向量空间模型和概率检索模型的异同之处
数学专业考研专业及方向简介

数学专业考研专业及方向简介计算数学专业微分方程数值解近年来,许多复杂的实际物理问题为(偏)微分方程的数值解法提出了更高的要求:针对不同类型方程设计相应的稳定、高精度、高分辨率、适应间断问题、计算速度快、节省贮存空间等。
因此研究(偏)微分方程的数值解法有着十分重要的理论和现实意义。
本方向研究的时空有限元方法将时间和空间变量统一考虑,充分发挥有限元方法的优势;间断有限元方法是上世纪90年代发展起来的方法,具有形式高阶精度、高分辨率、易于实现等优点;有限体积法及高分辨率差分方法等是计算流体力学和计算数学工作者关注的重要数值方法。
我们不仅针对不同的方程类型设计行之有效的数值格式,而且利用Sobolev函数空间理论解决(偏)微分方程广义解的存在唯一性及解的先验估计,证明数值解的稳定性、收敛性等性质,并再现激波、溃坝、边界层等物理问题的数值模拟,为实际部门解决此类问题提供依据和实际操作程序。
研究队伍主要成员:算法的设计与分析算法的设计与分析是计算机科学和计算机应用的核心,无论计算机系统设计和系统软件的设计,还是为解决实际问题的应用软件设计都可以归结为算法的设计。
本方向研究算法的设计和性能评价,以及在计算机上的实现。
主要研究遗传算法、神经网络算法、模拟退火算法等现代优化方法;贪心方法、分治方法、动态规划、基本检索和遍历方法、回溯方法等计算机常用算法。
并把这些算法应用于组合优化、资源分配、调度方法、人工智能、图与网络等诸多领域,特别是具有NP难的问题领域。
研究队伍主要成员:科学计算与应用软件科学计算是运用数学现代理论方法、利用现代化的计算机技术解决科研、工程、社会、经济和金融等问题;分析和提高计算的可靠性、精确性和有效性;研究各类数值软件的开发技术及应用方法。
它是伴随着计算机的出现而迅猛发展起来的新型学科,是二十一世纪信息技术时代最吸引人的科学领域之一,科学计算已成为与理论和实验相并列的三大科学研究的重要手段。
机器学习原理及应用习题答案

第一章的题目填空题1、常见的机器学习算法有_________、___________、___________(随意列举三个)答:逻辑回归、最大熵模型、k-近邻模型、决策树、朴素贝叶斯分类器、支持向量机、高斯混合模型、隐马尔可夫模型、降维、聚类、深度学习2、sklearn.model_selection中的train_test_split函数的常见用法为______,______,______,______ = train_test_split(data,target)(填写测试集和训练集名称,配套填写,例如x_train,x_test)答:x_train x_test y_train y_test3、根据机器学习模型是否可用于生成新数据,可以将机器学习模型分为_________和_________。
答:生成模型判别模型4、训练一个机器学习模型往往需要对大量的参数进行反复调试或者搜索,这一过程称为______。
其中在训练之前调整设置的参数,称为_________。
答:调参超参数5、根据样本集合中是否包含标签以及半包含标签的多少,可以将机器学习分为____________、____________和______________。
答:监督学习半监督学习无监督学习判断题1、根据模型预测输出的连续性,可以将机器学习算法适配的问题划分为分类问题和线性问题。
(F)(回归问题)2、决策树属于典型的生成模型。
(F)(判别模型)3、降维、聚类是无监督学习算法(T)4、当我们说模型训练结果过拟合的时候,意思是模型的泛化能力很强(F)(很差)5、训练误差和泛化误差之间的差异越小,说明模型的泛化性能越好。
(T)选择题1、以下属于典型的生成模型的是(D)A、逻辑回归B、支持向量机C、k-近邻算法D、朴素贝叶斯分类器2、以下属于解决模型欠拟合的方法的是(C)A、增加训练数据量B、对模型进行裁剪C、增加训练过程的迭代次数D、正则化3、构建一个完整的机器学习算法需要三个方面的要素,分别是数据、模型、(A)。
hellinger距离公式_解释说明以及概述

hellinger距离公式解释说明以及概述1. 引言1.1 概述Hellinger距离是一种常用的概率分布差异度量方法,被广泛应用于统计学、信息论和机器学习等领域。
它通过比较两个概率分布之间的相似程度来衡量它们之间的距离。
与其他距离度量方法相比,Hellinger距离具有对称性、非负性以及衡量两个分布之间密切相关程度的优点。
1.2 文章结构本文将首先介绍Hellinger距离的定义和解释,包括其概念以及推导过程。
接着,我们将对Hellinger距离与其他常见距离度量方法进行比较,如欧氏距离、Jensen-Shannon散度和K-L散度等。
然后,我们将探讨Hellinger距离在数据分析中的应用案例研究,包括在图像识别、文本分类和生物信息学等领域的具体应用。
最后,在结论部分,我们将综述Hellinger距离的公式及其应用,并总结其优势与局限性,并展望未来研究发展方向。
1.3 目的本文旨在深入探讨Hellinger距离公式的解释和说明,并对其在数据分析中的应用进行概述。
通过该文,读者将了解Hellinger距离在不同领域中的实际应用案例,以及与其他常见距离度量方法之间的关系和比较。
此外,我们也希望能够准确阐述Hellinger距离的定义及其特性,为读者提供一个全面的认识和理解。
2. Hellinger距离公式的定义与解释2.1 Hellinger距离的概念Hellinger距离是一种用来度量两个概率分布之间的相似性的距离度量方法。
它是通过考虑两个概率分布的密度函数之间的差异来衡量它们之间的相似程度。
Hellinger距离是由Ernst Hellinger在1909年提出,被广泛应用于统计学、信息论和机器学习等领域。
Hellinger距离定义如下:对于两个概率分布P和Q,它们的Hellinger距离H(P, Q)可以通过以下公式计算:H(P, Q) = √(1/2) * √Σ(√f(i) - √g(i))^2其中,f(i)/g(i)代表P/Q在第i个事件上的概率值。
一种改进的向量空间信息检索模型研究

击 率 , 往 采 取 各 种欺 骗 手 段 , 如 在 网 页 J下 文 中加 大 量 与 网 往 例 页 背 景 色 相 同 的关 键 词 、在 图 片 的 < l 标 签 中加 人 大 量 关 键 at > 词 、 网 页 源码 注 释 中加 入 大量 的关 键 词 ( 然 注 释 不 会 在 浏 览 在 虽
常见 的信 息 检 索模 型有 : 1 布 尔模 型 : 是 基 于 特 征 项 的 严格 匹配 模 型 , 本 查询 的 ) 它 文
匹 配 规 则 遵循 布 尔 运 算 的 法 则 。布 尔 运 算 包 括 A ND、 OR、 T NO 三 种 , 别 表示 包 含 全 部 关 键 字 , 意 一 个 关 键 字 以及 不 能 含 有 分 任
检索模型是信鼬 索领域中广泛使用的一种信息检索模型。其
基本思路是 : 息检索 中, 在信 文档或者查询的基本含义都是通过
其所包含的词 ( 检索 单元 ) 来表述 的, 可以定义 由检 索单元组成 的向量来描述 每÷篇 文档和每一条检索 ,再通 过计算文 档与查
询 之 间 的 相关 程 度 来判 断 文 档 与 查 询 是 否 相关 ,与 某 一 特 定 的 查询 的相 关程 度越 高 者 被 认 为 是 与该 查 询 越 相 关 的 文档 。 V M 是 一 个 应 用 于 信 息 过 滤 , 息 撷 取 , 引 以 及 评 估 相 S 信 索
摘 要
传 统 的 信 息检 索 方法 忽 略 了文档 结构 对 词 的 重要 性 。在 此 基 础 上 , 出 了改进 的 向 量 空 间检 索模 型 , 用 该模 型进 行 提 利 相 似度 计 算 。 试 验表 明该 模 型 可 以提 高信 息 检 索 的 查 准率 和 查 全 率 不 高的 缺 点 。 关键 词 : 索 引擎 , 索模 型 , 全 率 , 准 率 搜 检 查 查
向量数据库 关系模型

向量数据库 关系模型
向量数据库是一种基于向量相似度计算的数据库,它使用向量
表示数据对象,并利用向量之间的相似度来进行数据检索和分析。
与传统的基于关系模型的数据库不同,向量数据库更适用于处理大
规模的高维度数据,并且能够支持复杂的相似度查询。
在向量数据库中,数据对象通常被表示为高维度的向量,每个
维度对应于对象的某个特征或属性。这种表示方式使得数据对象之
间的相似度可以通过向量之间的距离或夹角来度量,从而实现快速
的相似度计算和检索。相比之下,关系模型数据库则是基于表格结
构,使用行和列来存储和组织数据,通常适用于结构化数据和复杂
的事务处理。
在实际应用中,向量数据库常用于图像识别、推荐系统、自然
语言处理等领域,因为这些领域的数据往往具有高维度和复杂的相
似度计算需求。而关系模型数据库则更适用于传统的企业应用、金
融系统、以及需要复杂事务处理和数据一致性的场景。
总的来说,向量数据库和关系模型数据库都有各自的优势和适
用场景。选择合适的数据库取决于具体的应用需求和数据特征。在
实际应用中,有时候也会将两者结合使用,以充分发挥它们各自的
优势。希望这些信息能够对你有所帮助。
第四章 生物信息学数据库(二)-生技用

相似性和同源性关系
序列的相似性和序列的同源性有一定的关系,一 般来说序列间的相似性越高的话,它们是同源序 列的可能性就更高,所以经常可以通过序列的相 似性来推测序列是否同源。 正因为存在这样的关系,很多时候对序列的 相似性和同源性就没有做很明显的区分,造成经 常等价混用两个名词。所以有出现A序列和B序 列的同源性为80%一说。
核酸序列 蛋白质序列 生物大分子结构 基因组数据 生物分类数据库 孟德尔人类遗传学数据(OMIM) Pubmed
Entrez集成系统结构如图4.8所示。
图4.8、Entrez数据库系统结构图
各个参数选项
帮助信息 填入搜索序列
FastA的最新版本是FastA3软件包,下表2列出FastA3 家族所有成员:
程 序
FastA FASTX FASTY TFastA TFASTX TFASTY FASTS TFASTS FASTF TFASTF
查询序列类型
DNA 蛋白质 DNA 蛋白质 蛋白质
序列相似性比较和序列同源性分析
序列相似性比较: 就是将待研究序列与DNA或蛋白质序列库进行比较, 用于确定该序列的生物属性,也就是找出与此序列相似 的已知序列是什么。完成这一工作只需要使用两两序列 比较算法。常用的程序包有BLAST、FASTA等; 序列同源性分析: 是将待研究序列加入到一组与之同源,但来自不同物种 的序列中进行多序列同时比较,以确定该序列与其它序 列间的同源性大小。这是理论分析方法中最关键的一步。 完成这一工作必须使用多序列比较算法。常用的程序包 有CLUSTAL等;
PDB MMDB NDB
(Protein Data Bank)
(Molecular Modeling Database) 实际上是PDB的一个编辑版本
人工智能习题参考答案

• 神经网络主要通过指导式(有师)学习算法和非指导式(无师)学习 算法。此外,还存在第三种学习算法,即强化学习算法;可把它看做 有师学习的一种特例。 • (1)有师学习 • 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入) 间的差来调整神经元间连接的强度或权。因此,有师学习需要有个老 师或导师来提供期望或目标输出信号。有师学习算法的例子包括 Delta规则、广义Delta规则或反向传播算法以及LVQ算法等。 • (2)无师学习 • 无师学习算法不需要知道期望输出。在训练过程中,只要向神经网络 提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征 把输入模式分组聚集。无师学习算法的例子包括Kohonen算法和 Carpenter-Grossberg自适应谐振理论(ART)等。 • (3)强化学习 • 强化(增强)学习是有师学习的特例。它不需要老师给出目标输出。 强化学习算法采用一个“评论员”来评价与给定输入相对应的神经网 络输出的优度(质量因数)。强化学习算法的一个例子是遗传算法 (GA)。
• • • • • • • • • •
• 6-2专家系统由哪些部分构成?各部分的作用为何? • 答: •
• 5-7遗传算法、进化策略和进化编程的关系如何?有何区别? • 遗传算法是一种基于空间搜索的算法,它通过自然选择、遗传、变异 等操作以及达尔文适者生存的理论,模拟自然进化过程来寻找所求问 题的解答。 • 进化策略(Evolution Strategies,ES)是一类模仿自然进化原理以求 解参数优化问题的算法。 • 进化编程根据正确预测的符号数来度量适应值。通过变异,为父代群 体中的每个机器状态产生一个子代。父代和子代中最好的部分被选择 生存下来。 • 进化计算的三种算法即遗传算法、进化策略和进化编程都是模拟生物 界自然进化过程而建立的鲁棒性计算机算法。在统一框架下对三种算 法进行比较,可以发现它们有许多相似之处,同时也存在较大的差别。 • 进化策略和进化编程都把变异作为主要搜索算子,而在标准的遗传算 法中,变异只处于次要位置。交叉在遗传算法中起着重要作用,而在 进化编程中却被完全省去,在进化策略中与自适应结合使用,起了很 重要的作用。 • 标准遗传算法和进化编程都强调随机选择机制的重要性,而从进化策 略的角度看,选择(复制)是完全确定的。进化策略和进化编程确定 地把某些个体排除在被选择(复制)之外,而标准遗传算法一般都对 每个个体指定一个非零的选择概率。
【人工智能】《人工智能》课程习题

【⼈⼯智能】《⼈⼯智能》课程习题《⼈⼯智能》课程习题第⼀章绪论1-1. 什么是⼈⼯智能?试从学科和能⼒两⽅⾯加以说明。
1-2. 在⼈⼯智能的发展过程中,有哪些思想和思潮起了重要作⽤?1-3. 为什么能够⽤机器(计算机)模仿⼈的智能?1-4. 现在⼈⼯智能有哪些学派?它们的认知观是什么?1-5. 你认为应从哪些层次对认知⾏为进⾏研究?1-6. ⼈⼯智能的主要研究和应⽤领域是什么?其中,哪些是新的研究热点?第⼆章知识表⽰⽅法2-1状态空间法、问题归约法、谓词逻辑法和语义⽹络法的要点是什么?它们有何本质上的联系及异同点?2-2设有3个传教⼠和3个野⼈来到河边,打算乘⼀只船从右岸渡到左岸去。
该船的负载能⼒为两⼈。
在任何时候,如果野⼈⼈数超过传教⼠⼈数,那么野⼈就会把传教⼠吃掉。
他们怎样才能⽤这条船安全地把所有⼈都渡过河去?再定义描述过河⽅案的谓词:L-R(x, x1, y, y1,S):x1个修道⼠和y1个野⼈渡船从河的左岸到河的右岸条件:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(L,S)动作:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(R,S’)R-L (x, x1, y, y1,S):x2个修道⼠和y2个野⼈渡船从河的左岸到河的右岸条件:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(R,S)动作:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(L,S’)(2) 过河⽅案Safety(L,3,3,S0)∧Safety(R,0,0,S0)∧Boat(L,S0)L-R(3, 1, 3, 1,S0) L-R(3, 0, 3, 2,S0)Safety(L,2,2,S1)∧Safety(R,1,1,S1)∧Boat(R,S1)Safety(L,3,1,S1’)∧Safety(R,0,2,S1’)∧Boat(R,S1’)R-L (2, 1, 2, 0,S1) R-L (3,0, 1, 1,S1’)Safety(L,3,2,S2)∧Safety(R,0,1,S2)∧Boat(L,S2)L-R(3, 0, 2, 2,S2)Safety(L,3,0,S3)∧Safety(R,0,3,S3)∧Boat(R,S3)R-L (3, 0, 0, 1,S3)Safety(L,3,1,S4)∧Safety(R,0,2,S1)∧Boat(L,S4)L-R(3, 2, 1, 0,S4)Safety(L,1,1,S5)∧Safety(R,2,2,S5)∧Boat(R,S5)R-L (1, 1, 1, 1,S5)Safety(L,2,2,S6)∧Safety(R,1,1,S6)∧Boat(L,S6)L-R(2, 2, 2, 0,S6)Safety(L,0,2,S7)∧Safety(R,3,1,S7)∧Boat(R,S7)R-L (0, 0, 2, 1,S7)Safety(L,0,3,S8)∧Safety(R,3,0,S8)∧Boat(L,S8)L-R(0, 0, 3, 2,S8)Safety(L,0,1,S9)∧Safety(R,3,2,S9)∧Boat(R,S9)R-L (0, 1, 1, 0,S9)Safety(L,1,1,S10)∧Safety(R,2,2,S10)∧Boat(L,S10)2-3利⽤图2.3,⽤状态空间法规划⼀个最短的旅⾏路程:此旅程从城市A开始,访问其他城市不多于⼀次,并返回A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量空间模型和概率检索模型的异同之处向量空间模型和概率检索模型都是信息检索领域常用的模型,二者在某些方面有着相似之处,但也存在一些差异。
首先,向量空间模型是一种基于向量空间的检索模型,它将文本表示为向量,通过计算向量之间的相似性来判断文本之间的相关性,常用的相似度计算方法有向量点积和余弦相似度。
而概率检索模型则是一种基于概率论的检索模型,它将文本表示为概率分布,在检索时通过计算文本与查询之间的相似度来判断文本的相关性,常用的相似度计算方法有BM25算法和语言模型。
其次,向量空间模型注重于文本的局部特征,即将每个文本看作向量空间中的一个点,通过这个点向量来描述文本,而不考虑其背景信息;而概率检索模型则侧重于文本与查询的全局关系,即通过统计文本中的词项与查询中的词项的关联性来计算文本与查询之间的相似度。
最后,向量空间模型没有对文本出现的概率进行建模,而是通过词项的权重来进行排名;而概率检索模型则是通过建模文本出现的概率分布,来计算文本与查询之间的相似度,得到相关性排名。
综上所述,向量空间模型和概率检索模型都有各自的特点,选用哪种模型应根据问题的具体情况进行选择。