新编物理基础学王少杰(上、下册)课后习题答案
新编基础物理学王少杰顾牡版本上册期末考试题库

(C)外力的冲量不为零,外力的功也不为零;
(D)外力的功不为零,外力的冲量不一定为零。
4.选择正确答案[ A ]
(A)物体的动量不变,则动能也不变;
(B)物体的动能不变,则动量也不变;
(C)物体的动量发生变化,则动能也一定不变
(D)物体的动能发生变化,则动量不一定变化
(A) , ;(B) 0, ;(C) 0,0Байду номын сангаас(D) ,0.
3、一运动质点在某瞬时位于矢径 的端点处,其速度大小为[ D ]
(A) (B) (C) (D)
4、一小球沿斜面向上运动,其运动方程为 ,则小球运动到最高点的时刻是[ B ]
(A)t=4s;(B)t=2s;(C)t=8s;(D) t=5s
5、一质点在平面上运动,已知质点位置矢量的表示式为 (其中a,b为常数),则质点作[ B ]
(A)保守力做正功,系统内相应的势能增加;
(B)作用力和反作用力大小相等,方向相反,所以两者作功的代数和必为零;
(C)质点沿闭合路径运动,保守力对质点做的功等于零;
(D)摩擦力只能做负功。
9、用绳子系着一物体,使其在水平面内作匀速圆周运动(圆锥摆),在此情形下[ D ]
(A)重力对物体做功;(B)张力对物体做功;
2、一质点作匀速率圆周运动[ C ]
(A)它的动量不变,对圆心的角动量也不变;
(B)它的动量不变,对圆心的角动量不断改变;
(C)它的动量不断改变,对圆心的角动量不变;
(D)它的动量不断改变,对圆心的角动量也不断改变。
3、质点在外力作用下运动时,下列说法中正确的是[ B ]
(A)外力的功为零,外力的冲量一定为零;
大学物理学王少杰第五版答案

大学物理学王少杰第五版答案1、1.公式v2-v02=2ax适用于任何直线运动.[判断题] *对错(正确答案)2、原子核分裂或聚合,可以释放出巨大的能量,这种能叫做化学能[判断题] *对错(正确答案)答案解析:核能不是化学能3、C.分子间存在着间隙(正确答案)D.分子在永不停息地做无规则运动(正确答案)答案解析:扩散现象是一种物质的分子进入另一种物质内部的现象,因而说明分子间有间隙,且分子在永不停息地做无规则运动下列关于布朗运动的叙述,正确的有()*A.悬浮小颗粒的运动是杂乱无章的(正确答案)4、70.12月3日24时,我国进行2020年的第二十三次汽柴油调价。
本次调价每吨汽油上调250元,折合每升92号汽油上调20元。
据此测算92号汽油的密度为()[单选题] *A.72×103kg/m3B.75×103kg/m3C.8×103kg/m3(正确答案)D.25×103kg/m35、关于光现象,下列说法正确的是()[单选题]A. 光在水中的传播速度是3×108m/sB.矫正近视眼应佩戴凸透镜C. 光的色散现象说明白光是由多种色光组成的(正确答案)D. 镜面反射遵守光的反射定律,漫反射不遵守光的反射定律6、手机接收路由器发出的无线信号可以上网,无线信号传播的速度是3×108m/s [判断题] *对错(正确答案)答案解析:无线信号属于电磁波,它在真空中或空气中接近3×108 m/s7、若以M表示水的摩尔质量,v表示水的摩尔体积,ρ表示水的密度。
Na为阿伏加德罗常数,m表示水的分子质量,V’表示水分子体积。
则下列关系中正确的是()*A.Na=V/V’(正确答案)B.V=M/ρ(正确答案)C.m=M/NA(正确答案)D.v=ρM8、2017年4月, “天舟一号”货运飞船准备发射升空。
“天舟一号”升空后,将首次向在轨运行的天宫二号进行“空中加油”,延长天宫二号的在轨时间“天舟一号”飞船与“天宫二号”实施自动交会对接。
新编基础物理学第13章习题解答和分析

《新编基础物理学》第13章习题解答和分析(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第13章 电磁场与麦克斯韦方程组13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为1r ,2r 。
已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间。
导线框长为a ,宽为b ,求导线框中的感应电动势。
分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律md d i tΦε=-计算感应电动势,其中磁通量m d sB S Φ=⋅⎰, B 为两导线产生的磁场的叠加。
解:无限长直电流激发的磁感应强度为02IB rμ=π。
取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。
取回路的绕行正方向为顺时针。
由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+方向垂直纸面向里。
通过微分面积d d S a x =的磁通量为00m 12d d d d 2()2()I I B S B S a x r x r x μμΦππ⎡⎤=⋅==+⎢⎥++⎣⎦通过矩形线圈的磁通量为00m 012d 2()2()b I I a x r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭ 感生电动势 0m 12012d ln ln cos d 2i a r b r b I t t r r μωΦεω⎛⎫++=-=-+ ⎪π⎝⎭012012()()ln cos 2ar b r b I t r r μωω⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针。
《新编基础物理学》 第二章习题解答和分析3

2-34.设76()F i j N =-。
(1)当一质点从原点运动到3416(m )r i j k =-++时,求F所作的功;(2)如果质点到r处时需0.6s ,试求F 的平均功率;(3)如果质点的质量为1kg ,试求动能的变化。
分析:由功、平均功率的定义及动能定理求解,注意:外力作的功为F 所作的功与重力作的功之和。
解:(1)0F dr ⋅⎰r A=(76)()i j dxi dyj dzk -⋅++⎰r=76dx dy -⎰⎰-34=45J =-,做负功 (2)45750.6A P W t ===(3)0rk E A mgj dr ∆=+-⋅⎰= -45+4mgdy -⎰= -85J2—35.一辆卡车能沿着斜坡以115km h -⋅的速率向上行驶,斜坡与水平面夹角的正切tan 0.02α=,所受的阻力等于卡车重量的0.04,如果卡车以同样的功率匀速下坡,则卡车的速率是多少?分析:求出卡车沿斜坡方向受的牵引力,再求瞬时功率。
注意:F 、V 同方向。
解:sin 0.02tg αα≈=,且0.04f G = 上坡时,sin 0.06F f G G α=+= 下坡时,sin 0.02F f G G α'==- 由于上坡和下坡时功率相同,故p Fv F v ''==所以45/12.5/v km h m s '==2—36.某物块质量为P ,用一与墙垂直的压力N 使其压紧在墙上,墙与物块间的滑动摩擦系数为μ,试计算物块沿题图所示的不同路径:弦AB ,圆弧AB ,重力和摩擦力作的功。
已知圆弧半径为r 。
分析:保守力作功与路径无关,非保守力作功与路径有关。
解:重力是保守力,而摩擦力是非保守力,其大小为f N μ=。
(1)物块沿弦AB 由A 移动到B 时, 重力的功pgh pgr == 摩擦力的功f A B N r =⋅=(2)物块沿圆弧AB 由A 移动到B 时,题图2—35题图2—36重力的功pgh pgr ==摩擦力的功 12f A B N r πμ=⋅=(3)物块沿折线AOB 由A 移动到B 时,重力的功pgh pgr ==。
《新编基础物理学》第十章习题解答和分析

第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。
解:(1)设B 、C 板上的电荷分别为B q 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: AC AB U U =而: 2AC AC d U E =⋅AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅ 即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-1题10-1解图 d(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯ 10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求: (1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
新编基础物理学上册5-6单元课后答案

第五章5-1有一弹簧振子,振幅 A 2.0 10 2 m,周期T 1.0 s,初相 3 / 4.试写出它的振动位移、速度和加速度方程。
分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
、2解:振动方程为:x Acos[ t ] Acos[ t ]代入有关数据得:x 0.02 cos[2 t 3 ]( SI )4振子的速度和加速度分别是:v dx / dt0.04si n[2 t 34](SI) 4a d2x/dt20.082 cos[2 t3-](SI)45-2若简谐振动方程为x 0.1 cos[20 t / 4]m,求(1) 振幅、频率、角频率、周期和初相;(2) t=2s时的位移、速度和加速度.分析通过与简谐振动标准方程对比,得出特征参量。
解: (1)可用比较法求解•根据x Acos[ t ] 0.1 cos[ 20 t / 4] 得:振幅A0.1 m,角频率20 rad / s,频率/210s 周期T 1/0.1 s,/ 4 rad(2)t 2s时,振动相位为:20 t / 4 (40/ 4) rad由x A cos , A sin2,a A cos2x得x0.0707m, 4.44 m/s, a279m/s25-3质量为2kg的质点,按方程x 0.2 sin[ 5t ( /6)]( SI )沿着x轴振动.求:(1)t=0时,作用于质点的力的大小;(2 )作用于质点的力的最大值和此时质点的位置分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
2解:(1)跟据f ma m x,x 0.2 sin[ 5t ( /6)]将t 0代入上式中,得:f 5.0 N2(2)由f m x可知,当x A 0.2 m时,质点受力最大,为 f 10.0 N 5-4为了测得一物体的质量m将其挂到一弹簧上并让其自由振动,测得振动频率1 1.0Hz ;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为2 2.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量分析根据简谐振动频率公式比较即可。
《新编基础物理学》第1章习题解答和分析
第1章 质点运动学1-1. 一质点沿x 轴运动,坐标与时间的变化关系为x =8t 3-6t (m ),试计算质点 (1) 在最初2s 内的平均速度,2s 末的瞬时速度;(2) 在1s 末到3s 末的平均加速度,3s 末的瞬时加速度. 分析:平均速度和瞬时速度的物理含义不同,分别用x t ∆=∆v 和d d xt=v 求得;平均加速度和瞬时加速度的物理含义也不同,分别用a t∆=∆v和d d a t =v 求得.解:(1) 在最初2s 内的平均速度为31(2)(0)(8262)026(m s )2x x x t t -∆-⨯-⨯-====⋅∆∆v2s 末质点的瞬时速度为212d 24690(m s )d xt t-==-=⋅v (2) 1s 末到3s 末的平均加速度为22(3)(1)(2436)(246)96(m s )2a t t -∆-⨯---====⋅∆∆v v v3s 末的瞬时加速度23d 48144(m s )d a t t-===⋅v1-2.一质点在xOy 平面内运动,运动方程为22(m),48(m)x t y t ==-. (1)求质点的轨道方程并画出轨道曲线;(2)求=1 s =2 s t t 和时质点的位置、速度和加速度.分析:将运动方程x 和y 的两个分量式消去参数t ,便可得到质点的轨道方程.写出质点的运动学方程)(t r表达式.对运动学方程求一阶导、二阶导得()t v 和()a t ,把时间代入可得某时刻质点的位置、速度、加速度.解:(1) 由2,x t = 得:,2xt =代入248y t =- 可得:28y x =-,即轨道方程. 画图略(2)质点的位置矢量可表示为22(48)r ti t j =+-则速度d 28d ri t j t==+v 加速度d 8d a j t==v当t =1s 时,有1224(m),28(m s ),8m s r i j i j a j --=-=+⋅=⋅v当t =2s 时,有1248(m),216(m s ),8m s r i j i j a j --=+=+⋅=⋅v1-3.一质点的运动学方程为22(1)x t y t ==-,,x 和y 均以m 为单位,t 以s 为单位. 求: (1)质点的轨迹方程;(2)在2s t =时质点的速度和加速度. 分析: 同1-2.解:(1)由题意可知:x ≥ 0,y ≥ 0,由2x t =,可得t =,代入2(1)y t =- 整理得:1=即轨迹方程(2)质点的运动方程可表示为22(1)r t i t j =+-则d 22(1)d rti t j t ==+-v d 22d a i j t==+v因此, 当2s t =时,有1242(m s ),22(m s )i j a i j --=+⋅=+⋅v1-4.一枚从地面发射的火箭以220m s -⋅的加速度竖直上升后,燃料用完,于是像一个自由质点一样运动. 略去空气阻力并设g 为常量,试求: (1)火箭达到的最大高度;(2)它从离开地面到再回到地面所经过的总时间.分析:分段求解:030s t ≤≤时,220m s a -=⋅,可求出11,x v ;t >30s 时,g a -=.可求出2()t v ,2()x t .当20=v 时,火箭达到的最大高度, 求出t 、x . 再根据0x =,求出总时间.解:(1)以地面为坐标原点,竖直向上为x 轴正方向建立一维坐标系,设火箭在坐标原点时,t =0s ,且=30s.则当0≤ t ≤30s,由d d xx a t=v ,得 3020d d xx t =⎰⎰v v , 解得 20x t =v当130s =v 时11600m s -=⋅v由d d x xt=v , 得 13020d d x t t x =⎰⎰,则19000m x =当火箭未落地, 且t >30s, 又有221309.8d d x tx t -=⎰⎰v v v解得28949.8x t =-v同理由d d x x t=v 得 130(8949.8)d d txx t t x -=⎰⎰解得24.989413410x t t =-+- … ①由20x =v ,得91.2s t =,代入①得max 27.4km x ≈(2)由①式可知,当0x =时,解得1166s t ≈216s<30s t ≈(舍去)1-5.质点沿直线运动,加速度24a t =-,式中a 的单位为2m s -⋅,t 的单位为s ,如果当t =3s时,x =9m ,12m s -=⋅v ,求质点的运动方程.分析 本题属于第二类运动学问题,可通过积分方法求解. 解 由分析可知0200d d (4)d tta t t t ==-⎰⎰⎰vv v 积分得30143t t =+-v v 由030001d d (4)d 3xt tx x t t t t ==+-⎰⎰⎰v v 得24001212x x t t t =+-+v 将t =3s 时,x =9m ,12m s -=⋅v 代入上两式中得101m s -=-⋅v ,x 0=0.75m所以质点的运动方程为2410.752(m)12x t t t =-+-1-6. 一艘正在沿直线行驶的电艇,在发动机关闭后,其加速度方向与速度方向相反,大小与速度大小平方成正比,即2d /d t k =-v v , 式中k 为常量.试证明电艇在关闭发动机后又行驶x 距离时的速度大小为 0kxe-=v v . 其中0v 是发动机关闭时的速度大小.分析:要证明~x v 关系,可通过积分变量替换将时间变量替换掉,即d d d d a t x==v vv ,积分即可证明. 证: 2d d d d d d d d k =⋅==-v v vv v x t x t x分离变量得d d k x =-vv两边积分001d d x k x =-⎰⎰vv v v , 0lnkx =-v v 证得0kxe -=v v1-7.一质点沿半径为R 做圆周运动,运动学方程为2012s t bt =+v ,其中v 0,b 都是大于零的常量.求:(1)t 时刻质点的加速度大小及方向; (2)在何时加速度大小等于;分析:由质点在自然坐标系下的运动学方程()t s s =,求导可求出质点的运动速率d d st=v ,而切向加速度d d t a t=v ,法向加速度2n a ρ=v ,总加速度22n a a a +=τ,当a =时,即可求出t .解:(1)质点的运动速率0d d sbt t==+v v 切向加速度d d t a b t ==v 法向加速度220()n bt a Rρ+==v v 加速度大小a ==方向()211tantan ntbt a a bRθ--+==v(2)当a =时,可得22220()2bt b b R ⎡⎤++=⎢⎥⎣⎦v解出t b=v 1-8. 物体以初速度120m s -⋅被抛出,抛射仰角60°,略去空气阻力,问: (1)物体开始运动后的末,运动方向与水平方向的夹角是多少 末的夹角又是多少 (2)物体抛出后经过多少时间,运动方向才与水平成45°角这时物体的高度是多少 (3)在物体轨迹最高点处的曲率半径有多大 (4)在物体落地点处,轨迹的曲率半径有多大分析:(1)建立坐标系,写出初速度0v ,求出()t v 、θtan ,代入t 求解.(2)由(1)中的θtan 关系,求出时间t ;再根据y 方向的运动特征写出()t y ,代入t 求y . (3)根据物体在轨迹最高点处,0y =v ,且加速度2n a a g ρ===v ,可求出ρ.(4)由对称性,落地点与抛射点的曲率相同 2cos n a g θρ==v ,求出ρ.解:以水平向右为x 轴正向,竖直向上为y 轴正向建立二维坐标系 (1)初速度001020cos6020sin6010103(m s )i j i j -=+=+⋅v ,加速度29.8(m s ),a j -=-⋅则任一时刻10(1039.8)at i t j =+=+-v v ………………①与水平方向夹角有1039.8tan 10tθ-=……………………………②当t =时tan 0.262,1441'θθ==︒当t =时tan 0.718,3541'θθ=-=-︒(2)此时tan 1θ=, 由②得t =物体的高度22111030.759.80.7510.23(m)22yo y t gt =-=⨯-⨯⨯=v (3)在最高处2110m s ,n a g ρ-=⋅==v v得210.2m gρ==v (4)由对称性可知,落地点的曲率与抛射点的曲率相同. 由解图1-8得210cos cos 4.9(m s )20x n a a g gg θθ-=====⋅v v240082(m)4.9n a ρ===v1-9.汽车在半径为400m 的圆弧弯道上减速行驶,设在某一时刻,汽车的速率为110m s -⋅,切向加速度的大小为20.2m s -⋅.求汽车的法向加速度和总加速度的大小和方向. 分析:由某一位置的ρ、v 求出法向加速度n a ,再根据已知切向加速度τa 求出总加速度a 的大小和方向.解:法向加速度的大小222100.25(m s ),400n a ρ-===⋅v 方向指向圆心 总加速度的大小222220.20.250.32(m s )n a a a τ-=+=+=⋅由解图1-9得tan 0.8,3840'na a ταα===︒ 则总加速度与速度夹角9012840'θα=︒+=︒1-10. 质点在重力场中作斜上抛运动,初速度的大小为0v ,与水平方向成α角.求质点到达抛出点的同一高度时的切向加速度、法向加速度以及该时刻质点所在处轨迹的曲率半径(忽略空解图1-8解图1-9气阻力).已知法向加速度与轨迹曲率半径之间的关系为2n a ρ=v .分析:在运动过程中,质点的总加速度 a g =.由于无阻力作用,所以回落到抛出点高度时, 质点的速度大小0=v v ,其方向与水平线夹角也是α.可求出n a ,如解图1-10所示.再根据法向加速度与轨迹曲率半径之间的关系2n a ρ=v ,解出曲率半径.解:切向加速度t sin a g a =法向加速度a g a n cos =因为2n a ρ=v ,所以220cos n a g ρα==v v1-11.在生物物理实验中用来分离不同种类的分子的超级离心机的转速为313.1410rad s -⨯⋅.在这种离心机的转子内,离轴10cm 远的一个大分子的向心加速度是重力加速度的几倍分析 根据定义可得向心加速度的大小2n a r ω=.解 所求倍数2222425244(610)0.1=410609.8rn r g g ωππ⨯⨯==⨯⨯1-12. 一质点在半径为0.10m 的圆周上运动,其角位置变化关系为324(rad)t θ=+.试求:(1) 在t =2s 时,质点的法向加速度和切向加速度大小各为多少; (2) 当切向加速度大小恰等于总加速度大小的一半时,θ值为多少 (3) 在什么时刻,切向加速度和法向加速度恰好大小相等分析 本题为物体作圆周运动的角坐标表示下的第一类运动学问题,求导可得到角速度和角加速度,再由角量与线量的关系求得切向加速度t a 和法向加速度n a .解图1-10解 (1) 角速度和角加速度分别为2d 12d t t θω== d 24d t tωβ==法向加速度22222n 0.1(12) 2.3010(m s )a r t ω-==⨯=⨯⋅切向加速度2t d 2.4 4.8(m s )d a r t tβ-====⋅v (2) 由 t /2a a =,2222t n t 4a a a a =+= 得22t n3a a = 22243(24)(12)r t r t =33t = 332424 3.15(rad)t θ=+=+⨯= (3) 由 n t a a =,即22(12)24r t rt =,解得 0.55s t =1-13.离水面高度为h 的岸上有人用绳索拉船靠岸,人以恒定速率0v 拉绳子,求当船离岸的距离为s 时,船的速度和加速度的大小.分析:收绳子速度和船速是两个不同的概念.小船速度的方向为水平方向,由沿绳的分量与垂直绳的分量合成,沿绳方向的收绳的速率恒为0v .可以由0v 求出船速v 和垂直绳的分量1v .再根据21n a ρ=v 关系,以及n a 与a关系来求解a .解: 如解图1-13,小船速度沿绳的分量20=v v ,船速2sec θ=v v当船离岸的距离为s 时,船速22s h s+=v v 解图1-13船速垂直绳的分量012tan hsθ==v v v 则船的法向加速度2211n 2222cos a a as hs hθρ====++v解得2203h a s =v1-14. A 船以130km h -⋅的速度向东航行,B 船以145km h -⋅的速度向正北航行,求A 船上的人观察到的B 船的速度和航向.分析:关于相对运动,必须明确研究对象和参考系.同时要明确速度是相对哪个参照系而言.画出速度矢量关系图求解. 解:如解图1-14所示11A B 30km h ,45km h i j --=⋅=⋅v vB 船相对于A 船的速度1BA B A 4530(km h )j i -=-=-⋅v v v则速度大小221BA B A 54.1(km h )-=+=⋅v v v方向BAarctan56.3θ==︒v v ,既西偏北56.3︒1-15. 一个人骑车以118km h -⋅的速率自东向西行进时,看见雨滴垂直落下,当他的速率增加至136km h -⋅时,看见雨滴与他前进的方向成120°角下落,求雨滴对地的速度.解图1-14分析:这是一个相对运动的问题,雨对地的速度不变,画出速度矢量图,就可根据几何关系求解.解:如解图1-15所示,r v 为雨对地的速度, 12,p p v v 分别为第一次,第二次人对地的速度,12,rp rp v v 分别为第一次,第二次雨对人的速度,120θ=︒由三角形全等的知识,可知18012060αβ==︒-︒=︒三角形ABC 为正三角形,则2136km h r p -==⋅v v ,方向竖直向下偏西30︒.1-16如题图1-16所示,一汽车在雨中以速率1v 沿直线行驶,下落雨滴的速度方向偏于竖直方向向车后方θ角,速率为2v ,若车后有一长方形物体,问车速为多大时,此物体刚好不会被雨水淋湿分析:相对运动问题,画矢量关系图,由几何关系求解.解:如解图1-16(a ),车中物体与车蓬之间的夹角 arctan l h α=若θ>α,无论车速多大,物体均不会被雨水淋湿若θ<α,如解图1-16(b )则有||||||BC AC AB ==-v 车=sin sin cos tan sin αθθαθ-=-v v v v 雨雨雨雨对车又2=v v 雨则2cos (sin )l h θθ=-v v 车题图1-16 解图1-16 解图1-151-17 人能在静水中以11.10m s -⋅的速度划船前进.今欲横渡一宽为m 10.0013⨯、水流速度10.55m s -⋅的大河.他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向到达正对岸需多少时间分析 船到达对岸所需时间由船相对于岸的速度v 决定,而v 由水流速度u 和船在静水中划行速度'v 确定.画出矢量图由几何关系求解.解 根据解图1-17,有'v =u+v ,解得 0.551sin 1.102u α==='v 030α= 即应沿与正对岸方向向上游偏300方向划行.船到达正对岸所需时间为 31.0510s cos d d t α===⨯'v v 1-18.一升降机以2g 的加速度从静止开始上升,在末时有一小钉从顶板下落,若升降机顶板到底板的距离h=2.0m ,求钉子从顶板落到底板的时间t , 它与参考系的选取有关吗分析:选地面为参考系,分别列出螺钉与底板的运动方程,当螺丝落到地板上时,两物件的位置坐标相同,由此可求解.解:如解图1-18建立坐标系,y 轴的原点取在钉子开始脱落时升降机的底板处,此时,升降机、钉子速度为0v ,钉子脱落后对地的运动方程为21012y h t gt =+-v 升降机底板对地的运动方程为220122y t gt =+⨯v 且钉子落到底板时,有12=y y ,即2012h t gt +-=v 20t gt +v αuv 'v 解图1-17解图1-18解出t0.37s t与参考系的选取无关.。
《新编基础物理学》第二章习题解答和分析1
习题二2-1分析:用隔离体法,进行受力分析,运用牛顿第二定律列方程。
解:以m 、M 整体为研究对象,有:()F m M a =+…①以m 为研究对象,如图2-1(a ),有Mm F F ma +=…②由①、②,有相互作用力大小Mm MFF m M=+若F 作用在M 上,以m 为研究对象,如图2-1(b )有Mm F ma =…………③由①、③,有相互作用力大小Mm mFF m M=+,发生变化。
2-2. 分析:由于轻滑轮质量不计,因此滑轮两边绳中的张力相等,用隔离体法进行受力分析,运用牛顿第二定律列方程。
解:取向上为正,如图2-2,分别以M 1、M 2和m 为研究对象, 有: 111T M g M a -=222() ()M m g T M m a -++=-+2 M mmg ma F-=-又:T 1=T 2,则: 2M m F =1122M mgM M m++当M 1=M 2= 4m , 289M mmg F = 当M 1=5m, M 2=3m, 2109M mmg F =,发生变化。
2-3.分析:用隔离体法受力分析,运用牛顿第二定律列方程。
解:f为空气对气球的浮力,取向上为正。
分别由图2—3(a )、(b)可得:Ma Mg f =-1)()(a m M g m M f +=+-m(a )Fm(b )F则()Mm g a m a a a M m mg Ma a ++=-=∆+-=11,2-4.分析:用隔离体法受力分析,人站在底板上静止不动,底板、人受的合力分别为零. 解:设底板、人的质量分别为M ,m ,以向上为正方向,如图2-4(a )、(b), 分别以底板、人为研究对象, 则有:120T T F Mg +--= 3'0T F mg +-=F 为人对底板的压力,'F 为底板对人的弹力。
F='F又:23112T T T ==则23()245()4M m gT T N +===由牛顿第三定律,人对绳的拉力与3T 是一对作用力与反作用力,即大小相等,均为245(N )。