人教版九年级上册数学课本知识点归纳
新人教版九年级上册数学知识点归纳

新人教版九年级上册数学知识点归纳第二十一章一元二次方程21.1一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。
且未如a≠0)21.21直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2.系数化1:将二次项系数化为13.4.5.6.7.3公式法:把一元二次方程化成一般形式,然后计算判别式△时,把各项系数a,b,c的值代入求就可得到方程的根。
得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
21.3实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二22.10)。
其(-b/2a,(b2-4ac)/4a);顶点式y=a(x-h)2+k(a≠0,a、h、k为常数)或y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];向,的平方的图像,x 1.对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)顶点2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b2)/4a)当-b/2a=0时,P在y轴上;当Δ=b2-4ac=0时,P在x轴上。
人教版九年级数学上册知识点

人教版九年级数学上册知识点 数学是一门重要的学科,对于学生来说,掌握好数学知识是至关重要的。下面我们来介绍一下人教版九年级数学上册的一些重要知识点。
一、有理数 有理数包括整数和分数,可以用分数表示整数。比如5可以表示为5/1,-6可以表示为-6/1。有理数包括正数、负数和零,可以用有理数进行四则运算。
二、代数式 代数式是由数字、字母和运算符号组成的式子。字母表示未知数,代表着可以取任意值。代数式可以进行合并同类项、因式分解、提取公因数等运算。
三、方程与不等式 方程是等式的一种表示形式,由字母、数字和运算符号组成。方程的解是使得方程成立的未知数的值。不等式是不等关系的一种表示形式,解是使得不等式成立的未知数的值。
四、图形的认识与运算 九年级数学上册涉及到了平面图形和立体图形的认识与运算。平面图形包括三角形、四边形、多边形等,立体图形包括球体、圆柱体、棱柱体等。可以通过计算周长、面积、体积等方式运算图形的属性。
五、函数 函数是一个有输入和输出的关系,可以用来描述各种实际问题。函数由自变量和因变量组成,自变量是输入值,因变量是输出值。函数可以用数学式子表示,也可以用图像表示。
六、统计与概率 统计与概率是数学中重要的分支之一。统计用来研究收集、整理、分析和解释数据的方法。概率是研究事件发生可能性的一种数学工具。
七、三角函数 三角函数是数学中的重要概念,主要研究角的变化规律和三角形的性质。三角函数包括正弦函数、余弦函数、正切函数等,可以用来研究角的度量、位置关系等。
八、平方根与立方根 平方根和立方根是常见的数学运算。平方根是一个数的平方等于该数的数值,立方根是一个数的立方等于该数的数值。
以上是人教版九年级数学上册的一些重要知识点,掌握好这些知识,对于学生来说将会有很大的帮助。希望同学们能够认真学习并灵活运用这些知识,取得优异的成绩。
人教版九年级上册数学全书知识点总结

第二十一章一元二次方程定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程一般形式ax2+bx+c=0(a≠0)其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项特殊形式(只要满足a≠0,b,c可以为任意实数)三种形式二次项系数一次项系数常数项ax2=0(a≠0)a00 ax2+c=0(a≠0)a0c ax2+bx=0(a≠0)a b0一元二次方程的根使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.直接开平方法定义利用平方根的意义直接开平方求一元二次方程的方法叫做直接开平方法总结一般的,对于可化为 x2=p的方程①当p > 0时,方程有两个不相等的实数根x1=√p,x2=−√p;②当p = 0时,方程有两个相等的实数根x1=x2=0;③当p < 0时,方程无实数根.配方法定义通过配成完全平方的形式来解一元二次方程的方法,叫做配方法。
即把方程化为(x+n)2=p的形式总结一般地,如果一个一元二次方程通过配方转化成(x+n)2=p①当p > 0时,方程有两个不等的实数根x1=−n−√p,x2=−n+√p①当p = 0 时,方程有两个相等的实数根x1=x2=−n①当p < 0时,因为对任意实数x,都有(x + n)2≥0,所以方程无实数根.方法步骤一移常数项,并将二次项系数化为1;二配完全平方,等号两边同时加上一次项系数一半的平方。
(常数项等于一次项系数一半的平方)x2+px+(p2)2=(x+p2)2三写成(x+n)2=p;四直接开平方法解方程.配方步骤ax2+bx+c=0(前提先化为一般式)移项得:ax2+bx=−c........移常数项系数化为1:x2+b a x=−c a........二次项系数化为1配方:x2+b a x+(b2a)2=−c a+(b2a)2.....配常数项,等号两边同时加上一次项系数一半的平方(x+b2a)2=b2−4ac4a2开方:x+b2a=±√b2−4ac2ax=−b±√b2−4ac2a公式法根的判别式定义:一般地,式子△=b2−4ac叫做一元二次方程根的判别式求根公式的定义当Δ=b2−4ac≥0时,方程ax2+bx+c=0(a≠0)的实数根可写为x=−b±√b2−4ac2a的形式,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.判别式△=b2−4ac的根的情况判别式的情况根的情况根△=b2−4ac>0两个不相等的实数根x1=−b+√b2−4ac2a,x2=−b−√b2−4ac2a△=b2−4ac=0两个相等的实数根x1=x2=−b2a△=b2−4ac<0没有实数根△=b2−4ac≥0有实数根方法步骤①把一元二次方程化为一般形式②确定系数a,b,c的值③求出b2−4ac的值,判断根的情况④利用求根公式因式分解法定义使方程化为两个一次式的乘积等于0 的形式,再使这两个一次式分别等于0,从而实现降次. 这种解一元二次方程的方法叫做因式分解法.基本思想如果 a · b = 0,那么 a = 0 或 b = 0.方法步骤一移——使方程的右边为0;二分——将方程的左边因式分解;三化——将方程化为两个一元一次方程;四解——写出方程的两个解因式分解的四种方法①提公因式法:ma+mb=m(a+b)②平方差:a2−b2=(a+b)(a−b)③完全平方:a2+2ab+b2=(a+b)2;a2−2ab+b2=(a−b)2④十字相乘法一元二次方程的根与系数的关系(△=b2−4ac≥0)ax2+bx+c=0(a≠0)两根之和x1+x2=−ba两根之积x1x2=cax12+x22=(x1+x2)2−2x1x2(x1−x2)2=(x1+x2)2−4x1x21x1+1x2=x1+x2x1x2x1x2+x2x1=x12+x22x1x2=(x1+x2)2−2x1x2x1x2|x1−x2|=√(x1−x2)2=√(x1+x2)2−4x1x2类型公式及方法传播问题传染源为1,传染率为x,则第一轮后共有(1+x)人第二轮后共有x(x+1)人两次共传染为: 1 + x + x (x+1) = n数字问题三个连续整数:若设中间的一个数为x,则另两个数分别为x-1,x+1。
人教版数学九年级上册知识点整理

位置关系
相离
相切
相交
图形
公共点个数
0个
1个
2个
数量关系
d>r
d=r
d<r
知识点六:切线的性质与判定
7.切线
的判定
(1)与圆只有一个公共点的直线是圆的切线(定义法).
(2)到圆心的距离等于半径的直线是圆的切线.
(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.
8.切线
的性质
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.
延伸
根据圆的对称性,如图所示,在以下五条结论中:
1弧AC=弧BC;
②弧AD=弧BD;
③AE=BE;
④AB⊥CD;⑤CD是直径.
只要满足其中两个,另外三个结论一定成立,即推二知三
.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.
(1)切线与圆只有一个公共点.
(2)切线到圆心的距离等于圆的半径.
(3)切线垂直于经过切点的半径.
*9.切线长
(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.
(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.
知识点七:三角形与圆
第二十一章 一元二次方程
知识点一:一元二次方程及其解法
1.一元二次方程的相关概念
(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.
(2)一般形式:ax2+bx+c=0(a≠0),其中ax2、bx、c分别叫做二次项、一次项、常数项,a、b、c分别称为二次项系数、一次项系数、常数项.
初中数学九年级上册知识点及公式总结大全(人教版)

九年级数学(上)知识点(2)被开方数中不含有开得尽方的整数或整式。
3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式的“系数”相加减,被开方数和根指数不变。
注意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根式不能合并。
8、二次根式的混合运算:二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的。
在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍然适用。
9、比较两数大小的常用方法:(1)平方法:若a>0,b>0,且a²>b²,则a>b;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小。
第二十二章一元二次根式一.知识框二.知识概念1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2 (二次)的方程,叫做一元二次方程.2 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax +bx+c=0(a≠0).2这种形式叫做一元二次方程的一般形式.其中ax 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.2.一元二次方程的解法:2(1)运用开平方法解形如(x+m) =n(n≥0)的方程;领会降次──转化的数学思想.2(2)配方法:将一元二次方程变形为(x+p) =q的形式,如果q≥0,方程的根是x=-p±√q;如果q <0,方程无实根.2 2(3)公式法:将方程化为一般形式ax +bx+c=0,当b -4ac≥0时,将a、b、c代入式子第二十三章旋转一.知识框架二.知识概念 1.旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转。
人教版九年级上册数学知识点

人教版九年级上册数学知识点一、集合与不等式1. 集合的概念集合是由一些确定的元素构成的整体。
用大写字母A、B、C等表示集合,元素用小写字母a、b、c等表示。
2. 集合的运算(1)交集运算:集合A与集合B的交集,表示为A∩B,表示同时属于A和B的元素组成的集合。
(2)并集运算:集合A与集合B的并集,表示为A∪B,表示属于A或B的元素组成的集合。
(3)差集运算:集合A与集合B的差集,表示为A-B或A\B,表示属于A但不属于B的元素组成的集合。
(4)补集运算:集合A相对于全集U的补集,表示为A'或A^c,表示不属于A的元素组成的集合。
3. 不等式不等式是含有不等号的数学陈述。
常见的不等号有大于号(>)、大于等于号(≥)、小于号(<)和小于等于号(≤)。
二、平面图形的认识1. 点、线、线段和射线的概念(1)点:空间中没有长度、宽度和高度的位置,用大写字母表示。
(2)线段:由两个端点以及连接两个端点的线段本身组成。
(3)射线:起点为给定点的一条直线,并且从起点向某个方向延伸,用带箭头的线段表示。
2. 平面图形的分类(1)三角形:由三条线段组成的图形。
(2)四边形:由四条线段组成的图形。
(3)多边形:由多条线段组成的图形。
3. 常见平面图形的性质(1)正方形:四条边相等且都垂直。
(2)长方形:相邻两条边相等且都垂直。
(3)平行四边形:对边平行且对边相等。
三、整式与分式1. 代数式与整式(1)代数式:用字母和数字相结合表示数的式子。
(2)整式:只含有字母、数字和运算符的代数式。
2. 分式分式是包含分子和分母的算式,分式的值一般是一个有理数。
四、分数的计算1. 分数运算(1)分数的加减运算:先找到两个分数的公共分母,然后将分子相加(或相减),再将结果的分子写在分数线上。
(2)分数的乘法运算:将两个分数的分子相乘,分母相乘。
(3)分数的除法运算:先将除数与被除数的分子和分母交换位置,再按照分数的乘法运算进行计算即可。
九年级上册数学人教版知识点
九年级上册数学人教版知识点
以下是九年级上册数学人教版的一些主要知识点:
1. 实数与数轴:介绍了实数的概念和性质,以及如何在数轴上表示实数。
2. 整式与分式:讲解了整式和分式的定义、运算法则,以及它们之间的转化关系。
3. 一元一次方程与不等式:学习了一元一次方程和不等式的解法,包括整数解、有理数解和图像法。
4. 相交线与平行线:研究了平面内两条直线相交的条件和性质,以及平行线的判定方法。
5. 平面图形的认识:探索了平面图形的基本概念,如三角形、四边形、多边形等,并学习了它们的性质和分类。
6. 平面图形的计算:介绍了计算平面图形的周长和面积的方法,包括三角形、四边形、圆等的计算公式。
7. 数据的处理:学习了数据的收集、整理、展示和分析方法,包括频数表、频率表、折线图、柱状图等。
8. 几何变换:研究了平面内的平移、旋转、对称和放缩等基本几何变换的定义、性质和应用。
以上只是九年级上册数学人教版的一些主要知识点,具体内容可能会根据不同版本的教材有所差异。
如果需要更详细的信息,请参考相关教材或与您的数学老师进行沟通。
1。
第二十四章圆(完整知识点)人教版九年级数学上册
第二十四章 圆一、圆的有关概念及表示方法 (一)圆的定义1、描述性定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
其固定的端点O 叫做圆心,线段OA 叫做半径。
2、集合性定义:圆可以看成是所有到定点(圆心)的距离等于定长(半径)的点的集合。
(二)圆的表示方法:以点O 为圆心的圆,记作⨀O ,读作“圆O ”。
(三)圆具有的特性1、圆上各点到定点(圆心O )的距离都等于定长(半径r )。
2、到定点的距离等于定长的点都在同一个圆上。
注:(1)确定一个圆需要两个因素:圆心确定圆的位置,半径确定圆的大小。
(2)同一个圆中的所有半径都相等,所以圆上任意两点和圆心[三点不共线(直径)]构成的三角形都是等腰三角形。
(四)圆的有关概念1、弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
以AC 为端点的弦,记作:弦AC 。
注:圆中有无数条弦,其中直径是最长的弦,但弦不一定是直径。
2、弧2.1圆上任意两点间的部分叫做圆弧、简称弧。
以A 、B 为端点的弧记作⨀AB ,读作“圆弧AB ”或“弧AB ”。
2.2圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
大于半圆的弧叫做优弧,如图中的⨀ABC 。
小于半圆的弧叫做劣弧,如图中的⨀AC。
注:(1)在一个圆中,任意一条弦都对着两条弧,任意一条弧只对着一条弦。
(2)弧包括优弧、劣弧、半圆;半圆既不是劣弧,也不是优弧。
3、同圆或等圆:能够重合的两个圆叫做等圆。
同圆或等圆的半径相等。
4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
等弧是全等的,不仅仅是弧的长度相等。
5、同心圆:圆心相同,半径不相等的圆叫做同心圆。
二、圆的有关性质 (一)垂直于弦的直径1、圆的轴对称性:圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴。
名称 文字语言 符号语言 图示垂径 定理 垂直于弦的直径平分弦,并且平分弦所对的两条弧。
(精)最新版人教版九年级数学上册全册知识点
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
人教数学九年级上册知识点
人教数学九年级上册知识点一、有理数的概念与运算有理数是整数和分数的统称,包括正数、负数和零。
有理数的加减乘除运算都遵循一定的规则,比如加法和乘法满足交换律和结合律,除法需要注意分母不为零。
二、整式的加减法整式是由常数和变量的积以及它们的和、差所组成的代数表达式。
整式的加减法运算主要是将同类项合并,即将具有相同字母和相同指数的项相加或相减。
三、代数方程与方程的解代数方程是含有未知数的等式,方程的解是使方程成立的未知数的取值。
解方程的方法包括移项变号、因式分解、配方法等。
四、一元一次方程与一次不等式一元一次方程是指只含有一个未知数的一次方程,一次不等式是指只含有一个未知数的一次不等式。
解一元一次方程的步骤是将含有未知数的项移项变号后进行化简,解一次不等式的步骤是解对应的方程,然后根据不等式的性质确定解的范围。
五、坐标系与图像的认识坐标系是由横纵两条数轴共同确定的一种图示坐标的方法,图像是指利用坐标系可以画出的各种图形。
直角坐标系中,横轴为x 轴,纵轴为y轴,原点为坐标的起点。
六、长方体、正方体与棱柱长方体是指所有侧面都是矩形的立体图形,正方体是指所有侧面都是正方形的立体图形,而棱柱是指底面为多边形的立体图形,侧面都是平行于底面的平行四边形。
七、平行四边形与其面积平行四边形是指具有两对对边两两平行的四边形,其面积可以通过底边长乘以高来计算。
平行四边形的性质包括对角线互相平分、对边互补等。
八、相似与相似三角形相似是指两个图形的形状相同但尺寸不同,相似三角形是指两个三角形各个对应角相等,对应边成比例。
相似三角形的性质包括对应角相等、对应边成比例等。
九、直线和角直线是由一点向两个相反方向无限延伸的轨迹,是最短连结两点的线段。
角是由两条射线所围成的部分,常用度数来表示。
直线和角的性质包括直线上的点共线、相邻补角等。
十、二次根式与立方根式二次根式是指以二次根号为基本运算的代数表达式,立方根式是指以立方根号为基本运算的代数表达式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 人教版九年级上册数学课本知识点归纳 第二十一章 二次根式 一、二次根式 1. 二次根式:把形如 a (a 0) 的式子叫做二次根式, “ ” 表示二次根号。
2. 最简二次根式:若二次根式满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。这样的二次根式叫做最简二次根式。 3. 化简:化二次根式为最简二次根式( 1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行 化简。( 2)如果被开方数是整数或整式,先将他分解因数或因式,然后把能开得尽方的因数或因式开出来。 4. 同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这 几个二次根式叫做同类二次根式。 5. 代数式:运用基本运算符号,把数和表示数的字母连起来的式子,叫代数式。 6. 二次根式的性质 ( 1) (
( 2) a ) 2 a2 a(a a 0)
a(a 0)
a( a 0) ( 3) ab a ? b (a 0,b 0) ( 乘法) a ( 4) b a
(a
b 0,b
0)
( 除法)
二、二次根式混合运算 1. 二次根式加减时,可以把二次根式化成最简二次根式,再把被开方数相同的最 2
简二次根式进行合并。 2. 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减, 有括号的先算括号里的(或先去括号) 。
第二十二章一元二次方程 一、一元二次方程 1、一元二次方程 含有一个未知数 ( 一元) ,并且未知数的最高次数是 2( 二次) 的整式方程叫做一元 二次方程。 2、一元二次方程的一般形式 ax 2 bx c 0(a 0)
,其中 ax 2
叫做二次项, a 叫做二
次项系数; bx 叫做一次项, b 叫做一次项系数; c 叫做常数项。二、降次 ---- 解一元二次方程 1. 降次:把一元二次方程化成两个一元一次方程的过程 ( 不管用什么方法解一元 二次方程,都是要一元二次方程降次 ) 2、直接开平方法 利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直 接开平方法适用于解形如 x2=b 或(x a)2 b 的一元二次方程。根据平方根的定义可知, x a是 b 的平方根, 当b 0时, x a b ,
x a b
,当 b<0 时,方程没有实数根。
3、配方法: 配方法的理论根据是完全平方公式 a 2 2ab b 2 (a b) 2 ,把公式中的 a
看做未知数 x,并用 x 代替,则有 x 2bx b 2 ( x b)
2
。
配方法解一元二次方程的步骤是:①移项、②配方 ( 写成平方形式 ) 、③用直接开方法降次、④解两个一元一次方程、⑤判断 2 个根是不是实数根。 4、公式法:公式法是用 求根公式, 解一元二次方程的解的方法。
2 3
一元二次方程 ax 2 bx c 0(a 0) 的求根公式:
x b b 4 ac
( b 2 4 ac 0 )
当b 2 当b 2 当b 2
4ac 4ac 4ac
2 a >0 时,方程有两个实数根。 =0 时,方程有两个相等实数根。 <0 时,方程没有实数根。 5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于 0 的形 式,再使这两个一次式分别等于 0,从而实现降次,这种解叫因式分解法。这种方法简单易行,是解一元二次方程最常用的方法。 三、一元二次方程根的判别式 根的判别式:一元二次方程 ax 2 bx c 0(a 0)
中, b
2
4ac 叫做一元二次方程
ax 2 bx c 0(a 0) 的根的判别式,通常用“ ”来表示,即 b 2 4ac
四、一元二次方程根与系数的关系 如果方程 ax 2 bx c 0(a 0) 的两个实数根是 x1,x2 ,由求根公式 b b 2 x 4 ac ( b 2
4 ac 0 ) x1 x
2
b c x1x2 2 a 可算出 a , a 。
第二十三章 旋转 一、旋转 1、定义:把一个图形绕某一点 O转动一个角度的图形变换叫做旋转,其中 O叫做旋转中心 ,转动的角叫做 旋转角。 2、性质 ( 1)对应点到旋转中心的距离相等。 ( 2)对应点与旋转中心所连线段的夹角等于旋转角。
2 4
⑶ 旋转前后的图形全等。二、中心对称 1、定义:把一个图形绕着某一个点旋转 180°,如果旋转后的图形能够和原来的 图形互相重合,那么这个图形叫做 中心对称 图形,这个点就是它的 对称中心 。 2、性质 ( 1)关于中心对称的两个图形是全等形。 ( 2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平 分。 ( 3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。 4、中心对称图形:把一个图形绕某一个点旋转 180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。 5、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反, 即点 P(x,y)关于原点的对称点为 P’( -x , -y ) 6、关于 x 轴对称的点的特征:两个点关于 x 轴对称时,它们的坐标中, x 相等, y 的符号相反,即点 P(x, y)关于 x 轴的对称点为 P’(x, -y )。 7、关于 y 轴对称的点的特征:两个点关于 y 轴对称时,它们的坐标中, y 相等, x 的符号相反,即点 P(x, y)关于 y 轴的对称点为 P’(-x ,y)。第二十四章 圆
一、圆的相关概念 1、圆的定义:在一个个平面内,线段 OA绕 它固定的一个端点 5
O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心, 线段 OA叫做半径。 2、圆的几何表示:以点 O为圆心的圆记作“⊙ O”,读作“圆 O” 二、弦、弧等与圆有关的定义 ( 1)弦:连接圆上任意两点的线段叫做弦。 (如图中的 AB) ( 2)直径:经过圆心的弦叫做直径。 (如 途中的 CD) 直径等于半径的 2 倍。 ( 3)半圆:圆的任意一条直径的两个端点 分圆成两条弧, 每 一条弧都叫做半圆。 ( 4)弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧, 简称弧。弧用符号“⌒” 表示,以 A,B 为端点的弧记作“ ”,读作“圆弧 AB”或“弧 AB”。大于半圆的弧叫做优弧(多用三个字母表示) ;小于半圆的弧叫做劣弧(多用两个字母表示) 三、垂径定理及其推论 1. 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 推论 1:( 1)平分弦 ( 不是直径 ) 的直径垂直于弦, 并且平分弦所对的两条弧。( 2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。 (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 推论 2:圆的两条平行弦所夹的弧相等。四、圆的对称性 1、圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。 2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形。五、弧、弦、弦心距、圆心角之间的关系定理 1、圆心角:顶点在圆心的角叫做圆心角。 6
2、弦心距:从圆心到弦的距离叫做弦心距。 3、弧、弦、弦心距、圆心角之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。 推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心 距中有一组量相等,那么它们所对应的其余各组量都分别相等。六、圆周角定理及其推论 1、圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。 2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。 推论 1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。 推论 2:半圆(或直径)所对的圆周角是直角; 90°的圆周角所对的弦是直径。推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角 形。 七、点和圆的位置关系 设⊙ O的半径是 r ,点 P 到圆心 O的距离为 d,则有: dd=r 点 P 在⊙ O上; d>r 点 P 在⊙ O外。八、过三点的圆 1、过三点的圆:不在同一直线上的三个点确定一个圆。 2、三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,