中考数学一元二次方程专项复习训练题

合集下载

(完整版)九年级数学中考复习专题一元二次方程练习题及答案

(完整版)九年级数学中考复习专题一元二次方程练习题及答案

中考数学复习专题一元二次方程一、选择题:1、若关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0的常数项为0,则m的值等于( )A.﹣2 B.2 C.﹣2或2 D.02、方程x2+6x﹣5=0的左边配成完全平方后所得方程为( )A.(x+3)2=14 B.(x﹣3)2=14 C.(x+3)2=4 D.(x﹣3)2=43、关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0,常数项为0,则m值等于( )A.1 B.2 C.1或2 D.04、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是( )A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965、若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围( )A.k<1且k≠0 B.k≠0 C.k<1 D.k>16、关于x的一元二次方程x2+2x﹣m=0有两个实数根,则m的取值范围是( )A.m≥﹣1 B.m>﹣1 C.m≤﹣1且m≠0 D.m≥﹣1且m≠07、已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为( )A.﹣10 B.4 C.﹣4 D.108、若m、n是一元二次方程x2﹣5x﹣2=0的两个实数根,则m+n﹣mn的值是( )A.﹣7 B.7 C.3 D.﹣39、有一人患了流感,经过两轮穿然后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x值为( )A.5 B.6 C.7 D.810、毕业之际,某校九年级数学兴趣小组的同学相约到同一家礼品店购买纪念品,每两个同学都相互赠送一件礼品,礼品店共售出礼品30件,则该兴趣小组的人数为( )A.5人 B.6人 C.7人 D.8人11、某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计今年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是( )A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)212、设x1、x2是方程x2+3x﹣3=0的两个实数根,则的值为( )A.5 B.﹣5 C.1 D.﹣1二、填空题:13、方程2x2﹣1=的二次项系数是 ,一次项系数是 ,常数项是 .14、若关于x的方程(a+3)x|a|-1-3x+2=0是一元二次方程,则a的值为________________.15、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得,其中二次项系数是,一次项系数是,常数项是。

2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

2024年全国各省市数学中考真题汇编 专题6一元二次方程及其应用(11题)含详解

专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .98k <B .98k ≤C .98k ≥D .98k <-3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .14.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=09.(2024·安徽·中考真题)解方程:223x x -=10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量y (件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.专题06一元二次方程及其应用(11题)一、单选题1.(2024·四川自贡·中考真题)关于x 的一元二次方程220x kx +-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】本题考查的是一元二次方程根的判别式,熟知一元二次方程20(0)ax bx c a ++=≠中,当0∆>时,方程有两个不相等的实数根是解题的关键.根据一元二次方程根的判别式解答即可.【详解】解: △()2241280k k =-⨯⨯-=+>,∴方程有两个不相等的实数根.故选:A .2.(2024·山东泰安·中考真题)关于x 的一元二次方程2230x x k -+=有实数根,则实数k 的取值范围是()A .9k <B .98k ≤C .98k ≥D .98k <-【答案】B【分析】本题考查了判别式与一元二次方程根的情况,熟知一元二次方程有实数根的条件是解题的关键.根据一元二次方程有实数根的条件是0∆≥,据此列不等式求解即可.【详解】解:∵关于x 的一元二次方程2230x x k -+=有实数根,∴()2Δ3420k =--⨯≥,解得98k ≤.故选B .3.(2024·甘肃兰州·中考真题)关于x 的一元二次方程2960x x c -+=有两个相等的实数根,则c =()A .9-B .4C .1-D .1【答案】D【分析】此题考查了根的判别式,根据根的情况确定参数k 的取值,解题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当方程有两个不相等的实数根时,0∆>;当方程有两个相等的实数根时,Δ0=;当方程没有实数根时,Δ0<.【详解】解:∵关于x 的一元二次方程2960x x c -+=有两个相等的实数根,∴()2Δ64936360c c =--⨯⨯=-=,解得:1c =,故选:D .4.(2024·内蒙古赤峰·中考真题)等腰三角形的两边长分别是方程210210x x -+=的两个根,则这个三角形的周长为()A .17或13B .13或21C .17D .13【答案】C【分析】本题考查了解一元二次方程,等腰三角形的定义,三角形的三边关系及周长,由方程可得13x =,27x =,根据三角形的三边关系可得等腰三角形的底边长为3,腰长为7,进而即可求出三角形的周长,掌握等腰三角形的定义及三角形的三边关系是解题的关键.【详解】解:由方程210210x x -+=得,13x =,27x =,∵337+<,∴等腰三角形的底边长为3,腰长为7,∴这个三角形的周长为37717++=,故选:C .二、填空题5.(2024·广东·中考真题)若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =.【答案】1【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.6.(2024·四川巴中·中考真题)已知方程220x x k -+=的一个根为2-,则方程的另一个根为.7.(2024·甘肃临夏州·中考真题)若关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根,则m 的值为.【答案】-1【分析】根据关于x 的一元二次方程x 2+2x ﹣m=0有两个相等的实数根可知△=0,求出m 的取值即可.【详解】解:由已知得△=0,即4+4m=0,解得m=-1.故答案为-1.【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.三、解答题8.(2024·黑龙江齐齐哈尔·中考真题)解方程:x 2﹣5x +6=0【答案】x 1=2,x 2=3【分析】利用因式分解的方法解出方程即可.【详解】利用因式分解法求解可得.解:∵x 2﹣5x +6=0,∴(x ﹣2)(x ﹣3)=0,则x ﹣2=0或x ﹣3=0,解得x 1=2,x 2=3.【点睛】本题考查解一元二次方程因式分解法,关键在于熟练掌握因式分解的方法步骤.9.(2024·安徽·中考真题)解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.10.(2024·青海·中考真题)(1)解一元二次方程:2430x x -+=;(2)若直角三角形的两边长分别是(1)中方程的根,求第三边的长.11.(2024·辽宁·中考真题)某商场出售一种商品,经市场调查发现,日销售量(件)与每件售价x (元)满足一次函数关系,部分数据如下表所示:每件售价x /元⋅⋅⋅455565⋅⋅⋅日销售量y /件⋅⋅⋅554535⋅⋅⋅(1)求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围);(2)该商品日销售额能否达到2600元?如果能,求出每件售价:如果不能,请说明理由.【答案】(1)100=-+y x ;(2)该商品日销售额不能达到2600元,理由见解析。

专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)

专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)

专题10一元二次方程 专题训练 中考数学2023年真题 专项汇编(全国通用)(含答案)一、单选题A .B .3.(2023·山东聊城·统考中考真题)若一元二次方程取值范围是( )A .B .4.(2023·四川·统考中考真题)关于()4,41m ≥-A .B .8.(2023·四川泸州·统考中考真题)关于况是( )A .没有实数根C .有两个不相等的实数根(3,0)-A .0B .112.(2023·天津·统考中考真题)若A .B .126x x +=12x x +=①,②,③当线段长取最小值时,则④若点,则二、填空题23.(2023·重庆·统考中考真题)为了加快数字化城市建设,4124x x ⋅=-21242y y k +=+AB (0,1)N -AN BN⊥,三、解答题31.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯,某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元,2022年用于购买图书的费用是7200元,求年买书资金的平均增长率.32.(2023·福建·统考中考真题)已知抛物线交轴于两点,为抛物线的顶点,为抛物线上不与重合的相异两点,记中点为,直20202022-23y ax bx =++x ()()1,0,3,0A B M ,C D ,A B AB E(1)求这两个函数的解析式;(1)当___________时,(2)设2023年甲乙两种蔬菜总种植成本为最小?①求证:.x =2m y =23DO EO =等腰三角形的底边,在的同侧作等腰和等腰,且.在线段上取一点,使,连接.(1)如图1,求证:;(2)如图2,若的延长线恰好经过的中点,求的长.42.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形中,,对角线平分.求证:四边形为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形是邻等四边形,,为邻等角,连接,过B 作交的延长线于点E .若,求四边形的周长.43.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数(实数为常数)的图象为图象.(1)求证:无论取什么实数,图象与轴总有公共点;(2)是否存在整数,使图象与轴的公共点中有整点?若存在,求所有整数的值;若不存在,请说明理由.AB ACD V BCE V A CBE ∠=∠EC F EF AD =,BF DE DE BF =2AD BF =,DE G BE ABCD ,90AD BC A ∠=︒∥BD ADC ∠ABCD ABCD ABCD 90DAB ABC ∠=∠=︒BCD ∠AC BE AC ∥DA 8,10AC DE ==EBCD 2(42)(96)44y a x a x a =++--+a T a T x a T x a(1)求,的值;(2)平行于轴的动直线与和反比例函数的图象分别交于点为顶点的四边形为平行四边形,求点k m y l参考答案:1.C2.D3.D4.C5.B6.B7.D8.C9.B10.C11.C12.A13.D14.D15.D16.C17.A18.C19.C20.A21.22.10 23.24.3 25.5 26.27.28.2()2100011440x+=2301(1)500x+=5-2-。

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷

中考数学《一元二次方程》专题复习检测试卷一.单项选择题(共15小题,每小题3分,共45分)1.下列方程中,是一元二次方程的是( )A .3(1+x )2=3x 2+7B .3(1+x )2=x (3x +7)C .px 2+x ﹣4=x (px ﹣1)D .2x 2=02.若关于x 的方程mx m ﹣1+(m ﹣3)x +5=0是一元二次方程,那么m 的值为( )A .m =3B .m =2C .m =1D .m ≠03.一元二次方程2x 2﹣2x =1的一次项系数和常数项依次是( )A .﹣2和﹣1B .﹣2和1C .2和﹣1D .2和14.如果关于x 的一元二次方程(a ﹣2)x 2+3x +|a |﹣2=0的常数项为0,那么a 的值一定是( )A .2B .﹣2C .2或﹣2D .05.已知m 是方程x 2﹣x ﹣2=0的一个根,则代数式m 2﹣m +2022的值等于( )A .2024B .2022C .2023D .20216.已知x =﹣1是一元二次方程x 2+mx =3的一个解,则m 的值是( )A .0或2B .2C .0D .﹣27.方程x 2=4的解是( )A .±√2B .√2C .±2D .28.一元二次方程x 2﹣3=0的根是( )A .x =±√3B .x =√3C .x =3D .x =09.用配方法解方程x 2+7x ﹣5=0,变形后的结果正确的是( )A .(x +72)2=694 B .(x +72)2=294 C .(x −72)2=694 D .(x −72)2=29410.用配方法解方程x 2+4x ﹣1=0,配方后的方程是( )A .(x +2)2=5B .(x ﹣2)2=3C .(x ﹣2)2=5D .(x +2)2=311.对于实数a ,b ,定义运算“※”:a ※b =a 2﹣2b ,例如:5※1=52﹣2×1=23.若x ※x =﹣1,则x 的值为( )A .1B .0C .0或1D .1或﹣112.如果a是一元二次方程x2﹣3x﹣5=0的较小的根,那么下面对a的估值一定正确的是()A.﹣1.5<a<﹣1B.2<a<3C.﹣4<a<﹣3D.4<a<513.方程(x+2)(x﹣3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣314.一元二次方程(x﹣1)(x﹣2)=0的一个解是x=2,则另一个解是()A.x=3B.x=2C.x=1D.无法判断15.如果y为实数,且满足等式(y2+m2)2﹣2(y2+m2)=24,那么5(y2+m2)的值一定是()A.6B.30C.36D.12二.填空题(共10小题,每小题3分,共30分)16.若关于x的方程(m+1)x m2+1−3x+2=0是一元二次方程,则m的值是________.17.将一元二次方程2x2=5x﹣3化成一般形式之后,若二次项的系数是2,则一次项系数为________.18.关于x的方程x2+kx+2=0的一个根是1,则k=________.19.方程x2﹣5=0的根是.20.下面是某同学解方程x2+6x﹣16=0的部分运算过程:解:移项,得x2+6x=16,…第一步配方,得x2+6x+9=16+9,…第二步即(x+3)2=25,…第三步两边开平方,得x+3=5,…第四步①该同学的解答从第________步开始出错.②请写出正确的解答过程.21.如果用公式法解关于x的一元二次方程,得到x=−9±√92−4×3×1,那么该一元二次方2×3程是________.22.方程x2=x的解是________.23.实数x、y满足(x2+y2)(x2+y2﹣1)=12,则x2+y2的值为________.24.一元二次方程x2+5x+1=0的根的判别式的值是________.25.写出一个一元二次方程的一般式,使它同时满足以下两个要求:①二次项系数为2,②两根分别为3和−1:________.2三.解答题(共4小题,共75分)26.已知关于x的一元二次方程(m﹣1)x2﹣5x+m2﹣3m+2=0的常数项为0,求m的值.27.已知m是方程2x2﹣7x+1=0的一个根,求代数式m(2m﹣7)+5的值.28.(1)用适当的方法解方程:81(1﹣x)2=64.(2)请你结合生活经验,设计一个问题,使它能利用建立方程模型“100(1﹣x)2=81”来解决.你设计的问题是:.29.阅读材料,并回答问题.小明在学习一元二次方程时,解方程2x2﹣8x+5=0的过程如下:解:2x2﹣8x+5=0.2x2﹣8x=﹣5.①.②x2−4x=−52+4.③x2−4x+4=−52.④(x−2)2=32.⑤x−2=√62.⑥x=2+√62问题:(1)上述过程中,从________步开始出现了错误(填序号).(2)发生错误的原因是:__________.(3)写出这个方程的解:__________.。

2024年中考数学二轮复习模块专练—一元二次方程(含答案)

2024年中考数学二轮复习模块专练—一元二次方程(含答案)

2024年中考数学二轮复习模块专练—一元二次方程(含答案)a a【例1】试卷第2页,共8页【例1】【例1】【例1】【例1】试卷第4页,共8页试卷第6页,共8页三、解答题(2023·辽宁鞍山·校考一模)26.解下列方程:(1)22410x x +-=.(2)()263x x x -=-;(2023·湖北襄阳·统考中考真题)27.关于x 的一元二次方程2230x x k ++-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个根为α,β,且23k k αβ=+,求k 的值.(2023·浙江杭州·统考中考真题)28.设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值,使这个方程有两个不相等的实数根,并解这个方程.①2,1b c ==;②3,1b c ==;③3,1b c ==-;④2,2b c ==.注:如果选择多组条件分别作答,按第一个解答计分.(2023·四川遂宁·统考中考真题)29.我们规定:对于任意实数a 、b 、c 、d 有[,][,]a b c d ac bd *=-,其中等式右边是通常的乘法和减法运算,如:[3,2][5,1]352113*=⨯-⨯=.(1)求[4,3][2,6]-*-的值;(2)已知关于x 的方程[,21][1,]0x x mx m -*+=有两个实数根,求m 的取值范围.(2023·湖北·统考中考真题)30.已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b ,若()()2220a b a b ++=,求m 的值.(2023·四川南充·统考中考真题)试卷第8页,共8页参考答案:1.B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.2.C【分析】利用一元二次方程根的定义,确定出m 的值即可.【详解】解:∵关于x 的一元二次方程()22390m x x m -++-=的一个根为0,∴30m -≠且290m -=,解得:3m =-.故选:C .【点睛】本题考查了一元二次方程的解,一元二次方程的定义,一元二次方程的一般形式为答案第2页,共21页231841x x =-+()23314x =-+;∵()230x -≥,∴222x y z ++的最小值是14,故答案为14.【点睛】本题考查配方法的应用.将代数式转化为只含x 的代数式,利用配方法求最值,是解题的关键.6.6【分析】根据a -b 2=4得出24b a =-,代入代数式a 2-3b 2+a -14中,通过计算即可得到答案.【详解】∵a -b 2=4∴24b a =-将24b a =-代入a 2-3b 2+a -14中得:()2222341423142a a a b a a a a =--+-=---+-()2222221313a a a a a --=-+-=--∵240b a =-≥∴4a ≥当a=4时,()213a --取得最小值为6∴222a a --的最小值为6∵22231422a a ab a --=-+-∴22314a b a -+-的最小值6故答案为:6.答案第4页,共21页答案第6页,共21页答案第8页,共21页【分析】由于关于x 的一元二次方程2210mx x ++=有实数根,根据一元二次方程根与系数的关系可知0∆≥,且0m ≠,据此列不等式求解即可.【详解】解:由题意得,440m -≥,且0m ≠,解得,1m £,且0m ≠.故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.13.C【分析】根据配方法,先将常数项移到右边,然后两边同时加上4,即可求解.【详解】解:2410x x --=移项得,241x x -=两边同时加上4,即2445x x +=-∴2(2)5x -=,故选:C .【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法是解题的关键.14.A【分析】根据整式的加减化简,然后根据配方法得出P Q -()2=110x -+>,即可求解.【详解】解:∵2P x x =-,2Q x =-∴P Q -()()222222110x x x x x x =---=-+=-+>∴P Q -的值大于0,故选:A .【点睛】本题考查了整式的加减,配方法的应用,非负数的性质,熟练掌握配方法是解题的关键.15.A【分析】由已知得224y x =-,注意x 的取值范围,代入222x y x ++再配方,利用非负数的性质即可求解.【详解】解:∵2240y x -+=,∴224y x =-,且240x -≥即2x ≥,∴2222422x y x x x x+=-+++2448x x +=+-()228x =+-,∵()220x +≥,2x ≥∴当2x =时,222x y x ++的最小值是8,故选:A .【点睛】本题考查的是配方法的应用,非负数的性质,代数式求值,掌握完全平方公式及确定x 的取值范围是解决问题的关键.16.B【分析】利用配方法表示出B A -,以及2B A =时,用含n 的式子表示出x ,确定x 的符号,进行判断即可.【详解】解:∵226A x x n =++,2224B x x n =++,∴()2222246B A x x n x x n -=+++-+2222246x x n x x n =--++-答案第10页,共21页解得0x =或40x y +-=,即0x =或4x y +=,①错误;由243x mxy x x +-=可得()7x my x x +=,∵无论x 取任何实数,等式243x mxy x x +-=都恒成立,∴7x my +=,②正确;2245,47x xy x y xy y +-=+-=两式相加可得:2224412x xy y x y ++--=即2()4()12x y x y +-+=令t x y =+,则24120t t --=,解得16t =,22t =-即2x y +=-或6x y +=,③错误;由22440x xy x y xy y +-+--≤可得22(2)(2)8x y -+-≤正整数解为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),总共有16个,④错误正确的个数为1,故选:A【点睛】本题主要考查了整式加减,二元一次不等式的解,完全平方公式,一元二次方程的解,解题的关键是熟练掌握相关运算法则以及灵活运用完全平方公式.19.5【分析】:把1x =代入方程260x mx +-=,求出关于m 的方程的解即可.【详解】把1x =代入方程260x mx +-=,得160m +-=,解得5m =.故答案为:5.【点睛】本题考查了一元二次方程的解.能使一元二次方程左右两边相等的未知数的值是一答案第12页,共21页答案第14页,共21页答案第16页,共21页答案第18页,共21页答案第20页,共21页。

中考数学专题复习题:一元二次方程

中考数学专题复习题:一元二次方程

中考数学专题复习题:一元二次方程一、单项选择题(共10小题)1.下列一元二次方程中,没有实数根的是()A.220+−=x x−=B.2410x xC.2x x352=+2430x x−+=D.22.学校连续三年组织学生参加义务植树,第一年植树400棵,第三年植树625棵,设该校植树棵数的年平均增长率为x,根据题意,下列方程正确的是()A.625(1−x)2=400B.()2x+=4001625C.2x=D.400(1−x)2=6256254003.用配方法解方程2440x x−−=,则方程可变形为()A.()228x−=D.()228x−= x+=B.()220x−=C.()2154.下列关于x的一元二次方程中,有两个不相等的实数根的是()A.291240−+=x x=B.22x xx x++=C.210++=D.()450x x5.2020年某汽车累计销量为150万辆,销量逐年增加,预计到2022年销量达到486万辆.若2020年到2022年的年平均增长率为x,则x的值为()A.80%B.120%C.112%D.150%6.M同学与N同学一起写作业,在解一道一元二次方程时,M同学在化简过程中写错了常数项,因而得到方程的两个根是6和1;N同学在化简过程中写错了一次项的系数,因而得到方程的两个根是-2和-5,则原来的方程是()A.2650−+=x xx x++=B.27100C.2520x xx x−−=−+=D.261007.对于一元二次方程,我国及其他一些国家的古代数学家还研究过其几何解法呢!以方程x2+2x﹣35=0即x(x+2)=35为例加以说明,三国时期的数学家赵爽在其所著的《勾股圆图注》中记载的方法是:构造如图,图中的大方形的面积是(x+x+2)2;它又等于四个矩形面积加上中间小正方形的面积,即4×35+22,据此易得x=5,那么在下面的四个构图中,能够说明x 2﹣2x ﹣8=0的正确构图是( )A .B .C .D .8.已知关于x 的一元二次方程kx 2﹣2x +3=0有两个不相等的实数根,则k 的取值范围是( )A .k <13B .k >﹣C .k >﹣且k ≠0D .k <且k ≠0 9.某种商品的标价为160元/件,经过两次降价后的价格为90元/件,若两次降价的百分率都为x ,则可列方程( )A .290160x =B .2160(1)90x +=C .2160(1)90x −=D .290(1)160x += 10.下列结论:①当3m =时,若220x mxy x +−=,则32x y +=;②无论x 取任何实数,等式230x mxy x +−=都恒成立,则()29x my +=;③若227x xy x +−=,228y xy y +−=,则5x y +=;131313④满足()()22420x xy x y xy y +−+−−<的整数解(),x y 共有12个.正确的个数有( )A .1个B .2个C .3个D .4个二、填空题(共8小题)11.关于的一元二次方程2680x x m −+−=有实数根,则m 的最小值为________. 12.2210ax x +−=是关于的一元二次方程,则a 的取值范围是________.13.若等腰三角形的一边长是4,另两边的长是关于的方程260x x n −+=的两个根,则n 的值为________.14.已知一元二次方程220x mx m −+−=的两个实数根为1x 、2x ,且1212()3x x x x +=,则的值是________.15.定义:若3432n n −−(n 为正整数)等于两个连续正奇数的乘积,则称n 为“智慧数”.(1)当010n <<时,请任意写出一个智慧数:________;(2)当0500n <<时,则“智慧数”n 的最大值为________.16.某同学用一块面积为2400cm 的正方形纸片,沿边的方向裁出一块面积为2222cm 的长方形纸片,使它的长宽之比为3:2,则这个长方形的边长分别是________. 17.三角形的两边分别2和6,已知第三边是方程210210x x −+=的解,则三角形周长为________.18.如图,在ABC 中,90BAC ∠=︒,D 是AC 边上的一点,2C CBD ∠=∠,E ,F 分别是BC ,BD 上的点,且2BEF CAE ∠=∠,AB BE =.(1)设CBD α∠=,则BEF ∠=________(用含α的式子表示);(2)若2EF =,1CE =,则BE 的长为________.三、解答题(共5小题) 19.如图,要设计一幅长24cm ,宽10cm 的矩形图案,其中有一横两竖的彩条,横竖x x xm彩条的宽度相同,如果要使彩条所占面积是图案面积的三分之一,那么彩条的宽度应该为多少厘米?20.某水果超市调查一种水果的销售情况,该水果的进价是每千克22元,当售价为每千克38元时,每天可售出160千克;若每千克降低3元,则每天的销量将增加120千克,超市每天要获得利润3640元,又要尽可能让顾客得到实惠,求这种水果的售价.21.解方程:(1)2230x x −−=;(2)2212x x −=.22.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m 2?23.如图,四边形AOBC 为正方形,为的中点,连接OE,OE =.(1)求点C 的坐标;(2)为上一点,2FOB AOE ∠=∠,①求点的坐标;②作点A 关于OF 的对称点H ,连接AH 和BH ,则AHB ∠的度数为_______;的长度为_______(直接写出结果).E ACF AC FBH。

中考数学一轮复习《一元二次方程》练习题(含答案)

中考数学一轮复习《一元二次方程》练习题(含答案)一、单选题1.解一元二次方程2210x x +-=,配方得到()21x a +=,则a 的值为( ) A .1B .1-C .2D .2-2.关于x 的一元二次方程x 2﹣2x +m ﹣1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .m ≥2B .m ≤2C .m >2D .m <23.用配方法解一元二次方程27120x x -+=,配方后的方程为( ) A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x +=4.某超市销售一种商品,其进价为每千克30元,按每千克45元出售,每天可售出300千克,为让利于民,超市采取降价措施,当售价每千克降低1元时,每天销量可增加50千克,若每天的利润要达到5500元,则实际售价应定为多少元?设售价每千克降低x 元,可列方程为( )A .(45-30-x )(300+50x )=5500B .(x -30)(300+50x )=5500C .(x -30)[300+50(x -45)]=5500D .(45-x )(300+50x )=55005.铜罗中学组织一次乒乓球赛,比赛采用单循环制,要求每两队之间赛一场.若整个比赛一共赛了45场,则有几个球队参赛?设有x 个球队参赛,则下列方程中正确的是( ) A .x (x +1)=45B .1(1)452x x +=C .x (x ﹣1)=45D .1(1)452x x -=6.一元二次方程22560x x -+=的根的情况为( ) A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定7.已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k的取值范围是( )A .14k >-B .14k <C .14k >-且0k ≠D .14k <且0k ≠ 8.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或159.某超市一月份的营业额为100万元,已知第一季度的总营业额共500万元,如果平均每月增长率为x ,则由题意列方程应为( )A .100+100(1+x )+100(1+x )2=500B .100(1+x )2=500C .100+100(1+x )2=500D .100(1+x )=50010.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪,要使小路的面积为100平方米,设道路的宽x 米,则可列方程为( )A .32203220100x x ⨯--=B .()()23220100x x x --+=C .23220100x x x +=+D .()()3220100x x --=11.对于任意实数k ,关于x 的方程222(5)24500x k x k k -++++=的根的情况为( ) A .有两个相等的实数根 B .无实数根 C .有两个不相等的实数根D .无法判定12.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是6000元,现在生产一吨药的成本是5000元.设生产成本的年平均下降为x ,下列所列的方程正确的是( ) A .6000(1+x )2=5000 B .5000(1+x )2=6000 C .6000(1﹣x )2=5000D .5000(1﹣x )2=6000二、填空题 13.方程290x 的根是_________.14.若关于x 的一元二次方程2210++-=x x m 有一个根为0,则m =________.15.关于x 的一元二次方程()21210m x x -+-=有两个不相等的实数根,则m 的取值范围是_______.16.已知关于x 的方程21(1)230m m x x +-+-=是一元二次方程,则m 的值为_________. 17.2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________. 18.一元二次方程2430x x -+=配方为()22x k -=,则k 的值是______.19.已知x =﹣2时,二次三项式x 2﹣2mx +4的值等于﹣4,当x =_____时,这个二次三项式的值等于﹣1.20.常态化防疫形势下,某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请x 个好友转发倡议书,每个好友转发倡议书,又邀请x 个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为__________________.三、解答题21.用适当的方法解下列方程: (1)23650x x +-= (2)2670x x +-= (3)2760x x += (4)()()22333x x x =--22.已知关于x 的一元二次方程2(2)10x m x m -+++=. (1)如果该方程有两个相等的实数根,求m 的值; (2)如果该方程有一个根小于0,求m 的取值范围.23.已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根. (1)求a 的取值范围;(2)若a 为正整数,求方程的根.24.如图,在长方形ABCD 中,6cm,7cm ==AB BC ,点P 从点A 开始沿边AB 向点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以2cm/s 的速度移动.当点Q 运动到点C 时,两点停止运动.设运动时间为s t .多少秒后三角形BPQ 的面积等于25cm25.为应对新冠疫情,较短时间内要实现全国医用防护服产量成倍增长,有效保障抗击疫情一线需要,某医用防护服生产企业1月份生产9万套防护服,该企业不断加大生产力度,3月份生产达到12.96万套防护服.(1)求该企业1月份至3月份防护服产量的月平均增长率.(2)若平均增长率保持不变,4月份该企业防护服的产量能否达到16万套?请说明理由.26.某商店以每件16元的价格购进了一批热销商品,出售价格经过两个月的调整,从每件25元上涨到每件36元,此时每月可售出160件商品. (1)求该商品平均每月的价格增长率;(2)因某些原因商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降0.5元,每个月多卖出1件,当降价多少元时商品每月的利润可达到1800元.27.金都百货某小家电经销商销售一种每个成本为40元的台灯,当每个台灯的售价定为60元时,每周可卖出100个,经市场调查发现,该台灯的售价每降低2元.其每周的销量可增加20个.(1)台灯单价每降低4元,平均每周的销售量为 个.(2)如果该经销商每周要获得利润2240元,那么这种台灯的售价应降价多少元? (3)在(2)的条件下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?28.位于宁波市江北区的保国寺以其精湛绝伦的建筑工艺闻名全国,其中大雄宝殿(又称无梁殿)更是以四绝“鸟不栖,虫不入,蜘蛛不结网,梁上无灰尘”吸引了各地游客前来参观.据统计,假期第一天保国寺的游客人数为5000人次,第三天游客人数达到7200人次. (1)求游客人数从假期第一天到第三天的平均日增长率;(2)据悉,景区附近商店推出了保国寺旅游纪念章,每个纪念章的成本为5元,当售价为10元时,平均每天可售出500个,为了让游客尽可能得到优惠,商店决定降价销售.市场调查发现,售价每降低0.5元,平均每天可多售出100个,若要使每天销售旅游纪念章获利2800元,则售价应降低多少元?29.2022年北京冬奥会吉祥物“冰墩墩”意喻敦厚、健康、活泼、可爱,象征着冬奥会运动员强壮的身体、坚韧的意志和鼓舞人心的奥林匹克精神.随着北京冬奥会开幕日的临近,某特许零售店“冰墩墩”的销售日益火爆.据调查“冰墩墩”每盒进价8元,售价12元. (1)商店老板计划首月销售330盒,经过首月试销售,老板发现单盒“冰墩墩”售价每增长1元,月销量就将减少20盒.若老板希望“冰墩墩”月销量不低于270盒,则每盒售价最高为多少元?(2)实际销售时,售价比(1)中的最高售价减少了2a 元,月销量比(1)中最低销量270盒增加了60a 盒,于是月销售利润达到了1650元,求a 的值。

解一元二次方程计算题专项训练(50道)(解析版)—2025学年九年级数学上学期高频与压轴题型专项攻略

解一元二次方程计算题专项训练(50道)目录【训练一、配方法】 (1)【训练二、公式法】 (8)【训练三、因式分解法】 (15)【训练一、配方法】1.用配方法解下列方程:(1)2230x x -++=;(2)2118022x x -+=.(1)214240x x ++=;(2)21130x x -=-;(3)228=0x x --;(4)210110--=.x x()2536x -=56x -=±,∴1211,1x x ==-.3.用配方法解方程:()()23616x x +-=.5.用配方法解方程245=0x x --.【答案】12=5=1x x -,【分析】本题考查的是一元二次方程的解法,掌握配方法解方程是关键.运用配方法求解即可.【详解】解:方程移项得:245x x -=,配方得:2449x x -+=,即()229x -=,开方得:23x -=或23x -=-,解得:12=5,=1x x -.6.用配方法解方程:2220x mx m +-=.(1)2440x x ++=;(2)22320x x -+=.8.解方程:2340+-=(用配方法)x x【答案】12=5=1x x -,【分析】本题考查的是一元二次方程的解法;掌握配方法解方程是关键.【详解】解:方程变形得:245x x -=,即2449x x -+=,变形得:()229x -=,开方得:23x -=或23x -=-,解得:12=5,=1x x -.14.用配方法解方程:23210x x --=.【训练二、公式法】16(1)()()2121x x +-=;(2)()223220x x x -+=+.(1)231y +=;(2)23210x x ++=;(3)()()()33211x x x x -=-+.(1)2120--=;x x(2)2x x+-=;2530 (3)2x x-+=;2770(4)210x--=.21.(用公式法)解一元二次方程:2x x--=.2630(1)2120--=;x x(2)2+-=;x x2530(3)2-+=.x x277024.用公式法解方程:.--=460 x x--=x x2029.解方程:2290x x --=(用公式法)410x x -+=【训练三、因式分解法】31.(1)用公式法解方程:2470x x --=;(2)用因式分解法解方程:()220x x x -+-=.(1) ()4312x x x +=+;(2) ()24220x x ---=;(3)()()2291250x x -+-=.33.解方程:2323230x x ----= 【答案】10x =,22x =【分析】本题考查了一元二次方程的解法,将原方程化成一元二次方程的一般形式是解答本题的关键.先将原方程化成一元二次方程的一般形式,然后再用因式分解法解答即可.【详解】解:()()22323230x x ----=241296430x x x -+-+-=2480x x -=()420x x -=40x =或20x -=\10x =,22x =.34.解方程:(1)2(3)3x x x -=-;(2)(1)(2)1x x +-=.(1)22350x x --=;(2)2(5)3(5)x x x -=-.【答案】126,1x x ==-【分析】本题主要考查解一元二次方程,将方程整理为2560x x --=,再运用因式分解法求解即可.【详解】解:22(2)+6x x x x -=+,22246x x x x -=++,222460x x x x ----=,2560x x --=,()()610x x -+=,60,10x x -=+=,∴126,1x x ==-.37.解方程 ()()252552+60x x ---=(1)(3)30x x x -+-=(2)2410x x -+=(1)263x x -= ;(2)()25410x x x -=-.(1)2410x x -+=;(2)2(4)5(4)x x +=+;(3)26061x x -=-;(4)2230x x +-=.41.解方程:()()2131x x x +=+.42.解方程:2121x x -=-.(1)()()2(31)23x x x -+=-.(2)(1)(2)2(2)0x x x +-+-=(3)3(1)22x x x-=-(1)22410x x --=.(2)()()2312y y --=(2)解:∵()()2312y y --=,∴223612y y y --+=,∴2560y y --=,∴()()610y y -+=,∴60y -=或10y +=.解得16y =,21y =-.45.解方程:(1)()2116x +=;(2)()()215140x x ---+=.(1)2450x x --=;(2)3(1)2(1)x x x -=-.(1)()()3239x x x +-=--(2)22980x x -+=(1)2316x x =.(2)22740x x +-=.(1)()234x x x -=-.(2)()22239x x -=-.()()()223330,x x x --+-=()()()32330x x x ---+=éùëû,()()390x x --=,30,90,x x -=-=解得,123,9x x ==50.解方程432625122560x x x x -+++=.。

中考数学一元二次方程专题(附答案)

中考数学⼀元⼆次⽅程专题(附答案)中考数学⼀元⼆次⽅程专题(附答案)⼀、单选题(共12题;共24分)1.下列⼀元⼆次⽅程有两个相等实数根的是()A. x2﹣2x+1=0B. 2x2﹣x+1=0C. 4x2﹣2x﹣3=0D. x2﹣6x=02.⽅程=0有两个相等的实数根,且满⾜=,则的值是()A. -2或3B. 3C. -2D. -3或23.若关于x的⼀元⼆次⽅程x2﹣2x﹣k+1=0有两个相等的实数根,则k的值是()A. ﹣1B. 0C. 1D. 24.若关于的⼀元⼆次⽅程有两个不相等的实数根,则⼀次函数的图象可能是:A. B. C. D.5.下列⼀元⼆次⽅程中,有两个相等实数根的是()A. x2﹣8=0B. 2x2﹣4x+3=0C. 9x2﹣6x+1=0D. 5x+2=3x26.已知m、n、4分别是等腰三⾓形(⾮等边三⾓形)三边的长,且m、n是关于的⼀元⼆次⽅程的两个根,则k的值等于A. 7B. 7或6C. 6或D. 67.⽅程(x-1)?(x2+17x-3)=0的三根分别为x1,x2,x3 .则x1x2+x2x3+x1x3 =()A. 14B. 13C. -14D. -208.⼀元⼆次⽅程x2﹣4x+3=0的两个根分别是⊙O1和⊙O2的半径长,圆⼼距O1O2=4,则⊙O1和⊙O2的位置关系()A. 外离B. 外切C. 相交D. 内切9.已知关于的⽅程有两个实数根,则的取值范围是( )A. B. C. 且 D. 且10.设a、b、c和S分别为三⾓形的三边长和⾯积,关于x的⽅程b2x2+(b2+c2-a2)x+c2=0的判别式为Δ.则Δ与S的⼤⼩关系为( ).A. Δ=16S2B. Δ=-16S2C. Δ=16SD. Δ=-16S11.下列⽅程中,有两个不相等实数根的是().A. x2-4x+4=0B. x2+3x-1=0C. x2+x+1=0D. x2-2x+3=012.已知⼆次函数y=ax2+2ax+3a-2(a是常数,且a≠0)的图象过点M(x1,-1),N(x2,-1),若MN的长不⼩于2,则a的取值范围是()A. a≥B. 0C. - ≤a<0D. a≤-⼆、填空题(共6题;共12分)13.等腰三⾓形的腰和底边的长是⽅程x2-20x+91=0的两个根,则此三⾓形的周长为________.14.已知x=-1是⽅程x2+ax+4=0的⼀个根,则⽅程的另⼀个根为________ 。

中考数学《一元二次方程》专题训练(附带答案)

中考数学《一元二次方程》专题训练(附带答案)一、单选题1.关于x的方程x2-2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k>1C.k<-1D.k>-12.关于x的一元二次方程x2+4x+k=0有两个相等的实数根,则k的值为()A.k=4B.k=﹣4C.k≥﹣4D.k≥43.关于x的一元二次方程方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是()A.B.C.D.4.方程x2﹣5x=0的解是()A.x1=0,x2=﹣5B.x=5C.x1=0,x2=5D.x=05.用配方法解一元二次方程x2+6x−10=0,此方程可变形为()A.(x+3)2=1B.(x−3)2=1C.(x−3)2=19D.(x+3)2=19 6.已知b2﹣4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()A.ab≥18B.ab≤18C.ab≥14D.ab≤147.已知A=x2+3,B=2x+1,则A,B的大小关系正确的是()A.A>B B.A<BC.A=B D.与x的大小有关8.已知关于x的一元二次方程2x²+4x·sinα+1=0有两个相等的实数根,则锐角α的度数为()A.30°B.45°C.60°D.75°9.用配方法解方程x2﹣x﹣1=0时,配方结果正确的是()A.(x﹣1)2=2B.(x −12)2=54C.(x −12)2=1D.(x −12)2=3410.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1−x)2=3200C.3200(1−x2)=2500D.3200(1−x)2=250011.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是()A.(x﹣4)2=19B.(x﹣2)2=7C.(x+2)2=7D.(x+4)2=1912.下列关于x的方程中,没有实数解的是()A.x2﹣4x+4=0B.x2﹣2x﹣3=0C.x2﹣2x=0D.x2﹣2x+5=0二、填空题13.某企业2018年底缴税80万元,2020 年底缴税96.8万元,设这两年该企业交税的年平均增长率为x根据题意,可得方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15章 一元二次方程
一. 填空题:
1.将方程2532+=x x 化为一元二次方程的一般形式为___ ;
2.一元二次方程01422=-+x x 的二次项系数、一次项系数及常数项
之和为______;
3.方程0322=-+x x 的解是__ ;
4.若关于x 的一元二次方程02=++n mx x 有两个实数根,则符合条件
的一组m 、n 的实数值可以是m =______,n =________;
5.请写出一个根为1=x ,另一根满足11<<-x 的一元二次方
程 ;
6.如果,63)122)(122(=-+++b a b a 那么b a +的值为
____________________;
7.在方程01314312
=+⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-x x x x 中,如果设31+-=x x y ,那么原方程可以化为关于的整式方程是 ;
8.在解方程322122-=+-x x x
x 时,如果设x x y 22-=,那么原方程可化为关于y 的一元二次方程的一般形式
是 ;
9.已知962+-a a 与1-b 互为相反数,则式子)(b a a b b a +÷⎪⎭
⎫ ⎝⎛-的值为 ;
10.多项式122++px x 可分解为两个一次因式的积,整数p 的值可以
是 (只写出一个即可)。

11.方程1
112-=-x x x 的根是 ; 12.当=m 时,方程
5
51-=--x m x x 无实数根; 13.用换元法解方程0516)1(2=++-+x x x x 时,可设=y ,从而原方程可化为 ;
14.若x x y +=2,则分式方程x x x x +=
++2251可变形为 ;
15.方程
x
x x x 4121-=-的解是 ; 16.当=k 时,方程33-=+-x k x x x 会产生增根; 17.若⎩⎨⎧==43y x 是方程组⎩⎨⎧==+n
xy m y x 的一个解,则另一个解是 ;
18.有一项工程由甲单独完成需要a 天,由乙单独完成需要b 天,若
甲、乙两人合作完成这项工程所需要的天数是 ;
19.方程组⎩
⎨⎧+==+1122x y y x 的解是 ; 20.若⎩⎨⎧==+10
6xy y x ,则=+22y x ; 二.选择题:
21.已知04412=+-x x ,则x 2
的值等于
( )
A 1
B 2
C 1- D
1-或2
22.已知方程0722)1
(2=---+x x x x ,用换元法解此方程时,设y x x =+1,
则可得关于y 的整式方程是 ( )
A 072=-+y y
B 072=--y y
C 0722=-+y y D
0722=--y y
23.下列方程中,有实根的是 ( )
A 02132=++x
B 012=-x
C 02
22=-++x x x D 02
)1(=+-x x x 24.方程组⎩⎨⎧=+=+51322y x y x 的解是 ( )
A ⎩⎨⎧-=-=32y x 或⎩
⎨⎧-=-=23y x B ⎩⎨⎧==32y x C ⎩⎨⎧==32y x 或⎩
⎨⎧==23y x D ⎩⎨⎧==2
3y x 25.方程组⎩⎨⎧-==+95ab b a 中,b a ,可以看成是一元二次方程的两个实根,这个方程是 ( )
A 0952=-+x x
B 0952=++x x
C 0952=--x x D
0952=+-x x
26
.已知方程组⎩⎨⎧=-=+5522y x y x ,则=xy
( )
A 5
B 5-
C 6
D 6-
27.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则依题意可列方程( ) A x x 70580=- B 57080+=x x C x x 70580=+ D 5
7080-=x x 28.已知⎩⎨
⎧==12y x 是方程组⎩⎨⎧=+=+71ay bx by ax 的解,则=-+))((b a b a ( ) A 335- B 3
35 C 16 D 16- 三.解答题:
29.252522-+=-+x x x x 30.
212111x x -=-+
31.2
511=-+-x x x x 32.)1(22122x x x x +=++
33.解方程组⎩⎨
⎧=+=-x y x y x 322322 34.⎩
⎨⎧-==-23xy y x
36.阅读下面的解题过程,并回答后面的问题:
已知:方程0122=--x x ,求作一个一元二次方程,使它的根是原方程的各根的平方.
解:设方程0122=--x x 的两个根是1x 、2x ,则所求方程的两个根是21x 、22x ∵221=+x x ,121-=⋅x x (第一步)
∴2222122212)(x x x x x x -+=+ (第二步)
=)1(222-⨯-
=6
1)(2212221==⋅x x x x (第三步)
请你回答:
(1)第一步的依据是:________________________________________________;
(2)第二步变形用到的公式是:________________________________________;
(3)第三步变形用到的公式是:_______________________________________;
(4)所求的一元二次方程是:_________________________________________;。

相关文档
最新文档