(完整版)信号与系统知识点整理
信号与系统重要知识总结

信号与系统重要知识总结信号与系统是电子信息类专业中的一门重要课程,它是研究信号的产生、传输、处理与分析的学科。
信号与系统的重要知识主要包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算、系统的稳定性等。
以下是对信号与系统重要知识的总结。
一、信号的基本概念信号是随时间、空间或其他自变量变化的物理量。
根据自变量的不同,信号可以分为时域信号和频域信号。
时域信号是关于时间的函数,而频域信号是关于频率的函数。
二、信号的分类根据信号的性质和特点,信号可以分为连续时间信号和离散时间信号。
连续时间信号是在整个时间范围内存在的信号,离散时间信号仅在一些离散时间点存在。
三、信号的时域和频域表示时域表示是将信号表示为随时间变化的函数,常用的时域表示方法有冲激函数表示、阶跃函数表示和周期函数表示等。
频域表示是将信号表示为随频率变化的函数,常用的频域表示方法有傅里叶变换和拉普拉斯变换等。
四、线性时不变系统线性时不变系统(LTI)是信号与系统中的重要概念,它是指系统的输出只取决于输入的当前值和过去值,且满足线性叠加原理。
LTI系统具有很多重要性质,如时域稳定性、频域稳定性、因果性、时域线性和频域线性等。
五、卷积运算卷积运算是信号与系统中的重要运算工具,它描述了输入信号经过系统响应的输出信号。
卷积运算实质上是将两个信号相乘并对一个变量进行积分的过程。
在时域中,卷积运算可以表示为输入信号和系统冲激响应的卷积;在频域中,卷积运算可以使用傅里叶变换和反变换来进行。
六、系统的稳定性系统的稳定性是指当输入有界时,输出是否也是有界的。
稳定性是一个重要的系统性质,不稳定系统可能导致系统失控或发生崩溃。
稳定性的判定方法有多种,常用的方法有判定系统传递函数的极点位置和利用BIBO(有界输入有界输出)稳定性判据。
综上所述,信号与系统是电子信息类专业中的一门重要课程,它涉及信号的产生、传输、处理与分析的方法。
信号与系统中的重要知识包括信号的基本概念、信号的分类、信号的时域和频域表示、线性时不变系统、卷积运算和系统的稳定性等。
信号与系统知识点

信号与系统信号分类:模拟、数字(连续、离散)三种基本系统互连:串联、并联(级联)、反馈对系统的描述:I/O方程、初始条件、边界条件因果:输出只取决于以前的和当前的输入时不变:特性不随时间改变线性:齐次性、可加性初始松弛条件一个离散时间线性时不变系统的特性完全由它的单位冲激响应决定。
(卷积)一个连续时间线性时不变系统的特性完全由它的单位冲激响应决定。
(卷积几份)卷积性质:交换律、分配律、结合律单位冲激响应对系统因果、稳定性的描述LTI系统的特征值、特征函数(离散、连续)周期性连续信号的傅里叶级数公式(各项意义)傅里叶级数存在条件(Dirichlet条件:周期内积分存在、有限个最大最小值、有限个不连续点)吉布斯现象(对存在不连续点的函数进行的傅里叶级数分析)帕斯瓦尔定理(能量与频谱的关系)时域卷积频域相乘;时域相乘频域卷积(系数)(离散:周期卷积)周期离散信号特征函数的性质(周期性N时域频域)与连续信号的区别系统函数、频率响应周期信号通过LTI系统:信号功率谱被改变(幅度、相位)时域连续频域非周期,时域周期频率离散傅里叶变换公式(傅里叶级数是傅里叶变换的抽样)傅里叶变换存在条件:能量有限、狄里赫利条件离散时间傅里叶级数以N为周期,傅里叶变换以2π为周期离散时间傅里叶反变换存在条件:无;变换:能量有限或绝对可和实信号的傅里叶变换共轭对称,实偶信号对应频域实偶,实奇频域虚奇周期卷积计算公式CTFT在时域和频域存在对偶关系线性相位:只时移不失真;非线性:时移的同时失真全通系统定义抽样:原始信号与抽样序列相乘(频域:频谱线性搬移)(零阶保持采样)奈奎斯特抽样速率(两倍信号最高频率)模拟角频率w,数字角频率Ω(Ω=wT)抽样前后傅里叶变换对应关系(以ws为周期和以2π为周期、系数)卷积的应用:AM调制(最大调制效率三分之一)、解调超外差式接收:先移到低频然后解调拉普拉斯变换:傅里叶变换不能分析不稳定系统以及不可和信号拉普拉斯变换与傅里叶变换的关系(不同:拉氏变换还需要收敛域来确定信号)收敛域(拉氏变换仅在收敛域内有定义)(合理变换的收敛域内不能有极点)(只与s的实部有关)(傅里叶变换存在条件)如果信号是有限长并且绝对可积,则收敛域是整个s平面单边信号收敛域:右单边对应右平面,左单边对应左平面,双边对应带状收敛域由极点确定,两极点之间,最右极点右边,最左极点左边,或不存在S平面几何分析法(确定拉氏变换幅频相频特性)拉氏变换确定系统稳定(ROC包含虚轴)、因果(RHP)初始、终值定理;应用(与拉氏变换零极点个数、已经s=0处是否有极点有关)框图表示系统函数单边拉氏变换(分析因果系统,用带有初始条件的微分方程描述系统)、微分性质中与初始条件有关全响应=零输入响应+零状态响应反馈:引入极点Z变换公式(收敛域只与z的模有关)Z变换和DTFT的关系(r=1)、LT关系(z=expsT)S平面和Z平面的关系(虚轴和单位圆)Z变换与因果(收敛域在圆外且包括无穷远或Z变换极点数不大于零点数)、稳定(收敛域包括单位圆或所有极点都在单位圆内或傅里叶变换存在)的关系图形分析(Z变换与频率响应的关系)线性常系数微分方程描述离散系统系统函数单边Z变换(收敛域总是在圆外并且包括无穷远处)(对因果系统,单边变换等于双边变换)(时移特性与n=-1处的值有关)。
信号与系统_复习知识总结

信号与系统_复习知识总结信号与系统是电子信息类专业中的一门重要课程,主要介绍信号与系统的基本概念、性质、表示方法、处理方法、分析方法等。
在学习信号与系统的过程中,我们需要掌握的知识非常多,下面是我对信号与系统的复习知识的总结。
一、信号的基本概念1.信号的定义:信号是随时间或空间变化的物理量。
2.基本分类:(1)连续时间信号:在整个时间区间内有无穷多个取值的信号。
(2)离散时间信号:只在一些特定时刻上有取值的信号。
(3)连续振幅信号:信号的幅度在一定范围内连续变化。
(4)离散振幅信号:信号的幅度只能取离散值。
二、信号的表示方法1.连续时间信号的表示方法:(1)方程式表示法:用数学表达式表示信号。
(2)波形表示法:用图形表示信号。
2.离散时间信号的表示方法:(1)序列表示法:用数学序列表示信号。
(2)图形表示法:用折线图表示离散时间信号。
三、连续时间系统的性质1.线性性质:(1)加性:输入信号之和对应于输出信号之和。
(2)齐次性:输入信号的倍数与输出信号的倍数相同。
2.时不变性:系统的输出不随输入信号在时间上的变化而变化。
3.扩展性:输入信号的时延会导致输出信号的时延。
4.稳定性:系统的输出有界,当输入信号有界时。
5.因果性:系统的输出只依赖于当前和过去的输入信号值。
6.可逆性:系统的输出可以唯一地反映输入信号的信息。
四、离散时间系统的性质1.线性性质:具有加性和齐次性。
2.时不变性:输入信号的时移会导致输出信号的相应时移。
3.稳定性:系统的输出有界,当输入信号有界时。
4.因果性:系统的输出只依赖于当前和过去的输入信号值。
五、连续时间系统的分类1.时不变系统:输入信号的时移会导致输出信号的相应时移。
2.线性时不变系统:具有加性和齐次性。
3.时变系统:输入信号的时移会导致输出信号的相应时移,并且系统的系数是时间的函数。
4.非线性系统:不具有加性和齐次性。
六、离散时间线性时不变系统的分类1.线性时变系统:输入信号的时移会导致输出信号的相应时移。
信号与系统知识总结

一,信号与系统的基本概念
1信号的分类:能量信号和功率信号和其他信号:周期信号一般为功率信号,非周期信号既可以为能量信号(持续时间有限),也可以为功率信号(持续时间无限)也可以为其他信号。
2,基本连续时间信号和基本离散时间信号(变量为n)。
3,线性时不变系统:LTI。
二,连续时间系统和离散时间系统的时域分析
连续系统:1,常系数微分方程,经典法;2,零输入法和零状态法,卷积积分法求零状态响应。
离散系统:1,递推法;2,经典法;3,零输入和零状态法,单位抽样序列卷积和求零状态响应。
三,连续时间傅里叶变换,谱分析和时频分析
1,傅里叶级数(周期信号)、傅里叶变换(非周期信号)。
2,傅里叶级数和傅里叶变换的关系。
3,时域乘积相当于频域卷积,相关和能量谱或者功率谱是一个傅里叶变换对。
4,时频分析和小波分析:局部分析。
四,离散时间傅里叶变换,谱分析。
1,周期离散信号:离散傅里叶级数。
离散周期的频谱。
2,非周期离散信号:离散时间傅里叶变换。
连续周期频谱。
3,离散傅里叶变换。
五,复频域分析:拉氏变换和Z变换
1,连续信号:拉氏变换。
2,离散信号:Z变换。
3,拉氏变换、Z变换、傅里叶变换的关系。
4,连续信号的离散时间处理。
六,状态变量分析。
(完整版),信号与系统-公式总结,推荐文档

an (s p1)(s p2 )(s pn ) (s p1) (s p2 )
(s pn )
k i (s pi )F (s) |s pi
(i 1, 2,n)
变变变变变变变变变变
et ut 1
s α
z变变变变变变变
z
z
a
a n u( n) anu(n
1)
za za
⑵留数法
留数法是将拉普拉斯反变换的积分运算转换为求被积函数各极点上留数的运算,即
an
1
, a 1
n0
1 a
第二章 傅立叶变换
1 正变换: F () f (t)e jtdt
2 傅立叶变换的性质 性质 ※时移
※时频展缩
※※频移
逆变换: f (t) 1 F ()e jtd
2
时域
f (t t0 )
f (at) a 0 f (at b) a 0
f (t)e j0t
信号
名称
f (t)
波形图
F () F () e j()
频谱图
※※ 矩形
脉冲 E[u(t ) u(t )]
E
Sa(
)
2
冲激
脉冲
E (t)
E
※※
直流
E
函数
2 E ()
※ 冲激 序列
T 1 (t )
1 1 ( )
1
2 T1
第三章 拉普拉斯变换
1 定义
双边拉普拉斯变换 F (s) f (t)estdt
z
z i0 z pi
根据收敛域给出反变换
N
A: if z R ,则 f (n) 为因果序列(右边序列),即 f (n) Ai pinu(n) i 1
信号与系统期末考试知识点梳理

信号与系统知识点综合CT:连续信号DT:离散信号第一章信号与系统1、功率信号与能量信号性质:(1)能量有限信号的平均功率必为0;(2)非0功率信号的能量无限;(3)存在信号既不是能量信号也不是功率信号。
2、自变量变换(1)时移变换x(t)→x(t-t0),x[n]→x[n-n0](2)时间反转变换x(t)→x(-t),x[n]→x[-n](3)尺度变换x(t)→x(kt)3、CT、DT复指数信号所有的对应唯一为有理数4、单位脉冲、单位冲激、单位阶跃(1)DT信号关系(2)CT信号t=0时无定义关系(3)筛选性质(a)CT信号(b)DT信号5、系统性质(1)记忆系统y[n]=y[n-1]+x[n]无记忆系统y(t)=2x(t)(2)可逆系统y(t)=2x(t)不可逆系统y(t)=x2(t)(3)因果系统y(t)=2x(t)非因果系统y(t)=x(-t)(4)稳定系统y[n]=x[n]+x[n-1]不稳定系统(5)线性系统(零输入必定零输出)齐次性ax(t)→ay(t)可加性x1(t)+x2(t)→y1(t)+y2(t)(6)时不变系统x(t-t o)→y(t-t0)第二章1、DT卷积和,CT卷积积分2、图解法(1)换元;(2)反转平移;(3)相乘;(4)求和第三章CFS DFS1、CFS收敛条件:x(t)平方可积;Dirichlet条件。
存在“吉伯斯现象”。
DFS无收敛条件无吉伯斯现象2、三角函数表示第四、五章CTFT DTFT1、(1)CTFT(a)非周期收敛条件(充分非必要条件):x(t)平方可积;Dirichlet条件。
存在“吉伯斯现象”。
(b)周期(2)DTFT(a)非周期存在收敛条件不存在吉伯斯现象(b)周期2、对偶(1)CTFT、DFS 自身对偶CTFT的对偶性DFS的对偶性(2)DTFT与CFS 对偶3、时域、频域特性4、性质(1)时移与频移(a)CT信号(b)DT信号(2)时域微分(差分)和频域微分(求和)(a)CT信号(b)DT信号(3)时域扩展(内插)(a)CT信号(b)DT信号(4)共轭性质(a)CT信号(b)DT信号5、系统稳定系统才存在H(jw) y(t)=x(t)*h(t)Y(jw)=X(jw)H(jw)第六章时频特性1、模、相位2、无失真条件3、理想滤波器非因果,是物理不可能实现的。
信号与线性系统知识点总复习

信号与线性系统知识点总复习1.信号的基本概念信号是电子信息工程中的重要概念,简单来说就是随时间(或空间)变化的物理现象。
信号可以分为连续信号和离散信号两种。
连续信号可以用函数表示,离散信号可以用数列表示。
2.常见信号的分类常见的信号类型包括连续时间信号、离散时间信号、周期信号、非周期信号、奇函数信号、偶函数信号等。
不同类型的信号在数学表示和性质上有所差异。
3.连续时间信号的基本性质连续时间信号可以通过振幅、频率、相位等参数来描述。
它们具有线性性质、时移性、尺度变换性质和时间反转性质。
这些性质对于信号的分析和处理都是重要的基础。
4.离散时间信号的基本性质离散时间信号是在离散时间点上取值的信号,通常用数列表示。
离散时间信号具有线性性质、时移性、尺度变换性质和时间反转性质。
此外,离散时间信号还有抽样定理、离散时间傅立叶变换等重要概念。
5.线性系统的基本概念线性系统是输入和输出之间存在线性关系的系统,可以用线性常微分方程或差分方程表示。
线性系统具有叠加原理、时不变性、因果性等基本特性。
线性系统的频率响应是分析系统特性的重要工具。
6.线性时不变系统的冲激响应冲激响应是线性时不变系统的重要性质,它描述了系统对单位冲激输入的响应。
从冲激响应可以得到系统的频率响应、相位响应等信息。
7.线性时不变系统的频率响应频率响应描述了线性时不变系统对不同频率的输入信号的响应特性。
它可以通过线性时不变系统的冲激响应来计算,常用的方法有离散时间傅立叶变换、连续时间傅立叶变换、z变换等。
8.线性系统的稳定性分析稳定性是线性系统分析中的重要性质。
对于连续时间系统,稳定性可以通过系统的传递函数的极点位置来判断。
对于离散时间系统,稳定性可以通过系统的差分方程的极点位置来判断。
9.线性系统的频域分析频域分析是信号与系统分析中的重要方法,可以通过傅立叶变换、拉普拉斯变换和z变换等来将信号从时域转换到频域。
频域分析可以得到信号的频谱特性、频率响应等信息。
信号与系统总结

信号与系统总结一、信号与系统的基本概念信号是指随时间或空间变化而变化的物理量,可以用数学函数表示。
信号可以分为连续信号和离散信号两种类型。
系统是指将一个输入信号转换为一个输出信号的过程,可以用数学函数或者图形表示。
二、时域分析时域分析是对信号在时间上的变化进行分析。
其中包括对连续信号和离散信号的时域分析方法。
连续信号的时域分析方法主要有时域图像法、傅里叶级数法、拉普拉斯变换法等;离散信号的时域分析方法主要有离散时间傅里叶级数法、离散傅里叶变换法等。
三、频域分析频域分析是对信号在频率上的特性进行研究。
其中包括对连续信号和离散信号的频域分析方法。
连续信号的频域分析方法主要有傅里叶变换法、拉普拉斯变换法等;离散信号的频域分析方法主要有离散傅里叶变换法等。
四、滤波器设计滤波器是一种能够改变输入信号特性的系统。
根据滤波器的传递函数可以将其分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
滤波器设计的主要目的是根据所需的频率响应,确定合适的滤波器类型和参数。
五、采样与重构采样是指将连续信号转换为离散信号的过程。
重构是指将离散信号转换为连续信号的过程。
采样定理规定了采样频率必须大于等于信号最高频率两倍才能保证无失真地还原原始信号。
六、时域与频域之间的转换时域和频域之间可以通过傅里叶变换进行转换。
连续信号可以通过傅里叶变换转换到频域,离散信号可以通过离散傅里叶变换进行转换。
七、控制系统基础控制系统是一种能够对输出进行调节以达到期望目标的系统。
其中包括开环控制系统和闭环控制系统两种类型。
闭环控制系统具有更好的稳定性和精度,因此在实际应用中更加广泛。
八、小结信号与系统作为电子信息学科的基础课程,是掌握电子信息学科的重要基础。
信号与系统的基本概念、时域分析、频域分析、滤波器设计、采样与重构、时域与频域之间的转换以及控制系统基础都是信号与系统课程中需要掌握的重要内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(完整版)信号与系统知识点整理第一章1.什么是信号?是信息的载体,即信息的表现形式。
通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。
2.什么是系统?系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
3.信号作用于系统产生什么反应?系统依赖于信号来表现,而系统对信号有选择做出的反应。
4.通常把信号分为五种:连续信号与离散信号偶信号和奇信号周期信号与非周期信号确定信号与随机信号能量信号与功率信号5.连续信号:在所有的时刻或位置都有定义的信号。
6.离散信号:只在某些离散的时刻或位置才有定义的信号。
通常考虑自变量取等间隔的离散值的情况。
7.确定信号:任何时候都有确定值的信号。
8.随机信号:出现之前具有不确定性的信号。
可以看作若干信号的集合,信号集中每一个信号出现的可能性(概率)是相对确定的,但何时出现及出现的状态是不确定的。
9.能量信号的平均功率为零,功率信号的能量为无穷大。
因此信号只能在能量信号与功率信号间取其一。
10.自变量线性变换的顺序:先时间平移,后时间变换做缩放.注意:对离散信号做自变量线性变换会产生信息的丢失!11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能力。
(开关效应)12.单位冲激信号的物理图景:持续时间极短、幅度极大的实际信号的数学近似。
对于储能状态为零的系统,系统在单位冲激信号作用下产生的零状态响应,可揭示系统的有关特性。
例:测试电路的瞬态响应。
13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号,一个位于t=0-处,强度正无穷大;另一个位于t=0+处,强度负无穷大。
要求:冲激偶作为对时间积分的被积函数中一个因子,其他因子在冲激偶出现处存在时间的连续导数.14.斜升信号:单位阶跃信号对时间的积分即为单位斜率的斜升信号。
15.系统具有六个方面的特性:1、稳定性2、记忆性3、因果性4、可逆性5、时变性与非时变性6、线性性16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。
17.记忆系统:系统的输出取决于过去或将来的输入。
18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。
19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。
20.非因果系统:输出与未来的输入信号相关联。
21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作.22.可逆系统:可以从输出信号复原输入信号的系统。
23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。
24.系统的时变性:如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。
25.检验一个系统时不变性的步骤:1. 令输入为,根据系统的描述,确定此时的输出。
1()x t 1()y t2. 将输入信号变为,再根据系统的描述确定输出。
3. 令,根据自变量变换,检验是否等于。
26.同时满足叠加性和齐次性的系统为线性系统,否则为非线性系统。
第二章 27. LTI 系统:满足线性特性(齐次性、叠加性),非时变性。
28.任意信号都可以分解为移位加权的单位冲激信号的线性组合,即时移冲激序列的加权叠加表示29.系统的响应:即输入信号经系统后的输出信号。
30.系统的冲激(脉冲)响应:即系统对时间冲激输入信号的输出信号。
31.LTI 系统对冲激信号的响应,简称冲激响应32.卷积和求解。
直接计算:特点:考虑了不同时移的冲激序列的加权、叠加计算,x[n]与h[n]的所有各元素都要遍乘一次。
优点:思路直接,计算简单。
缺点:只适用于两个有限长序列的卷积和计算,否则计算非常繁琐。
33.匹配滤波器的工作原理:输出信号峰值所在处,对应的时间t = 正是关注的往返时间的延迟量的实际意义.34.离散时间LTI 系统及其卷积和,同时满足类似连续时间系统卷积积分的分配律、结合律和交换律特性。
35.因果LTI 系统:其输出只与过去和现在的输入信号有关。
实际意义:输入为单位冲激信号时,因果系统的冲激响应不可能在零时刻之前出现。
36.初始值(初始条件):要获得系统未来的输出,必须知道该系统在过去的输出信息,则过去的输出信息称为初始值或初始条件。
2()x t 2()y t 210()()x t x t t =-10()y t t -2()y t β37. 任何时候都满足齐次方程的解叫齐次解,齐次解可能不止一个,代表满足齐次方程的系统的各种可能的状态!38.在零输入(即与输入信号直接有关的变化均为零)的前提下,由系统的非零初始条件(即某一时刻该方程的状态)所决定的解,称为满足初始条件的齐次解;此时方程所对应的系统输出信号称为系统的自然响应,描述系统中由非零初值条件所代表的储能或过去存储值耗散的方式。
39.在描写LTI 系统的常系数线性微分方程或差分方程中,当与输入信号直接有关的变化均为零时,该方程称为齐次方程.40.当系统的初始条件为零(即自然响应为零)时,只由输入信号引起的系统响应,称为强迫响应,即描述当系统处于零状态时受输入信号“推动”的结果。
41.满足初始条件的非齐次方程的通解是完全解,完全解所对应的系统的输出信号就是完全响应。
42.完全响应就是自然响应与强迫响应的叠加。
第三章43.LTI 系统的冲激响应描述代表了系统的全部时域特征:任何信号均可表示为以该信号为权重的冲激信号的线性叠加;任何输入信号经过LTI 系统后的输出信号,都可以表示成输入信号与系统冲激响应的卷积和或卷积积分。
44. 频率为ω的复正弦信号经LTI 系统后的输出,是只与该频率有关的复常数与复正弦信号的乘积。
称为LTI 系统对频率ω的复正弦输入信号的频率响应.45. 如果一个函数通过系统后变为一个数值与该函数相乘,称函数是系统的特征函数,数值称为该系统与此特征函数相对应的特征值。
46.LIT 对复正弦信号的输出特点:1)输出信号也是M 个复指数特征函数的加权和;2)卷积运算变成了输入权重与频率响应的乘积运算;3)输入与输出权重:信号由时域表示转换为频域表示;4)与每个频率的复正弦信号相联系的权重表示该频率的正弦信号对整个信号的贡献。
47.“周期信号都可以表示为成谐波关系的正弦信号的加权和(傅里叶级数)。
”——傅里叶的第一个主要论点)(t ψλ)(t ψλ“非周期信号都可以用正弦信号的加权积分来表示(傅里叶变换)。
”——傅里叶的第二个主要论点。
48.傅里叶分析:利用复正弦信号,通过傅里叶级数及傅里叶变换,分析信号与系统在频域范围内性质的方法。
傅里叶分析表明:连续时间周期信号可以按傅里叶级数分解成无数个复正弦谐波分量的加权叠加。
49.狄里赫利(Dirichlet )条件:1、信号是有界且单值的;2、任何区间内绝对可积(或绝对可和);3、信号在任何有限区间内只有有限个极大值和极小值;4、信号在任何有限区间内只有有限个不连续点。
50.实数域周期信号的傅里叶级数还可以表示为有初相位变化的余弦函数形式,称为谐波型傅里叶级数51.时移特性:时移?引起频率线性函数的相移;与幅度,相移大小是时移与正弦频率的乘积。
频移特性:号的频移?时域:初始复正弦与另一频率等于频移量的复正弦的乘积。
频移与时移两种特性是对偶关系:一个域内的移动,对应于另一个域内乘以一个复正弦函数。
52.帕斯瓦尔(Parseval)关系信号的能量或功率在时域与频域中是相等的。
53.不定性原理:不可能同时减小信号的持续时间和带宽。
54.对偶特性:时域和频域表示之间的对称性。
55.对偶特性要求:对偶的两信号的类型相同。
56.复正弦函数是LTI 系统的特征函数,对应特征值只是频率的函数,即LTI 系统对频率ω的复正弦输入信号的频率响应。
57.连续周期信号的FT 对应的频域信号:看做一个频移量为的冲激序列的加权叠加,各冲激信号的强度为,间隔为基频。
离散周期信号的DTFT 对应的频域信号:0ωk ][2k X π0ω看做一个频移量为的冲激序列的加权叠加,各冲激信号的强度为,间隔为基频。
58. 冲激抽样:抽样信号表示为原始连续信号与冲激序列的乘积.59.从抽样信号恢复原信号满足的要求:如果X(jω)与x(t)是一对傅里叶变换对,X(jω)存在最大频率限制,即|ω|>ωm 时X(jω) = 0;当抽样频率满足ωs>2ωm 时,原来的信号x(t)由样本x(nTs),n=±1,±2,…惟一确定.60.抗混叠滤波—抽样(离散化)前的预处理:目的:1、将无限带宽信号变为有限带宽信号;2、消除与待传输或待处理信号无关的信号;3、消除部分高频噪声。
61.零阶保持:表示为抽样间隔整数倍的矩形脉冲的时移加权和。
62.零阶保持效应:导致抽样信号的频谱失真。
包括线性相移、由的主瓣弯曲、旁瓣衰减等引起的失真。
63.等效连续时间系统的频率响应,就是离散时间系统频率响应在一个周期内的特性,只不过在频率上有一个尺度变换。
64.反向滤波器:为了可以恢复原始连续信号,要求在零阶保持系统后再级联一个系统。
作用:反像滤波器可校正零阶保持抽样信号频谱的畸变,以及平滑时域信号的不连续阶梯0Ωk ][2k X π0Ω()o H j ω()c H j ω。