正弦定理与余弦定理
正弦定理和余弦定理

的面积.
思维启迪
解析
探究提高
(1)根据所给等式的结构特点利 用余弦定理将角化边进行变形 是迅速解答本题的关键. (2) 熟 练 运 用 余 弦 定 理 及 其 推 论,同时还要注意整体思想、方 程思想在解题过程中的运用.
基础知识
题型分类
(2)a= 2Rsin A ,b= 2Rsin B ,
也较大,即在 △ABC
a c= 2Rsin C ;(3)sin A= 2R ,sin B
b
c
中,A>B⇔a>b⇔ sin A>sin B.
= 2R ,sin C= 2R 等形式,以
解决不同的三角形问题.
动画展示
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
题型一
利用正弦定理解三角形
【例 1】 在△ABC 中,a= 3,b= 2, 思维启迪
解析
探究提高
B=45°.求角 A、C 和边 c.
(1)已知两角及一边可求第三角, 解这样的三角形只需直接用正弦
定理代入求解即可.
(2)已知两边和一边对角,解三角 形时,利用正弦定理求另一边的
对角时要注意讨论该角,这是解
况如下:
形的形状,主要有两种
A 为锐角
A 为钝角 或直角
途径:
(1)化边为角;(2)化角为边,
图形
并常用正弦(余弦)定理实施
关系
bsin A
a=bsin A
式
<a<b
解的 个数
一解
两解
a≥b 一解
a>b 一解
边、角转换.
正弦定理和余弦定理

正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则有正弦定理和余弦定理:正弦定理:a/sinA = b/sinB = c/sinC = 2R余弦定理:a^2 = b^2 + c^2 - 2bccosA;b^2 = c^2 + a^2 - 2cacosB;c^2 = a^2 + b^2 - 2abcosC可以通过变形得到以下公式:cosA = (b^2 + c^2 - a^2) / 2bc;cosB = (c^2 + a^2 - b^2) / 2ac;cosC = (a^2 + b^2 - c^2) / 2ab同时还有以下关系:a = 2RsinA;b = 2RsinB;c = 2RsinCa:b:c =asinB = bsinA;bsinC = csinB;asinC = csinAABC的面积S = absinC = bcsinA = acsinB = r其中r为三角形内切圆半径,可以通过S = (a + b + c)r得到。
选择题:1.在△ABC中,已知a = 2,b = 6,A = 45°,则满足条件的三角形有2个。
2.在△ABC中,A = 60°,AB = 2,且△ABC的面积为3,则BC的长为3.3.已知在△ABC中,a = x,b = 2,B = 45°,若三角形有两解,则x的取值范围是2<x<22.4.已知锐角三角形的边长分别为1,3,x,则x的取值范围是(8,10)。
注:原文中存在格式错误,已经进行修正。
整理得2c=b+bc,因为c≠0,所以等式两边同时除以c,得到2=c+b,解得c=2/(b+1)。
在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且△ABC的面积为315,b-c=2,cosA=1/4,求a的值。
解析:由cosA=1/4,得到sinA=√15/4,S△ABC=bcsinA=bc*√15/4=315,因此bc=24.又因为b-c=2,所以b^2-2bc+c^2=4,联立解得b^2+c^2=52.由余弦定理得,a=b+c-2bccosA=52-2*24*(1/4)=64,因此a=8.在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且A=π/4,b^2-a^2=c^2/2.1)求tanC的值;2)若△ABC的面积为3,求b的值。
正弦定理和余弦定理

正弦定理和余弦定理一、基础知识1.正弦定理asin A=bsin B=csin C=2R(R为△ABC外接圆的半径).正弦定理的常见变形(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)a∶b∶c=sin A∶sin B∶sin C;(4)a+b+csin A+sin B+sin C=asin A.2.余弦定理a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C. 3.三角形的面积公式(1)S△ABC=12ah a(h a为边a上的高);(2)S△ABC=12ab sin C=12bc sin A=12ac sin B;(3)S=12r(a+b+c)(r为三角形的内切圆半径).二、常用结论汇总——规律多一点1.三角形内角和定理在△ABC中,A+B+C=π;变形:A+B2=π2-C2.2.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cosC2;(4)cosA+B2=sinC2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(优质试题·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B 为锐角,∴cos B =1-sin 2B =223.(2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6, 又∵C =π6,∴B =π6,A =π-B -C =2π3. 又a =3,由正弦定理得a sin A =bsin B , 即3sin 2π3=b sin π6,解得b =1. [答案] (1)223 (2)1 考法(二) 余弦定理解三角形[典例] (1)(优质试题·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(优质试题·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b 2c -a =sin Asin B +sin C,则角B =________. [解析] (1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a22bc +a ·a 2+c 2-b 22ac =c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a=sin Asin B +sin C =ab +c,∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac , ∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[专题训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( )A.24 B .-24 C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin A a =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值. 解:(1)由正弦定理可得b 2+c 2=a 2+bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12, 因为A ∈(0,π),所以A =π3. (2)由(1)可知sin A =32,因为cos B=13,B为△ABC的内角,所以sin B=223,故sin C=sin(A+B)=sin A cos B+cos A sin B=32×13+12×223=3+226.由正弦定理asin A=csin C得c=a sin Csin A=3×(3+22)32×6=1+263.考点二判定三角形的形状[典例](1)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C +c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定(2)在△ABC中,角A,B,C的对边分别为a,b,c,若sin Asin B=ac,(b+c+a)(b+c-a)=3bc,则△ABC的形状为()A.直角三角形B.等腰非等边三角形C.等边三角形D.钝角三角形[解析](1)法一:因为b cos C+c cos B=a sin A,由正弦定理知sin B cos C+sin C cos B=sin A sin A,得sin(B+C)=sin A sin A.又sin(B+C)=sin A,得sin A=1,即A=π2,因此△ABC是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac ,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形. [答案] (1)B (2)C[变透练清]1.(变条件)若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角, 所以△ABC 是钝角三角形. 答案:钝角三角形2.(变条件)若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0,所以cos A=0或sin B=sin A,所以A=π2或B=A或B=π-A(舍去),所以△ABC为等腰或直角三角形.答案:等腰或直角三角形3.(变条件)若本例(2)条件改为“cos Acos B=ba=2”,那么△ABC的形状为________.解析:因为cos Acos B=ba,由正弦定理得cos Acos B=sin Bsin A,所以sin 2A=sin 2B.由ba=2,可知a≠b,所以A≠B.又因为A,B∈(0,π),所以2A=π-2B,即A+B=π2,所以C=π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A级1.在△ABC中,内角A,B,C的对边分别为a,b,c.若sin Aa=cos Bb,则B的大小为()A.30°B.45°C.60°D.90°解析:选B由正弦定理知,sin Asin A=cos Bsin B,∴sin B=cos B,∴B=45°.2.在△ABC中,内角A,B,C的对边分别为a,b,c.已知b=40,c=20,C=60°,则此三角形的解的情况是()A.有一解B.有两解C.无解D.有解但解的个数不确定解析:选C 由正弦定理得b sin B =csin C , ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(优质试题·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =a c ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D. 6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(优质试题·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sinB cosC +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6.6.(优质试题·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A. 5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =AC sin B , 即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝ ⎛⎭⎪⎫-14=16,∴c =4.答案:49.(优质试题·浙江高考)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=7,b=2,A=60°,则sin B=________,c=________.解析:由正弦定理asin A=bsin B,得sin B=ba·sin A=27×32=217.由余弦定理a2=b2+c2-2bc cos A,得7=4+c2-4c×cos 60°,即c2-2c-3=0,解得c=3或c=-1(舍去).答案:217 310.在△ABC中,a,b,c分别为角A,B,C所对的边,sin A,sin B,sin C 成等差数列,且a=2c,则cos A=________.解析:因为sin A,sin B,sin C成等差数列,所以2sin B=sin A+sin C.由正弦定理得a+c=2b,又因为a=2c,可得b=32c,所以cos A=b2+c2-a22bc=94c2+c2-4c22×32c2=-14.答案:-1 411.在△ABC中,内角A,B,C的对边分别为a,b,c,且A=2B.(1)求证:a=2b cos B;(2)若b=2,c=4,求B的值.解:(1)证明:因为A=2B,所以由正弦定理asin A=bsin B,得asin 2B=bsin B,所以a=2b cos B.(2)由余弦定理,a2=b2+c2-2bc cos A,因为b=2,c=4,A=2B,。
正弦定理、余弦定理对比表

正弦定理、余弦定理对比表正弦定理和余弦定理是三角学中的两个重要定理,它们分别描述了直角三角形中边长和角度之间的关系。
以下是对这两个定理的对比表:正弦定理描述了直角三角形中一个角的对边长度与该角正弦值的关系。
定理的现代形式如下:如果一个直角三角形的斜边长为c,其中一个直角边长为b,那么另一个直角边长a等于2Rsin(A),其中A是直角三角形的那个直角的角度。
这个定理可以通过几何证明方法来证明,其中一个证明方法是利用圆弧的长度与半径的关系。
正弦定理在测量和定位等领域有着广泛的应用,比如求解一个未知点的位置和距离等。
余弦定理余弦定理描述了任意三角形中任意两边长度的平方和等于第三边长的平方与其它两边夹角的余弦值的乘积。
定理的现代形式如下:对于一个三角形ABC,如果角A的对边长度为a,角B的对边长度为b,角C 的对边长度为c,那么有以下等式成立:a² = b² + c² - 2bc cos(A)。
这个定理可以通过代数证明方法来证明,其中一个证明方法是利用向量的点积和三角函数。
余弦定理在解决实际问题和数学问题中有着广泛的应用,比如求解一个三角形的面积和周长等。
对比总结正弦定理和余弦定理都是描述三角形中边长和角度之间关系的定理。
正弦定理适用于直角三角形,而余弦定理适用于任意三角形。
在应用领域方面,正弦定理主要用于测量和定位,而余弦定理则主要用于解决实际问题和数学问题。
此外,正弦定理的证明方法比较直观和几何化,而余弦定理的证明方法则比较代数化。
在实际应用中,如果知道三角形的一个角度和任意两边长度,我们可以使用正弦定理或余弦定理来求解第三条边长;如果知道三角形的三条边长,我们可以使用余弦定理来求解任意一个角度。
因此,正弦定理和余弦定理在解三角形的问题中是密不可分的。
三角形中的正弦定理与余弦定理

三角形中的正弦定理与余弦定理正文:三角形中的正弦定理与余弦定理三角形是几何学中最基本的图形之一,它包含了很多重要的定理和公式。
在三角形的研究中,正弦定理和余弦定理是两个非常重要且常用的公式。
它们可以帮助我们计算三角形的各种属性,如边长、角度等。
本文将详细介绍这两个定理的含义、推导过程,并给出实际应用的一些例子。
一、正弦定理正弦定理是指在一个三角形中,三条边与三个对应的正弦值之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB、sinC分别为三个角的正弦值。
这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的比例关系。
如果我们已知了三角形的一个角度和两个对应的边长,就可以利用正弦定理来计算第三个边的长度。
例如,已知三角形ABC中,角A的度数为30°,边AB的长度为3,边AC的长度为4,我们可以利用正弦定理求解边BC的长度。
根据正弦定理,我们有:BC/sinA = AC/sinC代入已知条件,得到:BC/sin30° = 4/sinC进一步计算可得:BC = 4*sin30°/sinC ≈ 4*0.5/sinC = 2/sinC通过这个简单的计算过程,我们可以求解出BC的长度。
正弦定理在实际应用中非常有用,可以帮助我们解决各种与三角形边长相关的问题。
二、余弦定理余弦定理是指在一个三角形中,三条边与一个对应的角度之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cosC这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的关系。
利用余弦定理,我们可以计算三角形的一个边长,当已知该边的两个对应角度和另一边的长度时。
例如,已知三角形ABC中,边AB的长度为3,边AC的长度为4,角C的度数为60°,我们可以利用余弦定理来计算边BC的长度。
余弦定理与正弦定理的推导

余弦定理与正弦定理的推导三角函数是数学中重要且常用的概念,其中余弦定理和正弦定理是解决三角形问题的基本工具。
本文将介绍余弦定理和正弦定理的推导过程,并探讨其应用。
一、余弦定理的推导余弦定理用于计算三角形任意一边的长度,其表达式为:c² = a² + b² - 2ab * cos(C)其中,a、b、c 分别表示三角形的三条边的长度,C 表示夹角C的度数。
我们假设有一个三角形ABC,令 a=BC,b=AC,c=AB,角A的度数为α,角B的度数为β,角C的度数为γ。
根据三角形的角度关系可知,α = 180° - β - γ。
根据余弦定理的定义可得:c² = a² + b² - 2ab * cos(C)将 a=BC,b=AC,c=AB 代入,得到:AB² = BC² + AC² - 2 × BC × AC × cos(γ)将γ 替换为α+β,得到:AB² = BC² + AC² - 2 × BC × AC × cos(α+β)使用余弦的和差化简公式可得:AB² = BC² + AC² - 2 × BC × AC × [cosα*cosβ - sinα*sinβ]再利用三角函数的定义可得:AB² = BC² + AC² - 2 × BC × AC × [cosα*cosβ - (1 - cos²α)(1 -cos²β)^(1/2)]经过化简,我们可以得到最终的余弦定理表达式:AB² = BC² + AC² - 2 × BC × AC × cosα*cosβ + 2 × BC × AC ×sinα*sinβ二、正弦定理的推导正弦定理用于计算三角形的边长与角度的关系,其表达式为:a/sinA = b/sinB = c/sinC根据这个定理,我们可以推导出正弦定理的表达式。
三角形正弦定理和余弦定理

三角形正弦定理和余弦定理三角形正弦定理和余弦定理是几何学中的重要定理。
它们可以用来解决三角形中任意两边和夹角的求解问题。
两个定理都是基于三角形的基本定义而推导出来的,都有它们自己的特点,可以帮助我们解决复杂的几何问题。
三角形正弦定理由法国数学家Adrien-Marie Legendre于1786年提出,它定义了三角形的正弦和余弦值之间的关系:a/sinA = b/sinB = c/sinC,其中a,b,c分别表示三角形的三边,A,B,C分别表示三边所对应的角。
它可以用来求解三角形的任意两边和夹角的大小。
余弦定理,又称余弦公式,是由18世纪英国数学家John Wallis发现的,它定义了三角形的余弦值之间的关系:a^2 =b^2 + c^2 - 2bc*cosA,其中a,b,c分别表示三角形的三边,A表示两边之间的夹角。
它可以用来求解三角形的任意两边的长度。
三角形正弦定理和余弦定理是几何学中的重要定理,它们可以用来解决三角形中任意两边和夹角的求解问题,帮助我们求解复杂的几何问题。
它们的精确性和准确性,使得它们在几何学中具有重要的作用,也被广泛应用于现代数学和工程学中。
例如,它们可以用来求解地球表面上两点之间的距离,这是很多工程学上的应用,比如建筑、测量等应用都会用到三角形正弦定理和余弦定理。
此外,它们还可以用来解决圆柱体、球体和其他几何体的体积、表面积等问题,也是工程学中重要的计算公式。
三角形正弦定理和余弦定理都是几何学的重要定理,它们可以用来解决三角形中任意两边和夹角的求解问题,它们的精确性和准确性使得它们在几何学中具有重要的作用,也被广泛应用于现代数学和工程学中,比如求解两点之间的距离,求解圆柱体、球体和其他几何体的体积、表面积等问题,都是重要的工程学计算公式。
正弦定理和余弦定理

第3讲 正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <b a ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A=2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. [审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =c cos C;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.第7讲 正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A .α>βB .α=βC .α+β=90°D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC , 所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD , ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CD sin ∠CBD , 所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β). 考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
正弦定理与余弦定理
一、三角形中的各种关系
设ABC ∆的三边分别是,,a b c ,与之对应的三个角分别是,,A B C .则有如下关系: 1、三内角关系
三角形中三内角之和为π(三角形内角和定理),即A B C π++=,; 2、边与边的关系
三角形中任意两条边的和都大于第三边,任意两条边的差都小于第三边,即
,,a b c a c b b c a +>+>+>;,,a b c a c b b c a -<-<-<;
3、边与角的关系 (1)正弦定理
三角形中任意一条边与它所对应的角的正弦之比都相等,即
2sin sin sin a b c
R A B C
===(这里,R 为ABC ∆外接圆的半径). 注1:(I )正弦定理的证明:
在ABC ∆中,设,,BC a AC b AB c ===, 证明:2sin sin sin a b c
R A B C
===(这里,R 为ABC ∆外接圆的半径)
证:法一(平面几何法):
在ABC ∆中,作CH AB ⊥,垂足为H 则在Rt AHC ∆中,sin CH A AC =
;在Rt BHC ∆中,sin CH
B BC
=
sin ,sin CH b A CH a B ∴==sin sin b A a B ⇒=即
sin sin a b
A B
=
同理可证:
sin sin b c
B C
=
于是有
sin sin sin a b c
A B C
==
正弦定理指出了任意三角形中三边与其对应角的正弦值之间的一个关系式,也就是任意三角形的边角关系.
(Ⅲ)正弦定理适用的范围:
(i )已知三角形的两角及一边,解三角形;
(ii )已知三角形的两边及其中一边所对应的角,解三角形;
(iii )运用::sin :sin :sin a b c A B C =解决角之间的转换关系. 注2:正弦定理的一些变式: (i )::sin :sin :sin a b c A B C =; (ii )sin ,sin ,sin 222a b c
A B C R R R
=
==
;
. (2)余弦定理
三角形中任意一条边的平方等于其他两条边平方的和减去这两条边与它们夹角的余弦的乘积的2倍,即
2222cos a b c bc A =+-,2222cos b c a ca B =+-,2222cos c a b ab C =+-.
注1:(I )余弦定理的证明: 法一(平面几何法)
在ABC ∆中,作CH AB ⊥,垂足为H 则在Rt AHC ∆中,sin CH CH A AC b =
=;cos AH AH
A AC b
==
注3:常选用余弦定理判定三角形的形状;
注4:求解三角形中含有边角混合关系的问题时,常运用正弦定理、余弦定理实现边角互化.
例1.在ABC ∆中,三边长为连续的正整数,且最大角是最小角的2倍,求此三角形的三边长. 例2.如下图所示,在四边形ABCD 中,已知,10AD CD AD ⊥=,14AB =,
60O BDA ∠=,135O BCD ∠=,求BC 的长.
例3.在ABC ∆中,已知7
5,4,cos()8
BC AC A B ==-=
,则cos C =()
A.
1116(3(i (ii (iii . 例1.(1(2cos71例2.在ABC ∆中,内角,,A B C 对应的边分别是,,a b c ,已知2222a c b +=.
(1)若4
B π
=
,且A 为钝角,求内角A 与C 的大小;
(2)若2b =,求ABC ∆面积的最大值.
二、关于三角形内角的常用三角恒等式
由三角形内角和定理:A B C π++=,有()A B C π=-+ 由此可得到:sin sin()A B C =+,cos cos()A B C =-+;
又
222
A B C
π+=-
,
(1(2(3注: ①若②若 ①若②a b ≤,则无解.
四、三角形形状的判定方法 (1)角的判定; (2)边的判定;
(3)综合判定; (4)余弦定理判定.
注:余弦定理判定法:若c 是ABC ∆的最大边,则: ①222a b c +>⇔ABC ∆是锐角三角形; ②222a b c +<⇔ABC ∆是钝角三角形;
③2a 注:⇔1.设
2.A.
5183.在4、在ABC ∆中,4B π
=
,BC 边上的高等于1
3
BC ,则cos A =_____. 5、ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c .若4cos 5A =
,5
cos 13
C =,1a =,则b =_____.
6、已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_____.
7、在△ABC 中,已知B=45°,D 是BC 边上的一点,AD=10,AC=14,DC=6,求AB 的长. 8、在ABC ∆中,内角,,A B C 对应的边分别为,,a b c ,已知
2,3
c C π
==
.
(1)若ABC ∆3,求,a b ;
(2)若sin sin()2sin 2C B A A +-=,求ABC ∆的面积.
9、设函数2()sin cos sin ()4f x x x x π
=--(x R ∈).
(1)求函数()f x 的单调区间;
(2)在锐角ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c .若()02
C
f =,2c =,求ABC
∆面积的最大值.
10、已知向量3
(,sin )2
m x =u r ,(1,sin 3cos )n x x =+r ,函数()f x m n =⋅u r r .
(1)试求函数()f x 的单调递增区间;
(2)若ABC ∆的三个内角A ,B ,C 所对应的边分别为a ,b ,c ,内角B 满足()3f B =,且
3b =,试求ABC ∆面积的最大值.
11、在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且4a =,3cos 4
A =
,57
sin B =
,4c >. (1)求b ;
(2)求ABC ∆的周长.
12、设ABC ∆三个内角A ,B ,C 所对的边分别为a ,b ,c .已知3
c π
=
,cos cos a A b B =.
(1)求角A 的大小;
(2)如图所示,在ABC ∆的外角ACD ∠内取一点P ,使得2PC =.过点P 分别作直线CA 、CD 的垂线,垂足分别是M 、N .设PCA α∠=,求
.
13、ABC ∆的内角,,A B C 的对边分别为,,a b c .(1)求C ;
(2)若c =ABC ∆∆14(1(215、)
B 平行(1(216A ,B (1(2【解析】(1)在OB
C ∆中,1)BC =,OB OC ==由余弦定理,有222cos 2OB OC BC BOC OB OC +-∠====⋅∴6
BOC π
∠=
于是
的长为
22
426
3
π
⨯=
(2)设AOC θ∠=,2
(0,)3
θπ∈
则2
3
BOC πθ∠=-
AOC BOC OACB S S S ∆∆=+四边形又2
(0,)3
θπ∈
∴5(,)666π
ππθ∈ 故当62
π
π
θ+
=
,即3
π
θ=
时,四边形OACB 的面积最大,且最大值为163
17、在△ABC 中,若2AB =,2AC BC =,求ABC S ∆的最大值.
【解析】(法一)由余弦定理,有222222
424cos 244a c b a a a B ac a a +-+--===
又由三角形三边关系,有:a b c a c b +>⎧⎨+>⎩,即22
22a a a a
⎧+>⎪⎨
+>⎪⎩222222a ⇒-<<+ 故当212a =,即23a =时,ABC S ∆最大,且max 128
[]82216
ABC S ∆=
== (法二)∵22
22
a b c a a p ++++=
= ∴222222
a a a a p a a +-+-=
-= 于是由海伦公式,有:()()()ABC S p p a p b p c ∆=---
精心整理
精心整理
又由三角形三边关系,有:a b c a c b +>⎧⎨+>⎩
,即22a a ⎧>⎪⎨+>⎪
⎩22a ⇒<< 故当212a =
,即a =ABC S ∆
最大,且max []ABC S ∆===。