦定理和余弦定理

请问: 本题是已知什么? 求什么?
已知两边和一边所对的角, 求另外的角.
一般地, 把三角形的三个角 A、B、C 和它们的 对边 a、b、c 叫做三角形的元素, 已知三角形的三个
元素(其中至少有一个元素是边), 求其他元素的过程 叫做解三角形.
问题2. 一个三角形有几个元素? 已知怎样的几 个元素可以用正弦定理解三角形?
精确到1, 边长精确到1cm):
(1) a20cm, b11cm, B30; (2) c54cm, b39cm, C115.
解: (1) 由正弦定理得,
a sin
A

b sin B
,
B

20sin 30 11
≈0.9091,
A≈65, 或 A≈115.
② 当A≈115时,
C180-(A+B) 35,
c

asinC sin A

20sin 35 sin115
≈13(cm).
2. 在△ABC中, 已知下列条件, 解三角形 (角度
精确到1, 边长精确到1cm):
(1) a20cm, b11cm, B30; (2) c54cm, b39cm, C115.
② 当B≈139时,
注意解的检验.
B+C139+115254 >180, 不合题意 ∴此题只有一组解.
【课时小结】
1. 正弦定理
a sin
A

b sin
B

c sinC
.
【课时小结】
2. 正弦定理解三角形
(1) 已知两边和一边所对的角
如: 已知 a、b、A, 即可求 B.
sin B b
解: (2) 由正弦定理得,

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c

(人教版)数学必修五:1.1《正弦定理和余弦定理(3)》ppt课件

(人教版)数学必修五:1.1《正弦定理和余弦定理(3)》ppt课件

(1)已知△ABC 中,a=2,A=45° ,B=30° ,求 b、c 和 C; (2)已知△ABC 中,a= 3,b=1,B=120° ,求 A; 2 (3)在△ABC 中,lga-lgc=lgsinB=lg ,且 B 为锐角,判 2 断三角形的形状.
[ 解析]
(1)根据三角形内角和定理,得
C=180° -(A+B)=180° -(45° +30° )=105° . 根据正弦定理,得 1 2× 2 asinB 2sin30° b= = = = 2, sinA sin45° 2 2 6+ 2 2× 4 asinC 2sin105° 2sin75° c= = = = = 3+1. sinA sin45° sin45° 2 2
3.三角形的面积公式 1 1 1 由正弦定理可得三角形的面积 S = absinC = acsinB = 2 2 2 bcsinA.
1 钝角三角形 ABC 的面积是2,AB=1,BC= 2,则 AC= ( ) A.5 C .2 B. 5 D. 1
[ 答案]
[ 解析]
B
本题考查余弦定理及三角形的面积公式.
3 = . 2 π 因为 A 是锐角,所以 A= . 3
(2)由余弦定理 a2=b2+c2-2bccosA,得 b2+c2-bc=36. 又 b+c=8,所以 28 bc= . 3 1 由三角形面积公式 S= bcsinA,得 2 7 3 △ABC 的面积为 . 3
综合应用
在△ABC 中,角 A、B、C 的对边分别为 a、b、 π 4 c,B= ,cosA= ,b= 3. 3 5 (1)求 sinC 的值; (2)求△ABC 的面积.
1 1 1 ∵S△ABC= acsinB= · 2· 1· sinB= , 2 2 2 2 π 3π ∴sinB= ,∴B= 或 . 2 4 4 π 当 B= 时,经计算△ABC 为等腰直角三角形, 4 不符合题意,舍去. 3π ∴B= ,根据余弦定理, 4 b2=a2+c2-2accosB,解得 b= 5,故选 B.

1.1 正弦定理和余弦定理 1.1[1].1 正弦定理


首页
上一页
下一页
末页
生活中的数学
学习目标
温故知新
要点探究
典例探究
演练广场
探究要点三:正弦定理的应用 1.已知两角与一边,用正弦定理,有解时,只有一解. 2.已知两边及其中一边的对角,用正弦定理,可能有两解、一解或无解.在△ABC 中, 已知 a,b 和 A 时,解的情况如下: A 为锐角 A 为钝角或直角
a b 解析:由 = ⇒sin A∶sin B=a∶b=5∶3. sin A sin B
答案:5∶3
4.在△ABC 中,已知 a=5,b=2,B=120° ,解三角形.
a b asin B 5sin 120° 5 3 解:由 = 得 sin A= = = >1, sin A sin B b 2 4 ∴角 A 不存在.故此题无解.
图1
首页
上一页
下一页
末页
生活中的数学
学习目标
温故知新
要点探究
典例探究
演练广场
因为 AB + BC + CA =0,
AB +j· 所以 j· 0=0. BC +j· CA =j· π π π 即|j|| AB |cos +|j|| BC |cos( -B)+|j|| CA |cos( +A)=0. 2 2 2 a b 所以 asin B=bsin A,即 = . sin A sin B b c a b c 同理可得: = ,即 = = . sin B sin C sin A sin B sin C 当△ABC 为钝角三角形(如图 1(2))或为直角三角形时,利用同样的方法可以证得结论, 请同学们自己证明.
图形
关系式 解的个数
①a=bsin A ②a≥b 一解
bsin A<a<b 两解

正弦定理和余弦定理解直角三角形

第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)课时目标1.熟记正弦定理的内容;2.能够初步运用正弦定理解斜三角形.1.在△ABC 中,A +B +C =π,A 2+B 2+C 2=π2.2.在Rt △ABC 中,C =π2,则a c =sin_A ,bc=sin_B .3.一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.4.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a sin A =b sin B =csin C,这个比值是三角形外接圆的直径2R .一、选择题1.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若A ∶B ∶C =1∶2∶3,则 a ∶b ∶c 等于( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .1∶3∶2 2.若△ABC 中,a =4,A =45°,B =60°,则边b 的值为( ) A.3+1 B .23+1 C .2 6 D .2+2 33.在△ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为( ) A .直角三角形 B .等腰直角三角形 C .等边三角形 D .等腰三角形4.在△ABC 中,若sin A >sin B ,则角A 与角B 的大小关系为( ) A .A >B B .A <BC .A ≥BD .A ,B 的大小关系不能确定 5.在△ABC 中,A =60°,a =3,b =2,则B 等于( ) A .45°或135° B .60° C .45° D .135°6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75° 二、填空题7.在△ABC 中,AC =6,BC =2,B =60°,则C =_________.8.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.9.在△ABC 中,b =1,c =3,C =2π3,则a =________.10.在△ABC 中,已知a ,b ,c 分别为内角A ,B ,C 的对边,若b =2a ,B =A +60°,则A =______.三、解答题11.在△ABC 中,已知a =22,A =30°,B =45°,解三角形.12.在△ABC 中,已知a =23,b =6,A =30°,解三角形.能力提升13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 若a =2,b =2,sin B +cos B =2,则角A 的大小为________.14.在锐角三角形ABC 中,A =2B ,a ,b ,c 所对的角分别为A ,B ,C ,求ab的取值范围.1.利用正弦定理可以解决两类有关三角形的问题: (1)已知两角和任一边,求其它两边和一角.(2)已知两边和其中一边的对角,求另一边和两角.2.已知两边和其中一边的对角,求第三边和其它两个角,这时三角形解的情况比较复杂,可能无解,可能一解或两解.例如:已知a 、b 和A ,用正弦定理求B 时的各种情况.A 为锐角a <b sin A a =b sin A b sin A<a <b a ≥b无解 一解(直角) 两解(一锐角, 一钝角)一解(锐角)A 为直角或钝角 a ≤b a >b 无解 一解(锐角)1.1.1 正弦定理(二)课时目标1.熟记正弦定理的有关变形公式;2.能够运用正弦定理进行简单的推理与证明.1.正弦定理:a sin A =b sin B =csin C=2R 的常见变形:(1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R ; (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =a 2R ,sin B =b 2R ,sin C =c2R.2.三角形面积公式:S =12ab sin C =12bc sin A =12ca sin B .一、选择题1.在△ABC 中,sin A =sin B ,则△ABC 是( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .等腰三角形2.在△ABC 中,若a cos A =b cos B =ccos C,则△ABC 是( )A .直角三角形B .等边三角形C .钝角三角形D .等腰直角三角形3.在△ABC 中,sin A =34,a =10,则边长c 的取值范围是( )A.⎝⎛⎭⎫152,+∞ B .(10,+∞)C .(0,10) D.⎝⎛⎦⎤0,403 4.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形 5.在△ABC 中,已知(b +c )∶(c +a )∶(a +b )=4∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .6∶5∶4 B .7∶5∶3C .3∶5∶7D .4∶5∶66.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为( )A .1B .2 C.12D .4 二、填空题7.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =60°,a =3,b =1,则c =________.9.在单位圆上有三点A ,B ,C ,设△ABC 三边长分别为a ,b ,c ,则a sin A +b 2sin B +2csin C=________.10.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________.三、解答题11.在△ABC 中,求证:a -c cos B b -c cos A =sin Bsin A.12.在△ABC 中,已知a 2tan B =b 2tan A ,试判断△ABC 的形状.能力提升13.在△ABC 中,B =60°,最大边与最小边之比为(3+1)∶2,则最大角为( ) A .45° B .60° C .75° D .90°14.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC 的面积S .1.在△ABC 中,有以下结论: (1)A +B +C =π;(2)sin(A +B )=sin C ,cos(A +B )=-cos C ; (3)A +B 2+C 2=π2;(4)sin A +B 2=cos C 2,cos A +B 2=sin C 2,tan A +B 2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.1.1.2 余弦定理(一)课时目标1.熟记余弦定理及其推论;2.能够初步运用余弦定理解斜三角形.1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C .2.余弦定理的推论cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 22ab.3.在△ABC 中:(1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2-ab ,则C =60°;(3)若c 2=a 2+b 2+2ab ,则C =135°.一、选择题1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .52.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π123.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .44.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.235.在△ABC 中,sin 2A 2=c -b2c(a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰直角三角形D .等腰三角形6.在△ABC 中,已知面积S =14(a 2+b 2-c 2),则角C 的度数为( )A .135°B .45°C .60°D .120° 二、填空题7.在△ABC 中,若a 2-b 2-c 2=bc ,则A =________. 8.△ABC 中,已知a =2,b =4,C =60°,则A =________.9.三角形三边长为a ,b ,a 2+ab +b 2 (a >0,b >0),则最大角为________.10.在△ABC 中,BC =1,B =π3,当△ABC 的面积等于3时,tan C =________.三、解答题11.在△ABC 中,已知CB =7,AC =8,AB =9,试求AC 边上的中线长.12.在△ABC 中,BC =a ,AC =b ,且a ,b 是方程x 2-23x +2=0的两根,2cos(A +B )=1.(1)求角C 的度数; (2)求AB 的长;(3)求△ABC 的面积.能力提升 13.(2010·潍坊一模)在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.14.在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.1.利用余弦定理可以解决两类有关三角形的问题: (1)已知两边和夹角,解三角形. (2)已知三边求三角形的任意一角. 2.余弦定理与勾股定理余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.1.1.2 余弦定理(二)课时目标1.熟练掌握正弦定理、余弦定理;2.会用正、余弦定理解三角形的有关问题.1.正弦定理及其变形(1)a sin A =b sin B =c sin C=2R . (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C .(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R.(4)sin A ∶sin B ∶sin C =a ∶b ∶c . 2.余弦定理及其推论 (1)a 2=b 2+c 2-2bc cos_A .(2)cos A =b 2+c 2-a 22bc.(3)在△ABC 中,c 2=a 2+b 2⇔C 为直角;c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 3.在△ABC 中,边a 、b 、c 所对的角分别为A 、B 、C ,则有:(1)A +B +C =π,A +B 2=π2-C2.(2)sin(A +B )=sin_C ,cos(A +B )=-cos_C ,tan(A +B )=-tan_C .(3)sin A +B 2=cos C 2,cos A +B 2=sin C 2.一、选择题1.已知a 、b 、c 为△ABC 的三边长,若满足(a +b -c )(a +b +c )=ab ,则∠C 的大小为( )A .60°B .90°C .120°D .150°2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等边三角形 3.在△ABC 中,已知sin A ∶sin B ∶sin C =3∶5∶7,则这个三角形的最小外角为 ( ) A .30° B .60° C .90° D .120°4.△ABC 的三边分别为a ,b ,c 且满足b 2=ac,2b =a +c ,则此三角形是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形5.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若C =120°, c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 6.如果将直角三角形的三边增加同样的长度,则新三角形的形状是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .由增加的长度确定 二、填空题 7.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,C =60°,则边c =________. 8.设2a +1,a,2a -1为钝角三角形的三边,那么a 的取值范围是________. 9.已知△ABC 的面积为23,BC =5,A =60°,则△ABC 的周长是________. 10.在△ABC 中,A =60°,b =1,S △ABC =3,则△ABC 外接圆的面积是________. 三、解答题11.在△ABC 中,求证:a 2-b 2c 2=sin (A -B )sin C.12.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边的长,cosB =53, 且AB ·BC =-21. (1)求△ABC 的面积; (2)若a =7,求角C .能力提升13.已知△ABC 中,AB =1,BC =2,则角C 的取值范围是( )A .0<C ≤π6B .0<C <π2C.π6<C <π2D.π6<C ≤π314.△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知b 2=ac 且cos B =34.(1)求1tan A +1tan C 的值;(2)设BA ·BC = 23,求a+c 的值.1.解斜三角形的常见类型及解法在三角形的6个元素中要已知三个(至少有一边)才能求解,常见类型及其解法见下表:已知条件 应用定理 一般解法一边和两角 (如a ,B ,C ) 正弦定理由A +B +C =180°,求角A ;由正弦定理求出b 与c .在有解时只有一解.两边和夹角 (如a ,b ,C ) 余弦定理正弦定理由余弦定理求第三边c ;由正弦定理求出小边所对的角;再由A +B +C =180°求出另一 角.在有解时只有一解.三边(a ,b ,c )余弦定理 由余弦定理求出角A 、B ;再利用A +B +C =180°,求出角C .在有一解时只有一解. 两边和其中一边的对角如 (a ,b ,A ) 余弦定理 正弦定理 由正弦定理求出角B ;由A +B +C =180°,求出角C ;再利用正弦定理或余弦定理求c .可有两解、一解或无解.2.根据所给条件确定三角形的形状,主要有两种途径 (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.第一章 解三角形§1.1 正弦定理和余弦定理 1.1.1 正弦定理(一)一、选择题 1答案 D 2答案 C 解析 由正弦定理a sin A =b sin B, 得4sin 45°=bsin 60°,∴b =2 6. 3答案 A解析 sin 2A =sin 2B +sin 2C ⇔(2R )2sin 2A =(2R )2sin 2B +(2R )2sin 2C ,即a 2=b 2+c 2,由勾股定理的逆定理得△ABC 为直角三角形.4答案 A解析 由sin A >sin B ⇔2R sin A >2R sin B ⇔a >b ⇔A >B . 5答案 C解析 由a sin A =b sin B 得sin B =b sin Aa=2sin 60°3=22.∵a >b ,∴A >B ,B <60° ∴B =45°. 6答案 A解析 ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C . ∴tan C =- 3. 又C ∈(0°,180°),∴C =120°. 二、填空题 7答案 75°解析 由正弦定理得2sin A =6sin 60°,∴sin A =22.∵BC =2<AC =6,∴A 为锐角.∴A =45°. ∴C =75°.8答案 102解析 ∵tan A =13,A ∈(0°,180°),∴sin A =1010.由正弦定理知BC sin A =ABsin C,∴AB =BC sin C sin A =1×sin 150°1010=102.9答案 1解析 由正弦定理,得 3sin 2π3=1sin B , ∴sin B =12.∵C 为钝角,∴B 必为锐角,∴B =π6,∴A =π6.∴a =b =1. 10答案 30°解析 ∵b =2a ∴sin B =2sin A ,又∵B =A +60°,∴sin(A +60°)=2sin A即sin A cos 60°+cos A sin 60°=2sin A ,化简得:sin A =33cos A ,∴tan A =33,∴A =30°. 三、解答题11解 ∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4. ∵C =180°-(A +B )=180°-(30°+45°)=105°,∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=2+2 3. 12解 a =23,b =6,a <b ,A =30°<90°.又因为b sin A =6sin 30°=3,a >b sin A ,所以本题有两解,由正弦定理得:sin B =b sin A a =6sin 30°23=32,故B =60°或120°. 当B =60°时,C =90°,c =a 2+b 2=43;当B =120°时,C =30°,c =a =2 3. 所以B =60°,C =90°,c =43或B =120°,C =30°,c =2 3.13答案 π6解析 ∵sin B +cos B =2sin(π4+B )= 2. ∴sin(π4+B )=1. 又0<B <π,∴B =π4. 由正弦定理,得sin A =a sin B b =2×222=12. 又a <b ,∴A <B ,∴A =π6. 1.1.1 正弦定理(二)一、选择题1答案 D2答案 B解析 由正弦定理知:sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C ,∴A =B =C .3答案 D解析 ∵c sin C =a sin A =403,∴c =403sin C . ∴0<c ≤403. 4答案 A解析 由a =2b cos C 得,sin A =2sin B cos C ,∴sin(B +C )=2sin B cos C ,∴sin B cos C +cos B sin C =2sin B cos C ,∴sin(B -C )=0,∴B =C .5答案 B解析 ∵(b +c )∶(c +a )∶(a +b )=4∶5∶6,∴b +c 4=c +a 5=a +b 6. 令b +c 4=c +a 5=a +b 6=k (k >0), 则⎩⎪⎨⎪⎧ b +c =4k c +a =5ka +b =6k ,解得⎩⎪⎨⎪⎧ a =72k b =52kc =32k .∴sin A ∶sin B ∶sin C =a ∶b ∶c =7∶5∶3.6答案 A解析 设三角形外接圆半径为R ,则由πR 2=π,得R =1,由S △=12ab sin C =abc 4R =abc 4=14,∴abc =1. 二、填空题7答案 2 3解析 ∵cos C =13,∴sin C =223, ∴12ab sin C =43,∴b =2 3. 8答案 2 解析 由正弦定理a sin A =b sin B ,得3sin 60°=1sin B, ∴sin B =12,故B =30°或150°.由a >b , 得A >B ,∴B =30°,故C =90°,由勾股定理得c =2.9答案 7解析 ∵△ABC 的外接圆直径为2R =2,∴a sin A =b sin B =c sin C=2R =2, ∴a sin A +b 2sin B +2c sin C=2+1+4=7. 10答案 12 6解析 a +b +c sin A +sin B +sin C =a sin A =6332=12.∵S △ABC =12ab sin C =12×63×12sin C =183, ∴sin C =12,∴c sin C =a sin A=12,∴c =6. 三、解答题11证明 因为在△ABC 中,a sin A =b sin B =c sin C=2R , 所以左边=2R sin A -2R sin C cos B 2R sin B -2R sin C cos A=sin (B +C )-sin C cos B sin (A +C )-sin C cos A =sin B cos C sin A cos C =sin B sin A=右边. 所以等式成立,即a -c cos B b -c cos A =sin B sin A. 12解 设三角形外接圆半径为R ,则a 2tan B =b 2tan A⇔a 2sin B cos B =b 2sin A cos A⇔4R 2sin 2 A sin B cos B =4R 2sin 2 B sin A cos A⇔sin A cos A =sin B cos B⇔sin 2A =sin 2B⇔2A =2B 或2A +2B =π⇔A =B 或A +B =π2. ∴△ABC 为等腰三角形或直角三角形.13答案 C解析 设C 为最大角,则A 为最小角,则A +C =120°,∴sin C sin A =sin ()120°-A sin A=sin 120° cos A -cos 120°sin A sin A=32tan A +12=3+12=32+12, ∴tan A =1,A =45°,C =75°.14解 cos B =2cos 2 B 2-1=35, 故B 为锐角,sin B =45. 所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =7210.由正弦定理得c =a sin C sin A =107, 所以S △ABC =12ac sin B =12×2×107×45=87. 1.1.2 余弦定理(一)一、选择题1答案 A2答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab=72+(43)2-(13)22×7×43=32.∴C =π6. 3答案 C解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 22a=a =2. 4答案 B解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34. 5答案 B解析 ∵sin 2A 2=1-cos A 2=c -b 2c, ∴cos A =b c =b 2+c 2-a 22bc ⇒a 2+b 2=c 2,符合勾股定理. 故△ABC 为直角三角形.6答案 B解析 ∵S =14(a 2+b 2-c 2)=12ab sin C , ∴a 2+b 2-c 2=2ab sin C ,∴c 2=a 2+b 2-2ab sin C .由余弦定理得:c 2=a 2+b 2-2ab cos C ,∴sin C =cos C ,∴C =45° .二、填空题7答案 120°8答案 30°解析 c 2=a 2+b 2-2ab cos C=22+42-2×2×4×cos 60°=12∴c =2 3.由正弦定理:a sin A =c sin C 得sin A =12. ∵a <c ,∴A <60°,A =30°.9答案 120°解析 易知:a 2+ab +b 2>a ,a 2+ab +b 2>b ,设最大角为θ,则cos θ=a 2+b 2-(a 2+ab +b 2)22ab =-12, ∴θ=120°. 10答案 -2 3解析 S △ABC =12ac sin B =3,∴c =4.由余弦定理得,b 2=a 2+c 2-2ac cos B =13, ∴cos C =a 2+b 2-c 22ab =-113,sin C =1213, ∴tan C =-12=-2 3.11解 由条件知:cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理知:x 2=⎝⎛⎭⎫AC 22+AB 2-2·AC 2·AB cos A =42+92-2×4×9×23=49 ⇒x =7.所以,所求中线长为7.12解 (1)cos C =cos [π-(A +B )]=-cos(A +B )=-12, 又∵C ∈(0°,180°),∴C =120°.(2)∵a ,b 是方程x 2-23x +2=0的两根,∴⎩⎨⎧a +b =23,ab =2.∴AB 2=b 2+a 2-2ab cos 120°=(a +b )2-ab =10,∴AB =10.(3)S △ABC =12ab sin C =32. 1.1.2 余弦定理(二)一、选择题1答案 C解析 ∵(a +b -c )(a +b +c )=ab ,∴a 2+b 2-c 2=-ab ,即a 2+b 2-c 22ab =-12, ∴cos C =-12,∴∠C =120°. 2答案 C解析 ∵2cos B sin A =sin C =sin(A +B ),∴sin A cos B -cos A sin B =0,即sin(A -B )=0,∴A =B .3答案 B解析 ∵a ∶b ∶c =sin A ∶sin B ∶sin C =3∶5∶7,不妨设a =3,b =5,c =7,C 为最大内角,则cos C =32+52-722×3×5=-12. ∴C =120°.∴最小外角为60°.4答案 D解析 ∵2b =a +c ,∴4b 2=(a +c )2,即(a -c )2=0.∴a =c .∴2b =a +c =2a .∴b =a ,即a =b =c .5答案 A解析 在△ABC 中,由余弦定理得,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab .∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .6答案 A解析 设直角三角形三边长为a ,b ,c ,且a 2+b 2=c 2,则(a +x )2+(b +x )2-(c +x )2=a 2+b 2+2x 2+2(a +b )x -c 2-2cx -x 2=2(a +b -c )x +x 2>0,∴c +x 所对的最大角变为锐角.二、填空题7答案 19解析 由题意:a +b =5,ab =2.由余弦定理得:c 2=a 2+b 2-2ab cos C=a 2+b 2-ab =(a +b )2-3ab =52-3×2=19,∴c =19.8答案 2<a <8解析 ∵2a -1>0,∴a >12,最大边为2a +1. ∵三角形为钝角三角形,∴a 2+(2a -1)2<(2a +1)2,化简得:0<a <8.又∵a +2a -1>2a +1,∴a >2,∴2<a <8.9答案 12解析 S △ABC =12AB ·AC ·sin A =12AB ·AC ·sin 60°=23, ∴AB ·AC =8,BC 2=AB 2+AC 2-2AB ·AC ·cos A=AB 2+AC 2-AB ·AC =(AB +AC )2-3AB ·AC ,∴(AB +AC )2=BC 2+3AB ·AC =49,∴AB +AC =7,∴△ABC 的周长为12.10答案 13π3解析 S △ABC =12bc sin A =34c =3, ∴c =4,由余弦定理:a 2=b 2+c 2-2bc cos A=12+42-2×1×4cos 60°=13,∴a =13.∴2R =a sin A =1332=2393, ∴R =393.∴S 外接圆=πR 2=13π3. 三、解答题11证明 右边=sin A cos B -cos A sin B sin C =sin A sin C ·cos B -sin B sin C ·cos A =a c ·a 2+c 2-b 22ac -b c ·b 2+c 2-a 22bc =a 2+c 2-b 22c 2-b 2+c 2-a 22c 2=a 2-b 2c2=左边. 所以a 2-b 2c 2=sin (A -B )sin C . 12解 (1)∵AB ·BC =-21,∴BA ·BC =21.∴BA ·BC = |BA |·|BC |·cosB = accosB = 21.∴ac=35,∵cosB =53,∴sinB = 54.∴S △ABC = 21acsinB = 21×35×54 = 14. (2)ac =35,a =7,∴c =5.由余弦定理得,b 2=a 2+c 2-2ac cos B =32,∴b =4 2.由正弦定理:c sin C =b sin B. ∴sin C =c b sin B =542×45=22. ∵c <b 且B 为锐角,∴C 一定是锐角.∴C =45°.13答案 A 解析 方法一 (应用正弦定理)∵AB sin C =BC sin A ,∴1sin C =2sin A∴sin C =12sin A ,∵0<sin A ≤1, ∴0<sin C ≤12. ∵AB <BC ,∴C <A ,∴C 为锐角,∴0<C ≤π6.方法二 (应用数形结合)如图所示,以B 为圆心,以1为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点C 向圆B 作切线,设切点为A 1和A 2,当A 与A 1、A 2重合时,角C 最大,易知此时:BC =2,AB =1,AC ⊥AB ,∴C =π6, ∴0<C ≤π6. 14解 (1)由cos B =34,得sin B =1-⎝⎛⎭⎫342=74. 由b 2=ac 及正弦定理得sin 2 B =sin A sin C .于是1tan A +1tan C =cos A sin A +cos C sin C=sin C cos A +cos C sin A sin A sin C =sin (A +C )sin 2 B=sin B sin 2 B =1sin B =477. (2)由BA ·BC = 23得ca ·cosB = 23 由cos B =34,可得ca =2,即b 2=2. 由余弦定理:b 2=a 2+c 2-2ac ·cos B ,得a2+c2=b2+2ac·cos B=5,∴(a+c)2=a2+c2+2ac=5+4=9,∴a+c=3.。

正弦定理和余弦定理1 高中数学(人教)


课堂合作探究
KETANG HEZUO TANJIU
问题导学
当堂检测
解:在△ABC 中,C=180° -(A+B)=180° -(60° +45° )=75° . sin 75° =sin(45° +30° ) =sin 45° cos 30° +cos 45° sin 30° =2 ×
2 3 2 2 2 1 2 ( 3+1Leabharlann . 4第一章解三角形
1.1 正弦定理和余弦定理
1.1.1
正弦定理
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
目标导航
预习引导
1.会推导正弦定理; 学习目标 2.会用正弦定理解一些简单的三角形度量问题; 3.能用正弦定理判断三角形的形状. 重点难点 重点:应用正弦定理进行边角转化,解决三角形问题; 难点:正弦定理的理解及推导.
������������ ������������ ������ =BD=2R.故 =2R,即 =2R. sin������ sin������ sin������ ������������ ������������
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
������ 2������ ������ 2������ ������ 2������
课前预习导学
KEQIAN YUXI DAOXUE
课堂合作探究
KETANG HEZUO TANJIU
目标导航
预习引导
2.解三角形 (1)一般地,把三角形的三个角 A,B,C 和它们的对边 a,b,c 叫做三角 形的元素. (2)已知三角形的几个元素求其他元素的过程叫做解三角形.

18-19 第2章 §1 1.1 正弦定理

a b c sin A=sin B=sin C=2R (其中 R 为△ABC 的 外接圆半径
比值的 含义
)
课 时 分 层 作 业
返 首 页
自 主 预 习 • 探 新 知
(1)a= 2Rsin A ,b= 2Rsin B 变形
,c= 2Rsin C
合 作 探 究 • 攻 重 难
c a b (2)sin A= 2R ,sin B= 2R ,sin C=2R (3)a∶b∶c= sin A∶sin B∶sin C
2.三角形面积公式
自 主 预 习 • 探 新 知
阅读教材 P47~P48 问题 3,完成下列问题. 1 1 1 三角形 ABC 的面积:S= 2absin C= 2acsin B = 2bcsin A
.
当 堂 达 标 • 固 双 基
思考:(1)在△ABC 中,若已知边 a,b 和角 B,能否确定△ABC 的面积?
合 作 探 究 • 攻 重 难
asin B 2sin 60° 3 [解析] 由正弦定理得sin A= b = 3 = 3 . [答案] 3 3
当 堂 达 标 • 固 双 基
课 时 分 层 作 业
返 首 页
自 主 预 习 • 探 新 知
[合 作 探 究· 攻 重 难]
利用正弦定理解三角形
在△ABC中, (1)若A=45° ,B=30° ,a=2,求b,c与C;
第二章
解三角形
§1 正弦定理与余弦定理 1.1 正弦定理
自 主 预 习 • 探 新 知
学习目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内 容及其证明方法.(重点)2.能运用正弦定理与三角形内角和定理解决简单的三角
当 堂 达 标 • 固 双 基
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档